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Abstract

Adversarial mechanism is introduced to learned image
compression system in this paper. Our motivation is that the
number of quantization levels is limited with the constraint
of low bit-rate, resulting in severe distortion in details after
reconstruction. The adversarial training manner enhances
the ability of Decoder/Generator to enrich textures and de-
tails in the reconstructed image. Channel-spatial atten-
tion mechanism is used to refine the intermediate features
implicitly to boost the representation power of CNNs. As
for entropy model, we jointly take hyperpriors and autore-
gressive priors for accurate probability estimation. More-
over, an EDSR-like post-processing subnetwork is concate-
nated after Decoder for further quality enhancement. The
proposed approach demonstrates competitive performance
when evaluated with multi-scale structural similarity (MS-
SSIM) and favorably visual quality at low bit-rate.

1. Introduction
Deep learning has been widely applied in image com-

pression tasks and achieves a promising performance in re-
cent years. Many image compression works based on deep
learning have been proposed, which can be roughly divided
into two categories. The first kind is to use deep learning
to enhance tools of traditional image compression codecs
or add post-processing modules, such as the approach of
Prakash et al. [18]. The other completely uses deep learning
in an end-to-end optimized manner for image compression.
In [21, 22, 15, 6], Recurrent Neural Network (RNN) is ap-
plied to image compression. In each iteration, the encoder
generates a binary latent representation. By increasing the
number of iterations, the bits streams become larger and
the quality of the reconstructed images can be enhanced.
Though the recurrent manner can naturally handle the prob-
lem of variable-rate compression, it usually takes more time
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in practical application. Different from these recurrent mod-
els that usually need to be executed more than once, the fol-
lowing methods compress images in a feed-forward man-
ner. In [2, 20, 16], entropy models with fixed parameters
are studied in the compression framework, which are opti-
mized for the rate estimation and entropy coding to improve
the effect of image compression. After that, Ballé et al. [3]
design a hyperprior network based on the entropy model
to estimate the scales of latent representations so that the
bit-rate can be estimated more accurately. Lee et al. [7]
and Minnen et al. [14] also propose approaches that com-
bine autoregression with hyperprior to estimate the entropy
of the latent representation, which demonstrate better per-
formance than BPG [4]. In [8, 13], importance maps of
image content are introduced , according to which the num-
ber of bits is allocated, making the important areas of the
images in better reconstructed quality. Moreover, Rippel et
al. [19] and Agustsson et al. [1] adopt generative adversar-
ial model to enhance the quality of reconstructed images,
which shows better subjective quality with bit-rate greatly
reduced. In our framework, we leverage this capability at
the decoder side and design a powerful encoder to extract
saliency feature for better reconstruction quality.

In this paper, we propose an image compression frame-
work based on variational autoencoder. A channel-spatial
attention block (CSAB) is introduced as the basic block in
our compression framework, guiding the convolutional neu-
ral network (CNN) to allocates more bits to salient features
implicitly. Thus, the Main Decoder can reconstruct images
in better quality with limited bit-rate constraints. In addi-
tion, we introduce an adversarial mechanism for our com-
pression framework, which enriches details of reconstruc-
tion images and enhances the subjective quality. The adver-
sarial loss is incorporated with rate-distortion loss, formu-
lating a multi-task learning problem. We also introduce an
EDSR-like post-processing module[9], an image enhance-
ment network for super-resolution tasks, to further improve
the quality of reconstruction. With the proposed pipeline,
our image compression framework demonstrates competi-
tive performance in terms of multi-scale structural similar-
ity (MS-SSIM) and pleasing visual quality.



Figure 1. Network architecture of proposed model. AE and AD represent arithmetic encoder and arithmetic decoder. Q stands for round
quantization. Details about parameter settings are shown on the right. ”Conv” denotes a convolutional layer, ”k” represents the kernel size,
”c” denotes the number of channels and ”s” is the stride. ”CSAB” represents proposed channel-spatial attention block, details of which
can be seen in Figure 2. Main Decoder and Hyper Decoder have a symmetrical structure with Main Encoder and Hyper Encoder, except
that convolutional layers with stride 2 for down-sampling are replaced with transposed convolutional layer with stride 2 for up-sampling.

2. Approach

Figure 1 provides a high-level overview of our proposed
method. An autoencoder learns a compact latent repre-
sentation of input images (Main Encoder and Main De-
coder blocks), followed by an entropy model for conditional
probability estimation over the quantized latent representa-
tion (Hyper Encoder, Hyper Decoder and Context Model).
Then, both reconstructed image and input image are fed into
a Discriminator for adversarial training. Parameter settings
of proposed model are demonstrated on the right of Figure1.
The Main Decoder and Hyper Decoder have a symmetrical
architecture with Main Encoder and Hyper Encoder.

2.1. Channel-spatial Attention Block

We introduce a channel-spatial attention block (CSAB)
as the basic block of the model, which is stacked in both
main and hyper autoencoder. The architecture of proposed
CSAB is shown in Figure 2. Piped residual blocks main-
tain the network’s capacity for powerful feature extraction.
The batch normalization and non-linear activation function
after residual connection in the residual block are removed,
as that in EDSR[9], due to the fact that the decoding pro-
cedure is somewhat similar to super-resolution task since
both are dense prediction tasks involving spatial upsampling
[12]. GDN/IGDN is used as non-linear activation, which
implements local divisive normalization transformation and
is proven to be particularly suitable for density modeling
and image compression[2].

Figure 2. Architecture of channel-spatial attention block (CSAB).
Channel-spatial attention module refines the intermediate features.

Inspired by the characteristic of distributed representa-
tions of representation learning [5], a simple but effective
channel-spatial attention module [23] is used to refine inter-
mediate features and allocate more bits to salient features
implicitly which are critical for reconstruction. The channel
attention focuses on ‘what’ is meaningful in the input image
while the spatial attention focuses on ‘where’ is an informa-
tive part, thus they are complementary to boost representa-
tion power of CNNs. Let F ∈ RC×H×W denotes the inter-
mediate feature map, channel attention module infers a 1D
channel attention map Mc ∈ RC×1×1 and spatial attention
module infers a 2D spatial attention map Ms ∈ R1×H×W :

Mc(F) = σ(W1(W0(AvgPool(F))) (1)
+W1(W0(MaxPool(F))))

Ms(F) = σ
(
f5×5([AvgPool(F);MaxPool(F)])

)
(2)

where σ denotes the sigmoid function, W0 and W1 are
shared weights for different input. AvgPool and MaxPool
stand for Average Pooling and Max Pooling operations.
f5×5 represents a convolution layer with kernel size of 5×5.



Finally, the channel attention maps Mc and spatial atten-
tion maps Ms refine F by element-wise multiplication:

F′ = Mc(F)⊗ F
F′′ = Ms (F

′)⊗ F′
(3)

2.2. Enriching Details by Adversarial Training

The range of quantization levels for latent representa-
tions learned by Encoder are limited under the constraints
of low bit-rate, making the reconstructed images hardly re-
store details and suffer from strong distortion. Hence, an
adversarial training manner is introduced to fill the gap be-
tween the reconstructed image and the input image. Specif-
ically, the reconstructed image x̂ and input image x are
fed into a Discriminator, yielding powerful generator (De-
coder) which captures both local texture and global seman-
tic information under the guidance of adversarial loss.

The adversarial training manner is formulated as a binary
classification problem, i.e., our adversarial loss operates on
classifying the ‘real one’ from pairs of real/fake images, as
that in [19], and is formulated as,

LD =
1

N

N∑
n=1

(LBCE (x, 1) + LBCE (x̂, 0)) (4)

LG =
1

N

N∑
n=1

LBCE (x̂, 1) (5)

where LBCE is binary cross entropy loss.

2.3. Quantization

The low-dimension representation of image, i.e., latent
representations, shall be quantized then coded. Usually we
use the round function for quantization. However, the quan-
tization leads to zero gradient almost everywhere, making it
ineffective to train the network via gradient descent. Fol-
lowing the work of Ballé et al. [2], we replace the quantizer
with additive i.i.d uniform noise during training:

ŷi = yi + noise ∼ U(−1

2
,
1

2
) (6)

where ŷi represents elements of quantized latent features.

2.4. Conditional Probability Estimation

We jointly leverage autoregressive priors and hyperpriors
for probability estimation by concatenating features from
Context Model and Hyper Decoder. The architecture of
Context Model for autoregressive priors is shown in Figure
1. Inspired by the idea of PixelCNN[17], we predict the cur-
rent pixel by leveraging the neighboring decoded pixels to
make full use of the spatial and cross-channel correlation,
which is implemented by a 3D masked convolution. Be-
sides, a parallel manner for 3D masked convolution[11] is

used to further accelerate the predicting procedure. Follow-
ing Minnen et al. [14], we model the distribution of each
element ŷi in quantized latent features ŷ as a conditional
Gaussian distribution with mean value µi and standard de-
viation σi:

pŷ(ŷi|ŷ1, ...,ŷi−1, ẑ) = (7)∏
i

(N (µi, σi
2) ∗ U(−1

2
,
1

2
))(ŷi)

where µi and σi are predicted conditioned on hyperprior ẑ
and causal (and possibly reconstructed) pixels prior to ŷi.
The casual context is denoted as ŷ1, ŷ2, ..., ŷi−1.

Hyperpriors ẑ, which is used to capture the spatial de-
pendencies of latent representations [3], can be modeled by
a non-parametric, fully factorized density model:

pẑ|ψ(ẑ|ψ) =
∏
i

(pzi|ψ(i)(ψ(i)) ∗ U(−1

2
,
1

2
))(ẑi) (8)

where ψ(i) represents the parameters of each univariate dis-
tribution pẑ|ψ(i) . Therefore, bit rate of ŷ and ẑ can be eval-
uated as:

Rŷ = −
∑

i
log2(pŷi|ẑi(ŷi|ẑi)) (9)

Rẑ = −
∑

i
log2(pẑi|ψ(i)(ẑi|ψ(i))) (10)

2.5. Multi-task Learning

We introduce adversarial loss to the general Rate-
Distortion optimization, formulating a multi-task learning
problem. The joint objective is to minimize the combina-
tion of the distortion loss, rate loss as well as adversarial
loss with λ1 and λ2 as trade-off parameters to balance dif-
ferent loss. Thus, the objective function is defined as

L = R+ λ1 (D + λ2LG) (11)

whereR = Rŷ+Rẑ denotes the rate loss, andD = 1−MS-
SSIM denotes the distortion loss.

2.6. Post-processing

By observing the reconstructed images, we find that
some details of the reconstructed image are blurred, so
we introduce an enhanced sub-network oriented to super-
resolution tasks as post-processing module to enrich the de-
tails of reconstructed images. The architecture of proposed
EDSR-like post-processing sub-network composes of con-
volutional layers and 20 residual blocks, as is shown in Fig-
ure 3. In the sub-network, skip connection maintains the
efficiency of deep networks. The batch normalization lay-
ers are removed from the residual blocks so that the post-
processing network can contain more residual blocks and
extract more useful features. Meanwhile, we introduce a
constant scaling layer in the residual block, with which our
post-processing sub-network can be trained more steadily.



Figure 3. Architecture of post-processing sub-network, where ”k” represents kernel size, ”c” denotes number of filters, and ”s” is stride of
a convolutional layer. ”n20” represents 20 residual blocks.

 

(a) Proposed method without adversarial mechanism, 0.169bpp

 

(b) Proposed method, 0.174bpp

Figure 4. Comparison on visual quality. Sampled patches are listed by the right. The adversarial manner enriches textures and details.

Table 1. Evaluation results on CLIC 2020 validation datasets.
Methods PSNR(dB) MS-SSIM Bit Rate(BPP) Decoder size(Byte) Decoding time(s)
Proposed 29.220 0.9729 0.149 220378325 11414

W/O Post-processing 29.118 0.9725 0.149 214865170 11988
MIATLSSIM 30.170 0.9781 0.15 475395523 14508

VIP-ICT-Codec 32.625 0.9635 0.15 287490775 1703
BPG444 31.049 0.9514 0.15 377869 71
JPEG420 26.488 0.8696 0.15 208 33

3. Experiment

CLIC2020 training set and COCO dataset[10] are used
as training set, in which all the images are random cropped
into patches with size 256x256. All the modules in our ap-
proach are trained in an end-to-end manner with an ADAM
optimizer. Different values of hyper parameter λ1 in range
[4, 8] are chosen to reach different bit rate, and λ2 is set as
1e−4. The learning rate decreases from 1e−4 to 1e−6 by 0.1
after every 100,000 iterations.

Our results in valid phase are shown in Table 1, which
achieve competitive performance in MS-SSIM with smaller
decoder size compared with other learned image compres-
sion methods. W/O Post-processing denotes our results with
post-processing sub-network removed, which proves the ef-
fectiveness of the introduced post-processing sub-network.

An ablation study on our proposed framework is shown
in Figure 4 to investigate the effectiveness of adversarial
mechanism. As is observed, the reconstructed image with
adversarial mechanism expresses more natural textures and

details, leading to better visual quality with limited bit-rate.

4. Conclusion
Adversarial loss is introduced in this paper to compen-

sate severe distortion in details for date-driven image com-
pression under the constraint of low bit-rate. Besides, mo-
tivated by the distributed representation characteristic of
autoencoders, channel-spatial attention module is used to
emphasize the salient features. Moreover, an EDSR-like
post-processing sub-network enhances the quality of recon-
structed image. The experiments and ablation study show
the superiority of our approach in enriching details of the
image, leading to pleasing visual quality.

For future work, a more efficient entropy model will be
explored to reduce the bit-rate and accelerate the encoding
as well as decoding procedure. Though combining hyper-
priors with autoregressive priors for conditional probability
estimation shows state-of-the-art performance on entropy
estimation, it is time-consuming due to the sequential na-
ture of autoregressive model.
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