
Efficient Context-Aware Lossy Image Compression

Jan Xu, Alex Lytchier, Ciro Cursio, Dimitrios Kollias, Chri Besenbruch, Arsalan Zafar
Deep Render Ltd

{jan.xu}@deeprender.ai

Abstract

We present an efficient context-aware lossy image com-
pression system to participate in the Low Rate track of the
CLIC 2020 Image Compression challenge. Our method is
based on an autoencoder pipeline augmented with a nested
hyperprior model, a PixelCNN-based context model and an
adversarial loss to remove artefacts.

1. Model Architecture
The general pipeline is inspired by [8]: our model con-

sists of an autoencoder whose latent space is efficiently
compressed by using a 2-level hyperprior, together with an
autoregressive context model that acts similarly to intra-
predictions in standard image codecs such as JPEG [12].
Compared to [8], we additionally use a critic model trained
with a GAN objective to improve the quality of the recon-
structed images.

1.1. Auto-encoder

The input image is initially processed with a neural
network-based encoder, which decreases the dimensional-
ity to force a compressed representation. The encoder net-
work is composed of 4 convolutional layers with 3x3 ker-
nels and 384 channels, each followed by a Padé Activation
Unit (PAU) [9] (see Fig. 3). We use this activation be-
cause from preliminary experiments (Fig. 1) it was deter-
mined to produce better results over Generalised Divisive
Normalisation (GDN) [1], a very popular activation in the
compression literature. Additionally, the second and third
layers have a stride of 2, resulting in the latent space be-
ing twice downsampled spatially. The resulting latent space
has dimensions (12, H/4, W/4), where 12 is the number of
channels, H is the height of the input image and W is the
width.

A decoder network is trained to recover the original im-
age from the compressed latent space. Its structure is mir-
rored with respect to the encoder: it contains 4 convolu-
tional layers, where layers 2 and 3 consist of a bilinear up-
sampling layer followed by a convolution. The activation is

Figure 1. Validation curves for a version of our compression
pipeline without context model and only 1-step hyperprior, com-
paring PAU (blue) vs GDN (orange) activations, ceteris paribus.
The graphs show mean bpp and PSNR values over 256x256 center
crops of the validation set of the Kodak dataset [6].

again PAU.
The latent space of this auto-encoder is further processed

with two models that act in parallel: a nested hyperprior
model, and an autoregressive model based on the Pixel-
CNN++ architecture.

1.2. Hyperprior Model

The use of a hyperprior model is based on [2], where
it first appears in the context of learnt image compression.
Our model contains a 2-step hierarchical hyperprior, where
the latent space is compressed into a hyperlatent, and the hy-
perlatent is compressed into a hyper-hyperlatent. Both hy-
perprior models have a similar structure to the main autoen-
coder, containing 4 convolutional layers with PAU activa-
tions and downsampling twice. All hyperprior models out-
put parameters of a Laplacian distribution. Moreover, since
the hyper-hyperlatent does not have a hyperprior, its dis-
tribution is modelled as a Laplacian with parameters learnt
over the entire training dataset.

1.3. Context Model

Autoregressive models have emerged as state-of-the-art
models for probability density estimation tasks [11]. Their
greatest disadvantage is however the computational effort
needed to run them, as they only generate a single pixel in



a forward pass. In our compression pipeline, we make use
of a modified version of PixelCNN++ [10] that we named
PixelCNN++Lite. Our method only considers the receptive
field of the pixel being decoded in the forward pass, giving
us a 10x speed up, so that the decoding time is within the
maximum limits imposed by the challenge. Furthermore,
compared to the original PixelCNN++ architecture we only
downsample once, and use 1 layer per block as opposed
to 5. Further, we substituted the Concat ELU activations
with PReLU, as the original activations have a huge com-
putational cost with only a slight performance increase over
PReLU.

1.4. Quantisation Strategy

The final compressed image data consists of the latent,
the hyperlatent and the hyper-hyperlatent. Further com-
pression performance is achieved by compressing these val-
ues with an in-house range coder, and this requires them
to contain only discrete values, necessitating a quantisation
method to be used. We found that adding uniform noise to
the latents was a good approximation of quantisation, thus
we used it to ”quantise” all latents during training.

1.5. Generative loss

In order to further refine the visual quality of the recon-
structed image, we train a critic network and include its ob-
jective into our loss function. The critic network consists
of 6 convolutional layers with 4x4 kernel sizes and leaky
ReLU activations. The inputs to the critic network are the
reconstructed images and the ground truth images. The loss
used to train the critic network is the WGAN-GP loss [3]
with lambda equal to 10. Fig. 2 shows the quality improve-
ments obtained with the generative loss term.

1.6. Loss function

We formulate our loss function as a rate-distortion prob-
lem, where our distortion consists of two losses, the VGG
perceptual loss as defined in [4] and the generator loss of
WGAN-GP as defined in [3]. The rate terms consist of the
cross-entropy on our latents y and z, and w. The total loss
is therefore:

L = λ(D + βG) +Rŷ +Rẑ +Rŵ (1)

where D and G are the VGG and GAN losses respectively,
balanced by the β term, while the λ term is used to control
the trade-off between rate and distortion.

The rate losses for each of the latent spaces are defined
below:

Rŷ = − 1

H ·W
∑
i

log2(pŷ(ŷi|ẑ, θhp, θhhp, θctxt, θcomb))

(2)

Figure 2. Reconstructed images from the CLIC validation set.
Right image is the ground truth, center is with VGG loss only,
left is VGG loss + GAN loss. Viewers are advised to zoom in for
better clarity.

Rẑ = − 1

H ·W
∑
i

log2(pẑ(ẑi|ŵ, θhhp)) (3)

Rŵ = − 1

H ·W
∑
i

log2(pŵ(ŵi|µŵi
, σŵi

)) (4)

where pŷ , pẑ and pŵ are modelled as Laplacian distribu-
tions with mean and scale parameters, while θhp, θhhp, θctxt
and θcomb represent the model parameters of the hyperprior
model, the hyper-hyperprior model, the context model and
the combination network (see 3), and H and W stand for
height and width of the input image. In the case of Rŵ

the distribution parameters µŵ and σŵ are fixed parameters
learnt directly during training and stored on chip during in-
ference.

1.7. Training details

We train 8 models using the unconstrained Lagrangian
cost function defined in Equation 1 with different lambda
values. Each model is trained on 384x384 random crops of
images from the CLIC training dataset, complemented with
10000 filtered images from the OpenImage dataset [7]. We
use the Adam optimiser [5] with a learning rate of 10−4.
The models are trained for 150 epochs with data parallelism
on 4 NVIDIA V100 GPUs, using a batch size of 4 (1 image
per GPU). We apply learning rate decay, gradually reducing
the learning rate to 10−5 over training. We do not use batch
normalisation.



1.8. Conclusion

We implemented a state-of-the-art pipeline for learnt im-
age compression, achieving a PSNR of 29.055 and MS-
SSIM of 0.9502 on the validation set of the CLIC 2020 low
track challenge.

References
[1] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.

Density modeling of images using a generalized normaliza-
tion transformation. CoRR, 2015.

[2] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018.

[3] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems
30, pages 5767–5777. Curran Associates, Inc., 2017.

[4] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[6] Eastman Kodak. Kodak lossless true color image suite, 1993.
[7] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-

jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Tom Duerig, et al. The open im-
ages dataset v4: Unified image classification, object detec-
tion, and visual relationship detection at scale. arXiv preprint
arXiv:1811.00982, 2018.

[8] David Minnen, Johannes Ballé, and George Toderici. Joint
autoregressive and hierarchical priors for learned image
compression. CoRR, abs/1809.02736, 2018.

[9] Alejandro Molina, Patrick Schramowski, and Kristian Kerst-
ing. Padé activation units: End-to-end learning of flexible ac-
tivation functions in deep networks. CoRR, abs/1907.06732,
2019.

[10] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.
Kingma. Pixelcnn++: Improving the pixelcnn with dis-
cretized logistic mixture likelihood and other modifications.
CoRR, abs/1701.05517, 2017.

[11] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Condi-
tional image generation with pixelcnn decoders. CoRR,
abs/1606.05328, 2016.

[12] Gregory K. Wallace. The jpeg still picture compression stan-
dard. Commun. ACM, 34(4):30–44, Apr. 1991.

2. Appendix A

Figure 3. Architecture of compression pipeline including the two-
level hyperprior and the context model. x represents the input im-
age, y is the latent space of the main autoencoder, z is the latent
space of the hyperprior and w is the latent space of the hyper-
hyperprior. Q stands for quantisation, and AD and AE represent
arithmetic encoder and decoder respectively. Data that is sent as
bitstream has been labelled as bits. Convolutional layers are repre-
sented as (channels x kernel height x kernel width, down/upsample
factor).


