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Abstract

In this paper, we present our image compression frame-
work designed for CLIC 2020 competition. Our method
is based on Variational AutoEncoder (VAE) architecture
which is strengthened with residual structures. In short,
we make three noteworthy improvements here. First, we
propose a 3-D context entropy model which can take ad-
vantage of known latent representation in current spatial
locations for better entropy estimation. Second, a light-
weighted residual structure is adopted for feature learn-
ing during entropy estimation. Finally, an effective training
strategy is introduced for practical adaptation with different
resolutions. Experiment results indicate our image com-
pression method achieves 0.9775 MS-SSIM on CLIC vali-
dation set and 0.9809 MS-SSIM on test set.

1. Introduction
Image compression is a ubiquitous technique in the digi-

tal age. Traditional image compression standards take years
to develop a new generation. With the rapid development
of Deep Neural Networks (DNNs), learning-based image
compression method presently is attractive and achieves
some promising breakthroughs [4, 7, 8]. Early learning-
based method [14] is based on RNN and supports coding
scalability. However, image compression is a rate-distortion
trade-off game and such RNN-related work cannot directly
optimize the rate during network training.

Recently, most learning-based image compression ap-
proaches are based on VAE architecture, where rate R and
distortion D are jointly optimized in an end-to-end manner
[2]. Ballé et al. [3] propose a hyperprior entropy model,
which parameterizes the latent distribution and predicts
their standard deviations as Gaussian Scale Model (GSM).
After that, [10] and [12] introduce context entropy model to
utilize adjacent known regions for better parameter estima-
tion and improve original GSM to Single Gaussian Model

∗Zongyu Guo and Yaojun Wu contribute equally to this work. Zhibo
Chen is the corresponding author.

(SGM). Recent works [11, 6] further suggest a more gener-
alized format to predict the distribution of latent representa-
tion, i.e., Gaussian Mixture Model (GMM). GMM theoret-
ically is able to approximate arbitrary continuous probabil-
ity distribution. Those impressive improvements mentioned
above mainly concentrate on the hyperprior model for pa-
rameter estimation. Additionally, the backbone network can
also be enhanced with some techniques such as attention
mechanism [15, 6] and post-processing network [11].

In this paper, motivated by the aforementioned methods,
we build our image compression network for CLIC 2020
low rate track and highlight three main improvements. First,
we propose a 3-D context entropy model which divides la-
tent representations into two groups across channels. This
3-D context model can better extract correlations of latent
features which are in the same spatial location but vary in
channel. Second, a residual structure is adopted to refine
the estimated entropy parameters. The designed residual
parameter estimation (RPE) module efficiently cooperates
with the 3-D context model thanks to the light-weighted
but effective structure. Third, a novel training strategy is
employed for practical image compression. We know that
due to the downsampling layer in network, learning-based
codec usually requires the input to have an integer-multiple
resolution of values such as 32 or 64. Consequently, when
dealing with such images with different resolutions, we
should first conduct padding process. This may lead to un-
necessary bit waste on padded areas. The proposed training
strategy enables network to adapt to different padding situ-
ations in the time of training.

In CLIC 2020 low rate track, our team IMCL IMG
MSSSIM got 0.9775 and 0.9809 MS-SSIM during the val-

idation phase and test phase respectively.

2. Method

2.1. The overall framework

Before introducing our proposed new techniques, we
first present our overall framework, which is shown in Fig-
ure 1. Similar to previous work [12], this pipeline can be di-
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Figure 1: The overall framework of our image compression model. The context entropy model is a 3-D version.

vided into three parts: an analysis transform encoder, a syn-
thesis transform decoder, and a hyperprior entropy model
(including a hyper encoder and a hyper decoder). The hy-
perprior part will be discussed later. This backbone network
is an improved version based on [6]. Specifically, the raw
input image x will be transformed to the latent features y,
which will be quantized to ŷ and then decoded to recon-
structed image x̂. The analysis transform encoder contains
three transform blocks, each of which is made of a residual
downsampling layer, an attention layer and a residual en-
hancement layer. After three transform blocks, there are a
downsampling convolution layer and an attention layer to
increase receptive field. The architecture of synthesis de-
coder is symmetric, i.e., an attention layer, three inverse
transform blocks and an additional upsampling layer.

Compare with the baseline network [6], we modify their
model with several extra attention modules in the encoder
side, which has no increasing complexity for decoding
(two in analysis transform encoder and one in hyper en-
coder). Besides, GRDN [9], a post-processing network
recommended in [11], is adopted following the main com-
pression network to further enhance image quality, which is
omitted in Figure 1.

2.2. 3-D context entropy model

As a part of hyperprior model, context entropy model
was first proposed in [12] and [10]. This context model is
autoregressive over latents and is usually implemented in
the format of 5 × 5 mask convolution [12]. Such context
entropy model plays an important role for the estimation of
feature parameters though it would increase decoding time
complexity dramatically.

The mask convolution layer in previous context model

can effectively capture spatial correlations to predict cur-
rent pixel, which is similar to classical intra prediction. Our
experiments indicate that not only spatial redundancy can
be eliminated, there also exists channel-wise redundancy,
even though Generalized Divisive Normalization (GDN) is
proved to well Gaussianize features in the channel direction.

Assuming we are predicting current latent representation
y, its location is [i, j, k], where i and j are the coordinate
of height and width and k is the channel location index.
While original 2-D context model concentrates on the left
and up features ŷi−h,j−w, the proposed 3-D context model
further leverages known (decoded) features in current spa-
tial location, i.e., ŷi,j,k−c. Ideally, different channel requires
different mask convolution in our 3-D context model, e.g.,
feature in the first channel can be predicted only with the
up and left features but feature in the last channel can be
predicted with those known features in current spatial loca-
tion. However, this ideal situation will complicate model
because in this case, every channel should have its own pa-
rameter estimation module. Therefore, we finally choose
to compromise which divides all channels into two groups.
Each group has its own weights of mask convolution and
now there are two independent parameter estimation mod-
ules for those two groups. As shown in Figure 1, the first
group is predicted as usual but the second group can be pre-
dicted based on the first group.

The proposed 3-D context model enables the sequential
decoding process to be more sequential. We have tried to
divide channels into more groups, which was found to im-
prove little. This 3-D context model is analogous to the
conditional RGB prediction model in PixelCNN [13]. The
difference is that here are more channels rather than only
three in PixelCNN and we divide these channels into two
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Figure 2: Residual parameter estimation module. There is
only one residual connection and thus the RPE module is
relatively lighted-weighted but effective.

groups for simplification.

2.3. Residual parameter estimation module

Cheng et al. [5] comprehensively discuss the residual ar-
chitecture for image compression. As they shown, residual
structures in analysis transform and synthesis transform ob-
viously strengthen the capability of network. Motivated by
this, we think the entropy parameter estimation module can
also be enhanced with the help of residual structure.

As shown in Figure 1, after obtaining context feature f1
and hyper feature f2 reconstructed from ŷ and ẑ, we employ
a residual parameter estimation (RPE) module to estimate
the probability distribution of ŷ. As mentioned before, the
distribution of latent features is modeled as Gaussian Mix-
ture Model (GMM) following [11, 6], i.e.,

p(ŷ) ∼
K∑

k=1

πkN (µk, σ
2
k). (1)

In our experiments, we find that K = 3 is enough to ac-
curately estimate the distribution of latent representations.
The structure of RPE module is presented in Figure 2. There
are three 1× 1 convolution layers to process the concatena-
tion of f1 and f2. Then there follows a residual component
which also contains three 1 × 1 layers. Such 1 × 1 resid-
ual convolution layers, which can also be regarded as fully
connected layers, mainly work for features across the entire
channels instead of spatial features. Therefore, it will not
influence the sequential decoding process.

Lee et al. [11] propose a Model Parameter Refinement
Module (MPRM) to cooperate with global context. Our de-
signed residual entropy parameter module is partially dif-
ferent from theirs because here we only have one residual
block, which is effective and light-weighted. The moder-
ate parameter number is also advantageous for the 3-D con-
text model because the 3-D context model here doubles the
whole parameter number of entropy estimation module.

2.4. More practical image compression

Practical image compression codec requires to handle
those images with different resolutions. It is problematic

even for traditional block-based image compression meth-
ods, e.g., VTM (VVC test model) [1] would first change
image resolution to an integer multiple of 8. Considering
learning-based image compression methods, this problem is
always more serious because there are many downsampling
layers in network which would cause resolution inconsis-
tency after inversion. A conventional solution would be ex-
tra padding process before encoding. However, learning-
based network is usually trained with full cropped patches
such as 256 × 256 patches. As a result, the network can-
not handle these padded image properly in practical appli-
cations and then performance usually drops.

In our framework, there are totally six downsampling
layers and thus input images should have an integer multiple
resolution of 26 = 64. First we note that experiments prove
that zero-padding is optimal than other padding methods
such as reflection-padding. Here we propose a strategy to
enable network to adapt to the padding effects during train-
ing. The pseudo code of proposed algorithm is as following
in Algorithm 1.

Algorithm 1 Training strategy for practical compression

Input: A mini-batch data x randomly cropped from train-
ing dataset, the shape of which is [B,C,H,W ]

1: Flag← random sample ∈ {0, 1}.
2: if Flag is 0 then
3: Normally optimize your network.
4: else
5: Randomly get the padding size for current batch.
6: Select hpad ∈ [0, P1], wpad ∈ [0, P2].
7: Zero-pad input x right and down. Then its shape is

[B,C,H + hpad,W + wpad].
8: Crop x to simulate the real input image after padding:

x = x[:, :, hpad :, wpad :].
9: Calculate pixel number (H − hpad) × (W − wpad)

to obtain actual bitrate R of current batch. Then ag-
gregate the distortion loss D which only covers un-
padding area.

10: Optimize your network.
11: end if

In this algorithm, P1 and P2 are given upper bound to
control the padding size during training. In our experiments,
considering that input patch is 256 × 256 (H=W=256), we
empirically set P1 = P2 = 20. In short, we want to enable
network to have access to padded images even if those im-
ages are imitated by manually crafted padding. Randomly
choosing padding size will help network adapt to different
images with different padding situation. This training strat-
egy is verified to largely improve the performance in CLIC
validation dataset (the actual required bitrate decreases).



Model MSSSIM PSNR BPP
Single model (λ = 16) 0.97812 30.30 0.1548

Two models (λ = {12, 16}) 0.97753 30.19 0.1499
Four models (λ from [10, 24]) 0.97754 30.19 0.1499

Table 1: Performance on CLIC 2020 validation dataset. Op-
timized for MS-SSIM.

3. Implementation details
We train our network with 256 × 256 patches randomly

cropped from CLIC training set, DIV2K and Flickr 2K
dataset, which has the same setting as [15]. We divide the
training period into three stages. We first train our main
compression network without post-processing. Then we fix
the parameters in the main compression network and train
corresponding post-processing module GRDN [9]. At the
last step, we jointly optimized the whole pipeline to achieve
the best results. Notably, the proposed training strategy for
padding effect is applied only at the third stage. At differ-
ent training stages, we all take a learning rate decay strat-
egy, i.e., lr = 1e − 4 in the initial 300,000 iterations and
lr = 1e − 5 for the rest 300,000 iterations. We train the
network on two RTX 2080 Ti GPUs when batch size is set
to 8.

Due to the limit of 0.15 bpp in CLIC competition, we
train different models for different compression ratios. As
usual, the loss function is L = R + λD, where D =
1 −msssim. Note that the loss function is modified when
we employ the proposed training strategy for padding at the
third training stage. Considering that we optimize for MS-
SSIM, we select appropriate λ value ranging from 10 to 24.
Table 1 shows the results of our methods including single
model and multiple models. However, it seems that four
models have little improvement compared with two models,
which may imply that our rate control strategy is not satis-
factory and has room to improve. Our final submitted ver-
sion is this four-model codec, which achieves 0.9775 MS-
SSIM score for validation and 0.9809 MS-SSIM for test.

4. Conclusion
In this paper, we introduce our image compression

framework used in CLIC 2020 competition. Three useful
techniques are adopted. First we improve the conventional
2-D context entropy model to a 3-D format which can better
utilize decoded features in current spatial location. Second,
the parameter estimation module is enhanced with a light-
weighted residual structure. Lastly, we propose a training
strategy to handle those images with different resolutions in
real application. This training strategy is simple but effec-
tive to alleviate the bit waste due to preliminary padding. As
shown on the leaderboard, our team IMCL IMG MSSSIM
got the second place in terms of MS-SSIM in the validation

phase. In the future, we will pay more attention to more
practical image compression methods, i.e., lighter, faster
and more robust DNN-based codec.
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