
End-to-End Learning for Video Frame Compression with Self-Attention

Nannan Zou2, Honglei Zhang1, Francesco Cricri1, Hamed R. Tavakoli1

Jani Lainema1, Emre Aksu1, Miska Hannuksela1, Esa Rahtu2

1Nokia Technologies, 2Tampere University, Tampere, Finland
nannan.zou.ext@nokia.com

Abstract

One of the core components of conventional (i.e., non-
learned) video codecs consists of predicting a frame from
a previously-decoded frame, by leveraging temporal corre-
lations. In this paper, we propose an end-to-end learned
system for compressing video frames. Instead of relying on
pixel-space motion (as with optical flow), our system learns
deep embeddings of frames and encodes their difference in
latent space. At decoder-side, an attention mechanism is de-
signed to attend to the latent space of frames to decide how
different parts of the previous and current frame are com-
bined to form the final predicted current frame. Spatially-
varying channel allocation is achieved by using importance
masks acting on the feature-channels. The model is trained
to reduce the bitrate by minimizing a loss on importance
maps and a loss on the probability output by a context model
for arithmetic coding. In our experiments, we show that
the proposed system achieves high compression rates and
high objective visual quality as measured by MS-SSIM and
PSNR. Furthermore, we provide ablation studies where we
highlight the contribution of different components.

1. Introduction
Traditional video compression methods are mostly based

on intra-frame and inter-frame prediction, followed by
transform-coding, as in HEVC/H.265 standard [12]. For
inter-frame prediction, motion prediction and motion com-
pensation are performed, where blocks of frames are
predicted from blocks of previously-reconstructed refer-
ence frames which share similar content, typically nearby
frames. In this paper, the predicted frame is referred to
as P-frame or current frame ft, and the reference frame as
previous frame ft−1. Recently, neural networks have been
applied to image and video compression with promising
results. These systems typically follow the auto-encoder
paradigm, where the encoder and decoder networks oper-
ate as non-linear transform and inverse transform, respec-
tively. In this paper, we describe our end-to-end learned

P-frame compression system that we submitted to the
2020 Challenge on Learned Image Compression (CLIC),
P-frame compression track. Our submission name was
ntcodec r3. The goal consists of encoding information,
using a low bitrate, which allows a decoder to reconstruct ft
given ft−1. Instead of relying on pixel-space motion infor-
mation, as typically done in previous works which consider
optical flow, we propose to first extract frame-embeddings
followed by encoding differences in latent space. Impor-
tance maps are used to assign a spatially-varying number
of channels to each spatial location of the features. The
probability distribution of symbols to be encoded/decoded
via arithmetic coding is modeled by a multi-scale context
model, which is learned jointly with all other neural net-
works. At decoder side, a learned attention mechanism an-
alyzes frame-embeddings to adaptively combine an initial
prediction of the current frame with the previous frame.

In [2] and [7], attention mechanisms are proposed for
generating importance masks that weigh the features ex-
tracted at encoder-side, implicitly adapting the bit alloca-
tion for feature elements based on their importance. In [6],
importance maps needed to be encoded into the bitstream.

In [4], inter-frame prediction of HEVC is improved by
using a deep CNN to produce spatially-varying filters from
the decoded frames to synthesize the predicted patch. In [3],
deep learning techniques are applied within an architecture
similar to traditional video codecs. An input image is par-
titioned into patches, and a deep CNN with LSTM blocks
performs inter-frame and intra-frame prediction. One im-
portant aspect in inter-frame prediction is how to model
both static and dynamic information. To this end, the
Video Ladder Network [5] includes lateral recurrent resid-
ual blocks as part of a recurrent auto-encoder architecture
for predicting the next frame given 10 previous frames.

One common algorithm to achieve lossless compression
is arithmetic coding, which requires an estimate of the prob-
ability of the next symbol to be encoded/decoded. This es-
timate is typically provided by a probability model, whose
accuracy directly impacts the compression rate. Neural net-
work architectures such as PixelCNN [10] and PixelCNN++
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[9] may be used for estimating the probability distribution.
These are autoregressive models, where masked convolu-
tions are used to estimate the distribution of a pixel based on
already predicted pixels acting as context. These models are
very slow since they run a heavy deep CNN to calculate the
parameters of the probability model for every pixel or sub-
pixel to be encoded. In [1], the parameters of the probability
model are estimated using a shallow CNN to capture the lo-
cal correlations and a hyper-prior branch to incorporate the
global context. Although only a shallow CNN is used, this
solution is still too inefficient with respect to the decoding
time requirements of the CLIC challenge. Recently, a multi-
scale probability model was presented in [8]. This model
estimates the parameters of the probability distribution for
a pixel using a low-resolution representation of the input
image and the same procedure is applied to multiple scales
of the image. This method can achieve fast encoding and
decoding speed with good accuracy. Our probability model
is adapted from this method with some modifications.

2. Proposed Method
2.1. Architecture

An overview of our proposed approach is illustrated in
Fig. 1. The basic structure consists of an encoder and
a decoder. At encoder side, the two input frames ft and
ft−1 are projected into embedded or latent space by two
frame-encoders neural networks which share weights and
are denoted as Ψ, obtaining two embeddings et, et−1 ∈
R

H
nΨ

, W
nΨ

,FΨ , where H,W are the height and width of the
input frames, nΨ is the downsampling factor of Ψ, FΨ is
the number of filters in the last layer of Ψ. An embedding-
difference is then computed:

∆e = et − et−1 = Ψ(ft)−Ψ(ft−1), (1)

which is encoded by an embedding-encoder neural network
ΦE . The output latent tensor y ∈ R

H
nΨ+nΦ

, W
nΨ+nΦ

,FΦ ,
where nΦ is the downsampling factor of ΦE and FΦ is the
number of filters in the last layer of ΦE , is multiplied by a
binary importance mask m (see Section 2.2) that zeros-out
a spatially-varying number of channels:

ym = y �m = ΦE(∆e)�m, (2)

where � indicates element-wise multiplication. The
masked output is quantized by 8-bits uniform scalar quan-
tization and then entropy coded by an arithmetic encoder.
In order to allow for back-propagating non-zero gradients,
we use the straight-through estimator for quantization, as in
[13]. A learned multi-scale context model is used by the
arithmetic codec to estimate the probability distribution of
next symbols to encode/decode. At decoder side, the en-
tropy decoded bitstream is dequantized into ŷ and input to

an embedding-decoder ΦD. The reconstructed embedding
for the current frame is obtained as follows:

êt = et−1 + ∆̂e = Ψ(ft−1) + ΦD(ŷ). (3)

However, in a realistic scenario, the decoder would not have
the uncompressed version of the previous frame, but only a
reconstructed version f̂t−1.

An initial version f̂
′

t of the reconstructed current frame
is obtained by reprojecting êt into pixel space via a frame-
decoder neural network Θ:

f̂
′

t = Θ(êt) (4)

Finally, an attention mechanism is applied to adaptively
combine ft−1 and f̂

′

t , as described in Section 2.3.

2.2. Learned Spatially-varying Channel Masking

In order to allow the model to allocate a varying number
of channels to different spatial areas of the encoded tensor y
(see Eq. (2)), we use an additional neural network Υ which
analyzes the embedding-difference ∆e and outputs an im-
portance map τ ∈ R

H
nΨ+nΦ

, W
nΨ+nΦ

,1 with elements in [0, 1].
This map is then quantized with log2 FΦ bits and then ex-
panded into a mask m ∈ R

H
nΨ+nΦ

, W
nΨ+nΦ

,FΦ :

mi,j,k =

{
1 if k < FΦτi,j

0 otherwise.
(5)

In order to encourage masked representations ym that have
low entropy and thus be more easily predictable by our
probability model for arithmetic coding, we use the follow-
ing constraint in our training objective function:

M(τ) =
∣∣τ̄ − β∣∣, (6)

where β is a constant representing the target average non-
zero ratio in m and thus in ym.

2.3. Self-Attention for Adaptive Frame Mixing

We propose a learned self-attention mechanism which
allows to adaptively mix information from ft−1 and f̂

′

t . The
rationale is that êt may not contain sufficient information
for reconstructing all the details in pixel-space, especially
when bitrate is constrained. Thus, we relaxed the training
by allowing the model to leverage the highly accurate infor-
mation already present in pixel space of ft−1, while using
f̂

′

t only for the parts which have changed due to motion.
This is realized via a self-attention model which is trained
jointly with all other neural networks in the system. An at-
tention neural network Λ analyzes the two embeddings êt
and et−1 in order to output an attention map At ∈ RH,W,3,
with elements ai,j,k in [0, 1]:

At = Λ(êt ⊕ et−1), (7)
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Figure 1. Overview of our proposed solution. PixelShuffle [11] is used for upsampling at decoder-side.

where ⊕ indicates tensor concatenation in the channel axis.
A second attention map is derived as At−1 = 1 − At. The
attention maps are applied to the initial reconstructed frame
and the previous frame, and the result is then further pro-
cessed by a 1x1 convolutional layer ρ:

f̂t = ρ(At � f̂
′

t +At−1 � ft−1) (8)

2.4. Probability Model for Arithmetic Encoder

Our probability model is derived from the multi-scale ap-
proach described in [8].

Let z(i) be the input tensor at scale i. We model the dis-
tribution p

(
z(i)
)

conditional to the tensor z(i+1) at scale
i + 1, i.e., p

(
z(i)|z(i+1)

)
. Similar to many previous ap-

proaches [1, 8, 10], we use a generalization of the de-
scretized logistic mixture model as the distribution model.
Let c be the channel index, and u,v be the spatial index. We
define

p
(
z(i)
c,u,v

)
=

K∑
k=1

π
(i)
k,u,vσ

(
µ

(i)
k,c,u,v, s

(i)
k,c,u,v

)
, (9)

where K is the number of mixtures, π(i)
k,u,v is the mixture

weight parameter, σ(·) is the discretized logistic probabil-
ity density function, µ(i)

k,c,u,v is the location parameter, and

s
(i)
k,c,u,v is the scale parameter. Note that in Eq. 9, the mix-

ture weights π(i)
k,u,v are shared across all channels of the

same spatial location. This follows the same principle as
described in [10]. Taking the channel dependencies into
consideration, we let the location parameter µ depend on
the previous encoded/decoded channel, such that

µ
(i)
k,c,u,v = µ̃

(i)
k,c,u,v + λ

(i)
k,c,u,vz

(i)
c−1,u,v, (10)

where µ̃(i)
k,c,u,v is location parameter estimated from z(i+1),

λ
(i)
k,c,u,v is a weight parameter to be learned, and z(i)

c−1,u,v

is the value from the previous encoded/decoded channel.
Note that in Eq. 10, we let each channel to be dependent
only on the previous channel. For the first channel, we let
λ = 0. This design is critical when the number of channels
is big since it greatly reduces the number of parameters to
be estimated by the network comparing to a fully depen-
dent mode where each channel depends on all previously
decoded channels.

For each element z(i)
c,u,v , the following parameters are

used to describe the distribution, µ̃(i)
k,c,u,v , λ(i)

k,c,u,v , s(i)
k,c,u,v ,

and π(i)
k,u,v . For a tensor with shape C ×H ×W , the total

number of parameters is C × 3 × K × H ×W , where K
is the number of mixtures. These parameters are estimated
using a deep CNN taking z(i+1) as its input.

Figure 2 shows the architecture of the multi-scale prob-
ability model (MSProb). z(0) is the input of the MSProb
model. At scale i, MSProb model uses extractor E(i) to
generate a downscaled representation z(i+1). Then, predic-
tor D(i) is applied to calculate the parameters p(i), which
contains parameters µ̃(i), λ(i), s(i), and π(i) of the dis-
cretized logistic mixture model. The same procedure is ap-
plied to every scale. Let S be the number of scales of the
MSProb model. The output of the last scale z(S) is either
uncompressed or compressed using the method provided
by the NumPy package in Python software depending on
whichever comes with a smaller size. At the training stage,
outputs p(0), p(1), · · · p(S−1) are used to calculate the cross-
entropy of the output tensors z(0), z(1), · · · , z(S−1) and the
sum of these cross-entropies is taken as the compression
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Figure 2. Multi-scale Probability Model Architecture

loss R(z). At the encoding stage, p(i) is used as the proba-
bilities to encode tensor z(i) using the Arithmetic Encoder.
The encoded bitstreams are put into the output bitstream in
the order of z(S), z(S−1), · · · , z(0). At the decoding stage,
z(S) is first decoded from the bitstream. Then predictor
D(S−1)(·) is used to calculate p(S−1) from z(S) and z(S−1)

is decoded from the bitstream. This procedure is repeated
until we have z(0) decoded. We only need to run the predic-
tor networks S − 1 times to decode the whole stream. Our
experiments show that a large number of scales does not
improve the performance much. To have a small model, we
only use two scales in our system. Our extractor network
halves the width, height and the number of channels of the
input tensors at each scale. We set the number of mixtures
in the mixture model to 5.

2.5. Training Objective

We train our model by using the following objective:

L(f̂t, ft, z, τ) = λ1D1(f̂t, ft)

+ λ2D2(f̂t, ft) + λ3R(z) + λ4M(τ), (11)

where D1 is the negative multi-scale structural similarity
(MS-SSIM) [14], D2 is the mean-squared error (MSE), R
is the rate-loss provided by the probability model,M is the
constraint on the importance map defined in Eq. (6). λ1,
λ2, λ3, λ4 are scalar values that are determined empirically.

3. Experiments
In this section we describe the experimental setup and

results. The number of channels in the convolutional layers
for the frame-encoders Ψ is 20, 40, 40, for the embedding-
encoder ΦE is 80, 40, 10, for the importance map Υ is
40, 20, 1, for the embedding-decoder ΦD is 40, 80, 40, for
the frame-decoder Θ is 20, 3, 3, for the attention network
Λ is 40, 3, 3, and for the final layer ρ is 3. The training

was performed on full-resolution frames from the CLIC
training dataset for the P-frame compression track, using
a batch-size of 144, and the Adam optimizer. During train-
ing, we gradually decreased the learning rate from 0.001
to 0.0002, increased λ3 from 0.0001 to 0.001, increased λ4

from 0.0001 to 0.5, and decreased β from 0.5 to 0.3. λ1 and
λ2 were set to 1.0. Training was performed for 13 epochs.

When evaluated on the CLIC validation dataset, our
model achieves MS-SSIM of 0.978, Peak Signal-to-Noise
Ratio (PSNR) of 30.44dB, bits-per-pixel (BPP) of 0.0707.
The decoder size is about 15.8MB and decoding time is
1484 seconds, making our system one of the most mem-
ory and computationally efficient among all entries to the
CLIC challenge.

We also performed an ablation study where we excluded
in turn the importance maps and the attention mechanism.
This ablation study was done by training and testing on 10
videos out of the total 733 videos, selected so as to belong
each to a different content type (e.g., Animation, Gaming,
VR, Lecture, MusicVideo, Sport). The hyper-parameters
are: batch-size 32, learning rate 0.001, λ1, λ2 = 1.0,
λ3 = 0.0001, λ4 = 0.01, β = 0.3. The comparison with re-
spect to the full model was done at 40K training iterations
and is reported in Table 1. As can be seen from the ta-
ble, attention is necessary to achieve higher MS-SSIM and
PSNR, while it also helps in decreasing the BPP. Removing
the importance maps significantly deteriorates the compres-
sion rate.

Table 1. Ablation study on a subset of CLIC dataset.
Model MS-SSIM PSNR BPP

Full 0.955 30.35 6.6e−3
No attention 0.949 28.70 8.7e−3

No importance maps 0.960 31.23 13.8e−3
No importance maps
@MS-SSIM=0.955

0.955 30.57 13.4e−3

4. Conclusions

In this paper, we proposed an end-to-end learned model
for compressing video frames. We compute differences be-
tween frames in embedding-space, which are then analyzed
in order to compute the importance of different parts of the
tensor to be encoded. At decoder-side we designed an atten-
tion mechanism to adaptively combine an initial predicted
current frame and the previous frame. In our experimental
section, we showed the effectiveness of our approach and
we highlighted the contribution of different components.
The authors would like to thank the following colleagues
for their valuable help and discussions: Yat Lam, Alireza
Zare, Goutham Rangu, Yu You.
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