
P-frame Coding Proposal by NCTU: Parametric Video Prediction through
Backprop-based Motion Estimation

Yung-Han Ho1 Chih-Chun Chan1 David Alexandre2 Wen-Hsiao Peng1,3 Chih-Peng Chang1

{hectorho0409.cs04g@, dororojames.cs07g, wpeng@cs., cpchang.cs08g@}nctu.edu.tw
1Computer Science Dept., 2Electronics Engineering Dept.,

3Pervasive AI Research (PAIR) Labs, National Chiao Tung University, Taiwan

Abstract

This paper presents a parametric video prediction
scheme with backprop-based motion estimation, in response
to the CLIC challenge on P-frame compression. Recogniz-
ing that most learning-based video codecs rely on optical
flow-based temporal prediction and suffer from having to
signal a large amount of motion information, we propose
to perform parametric overlapped block motion compensa-
tion on a sparse motion field. In forming this sparse motion
field, we conduct the steepest descent algorithm on a loss
function for identifying critical pixels, of which the motion
vectors are communicated to the decoder. Moreover, we in-
troduce a critical pixel dropout mechanism to strike a good
balance between motion overhead and prediction quality.
Compression results with HEVC-based residual coding on
CLIC validation sequences show that our parametric video
prediction achieves higher PSNR and MS-SSIM than optical
flow-based warping. Moreover, our critical pixel dropout
mechanism is found beneficial in terms of rate-distortion
performance. Our scheme offers the potential for working
with learned residual coding.

1. Introduction
The past few years see some success in learning-based

image compression. It can now perform comparably to
modern image codecs, such as BPG, although its complex-
ity remains an open issue. Recently, there emerge few early
attempts at learning video compression [2, 3] end-to-end, to
address the even more challenging problem of ever increas-
ing video bandwidth.

Like conventional approaches, most learning-based
video codecs perform motion-compensated temporal pre-
diction, followed by residual coding. At the encoder side,
they estimate optical flow between the reference and the tar-
get frames, with the quantized latent representation of the
flow map sent to the decoder as additional side information.
Due to the lossy representation, the optical flow can only

be recovered approximately to warp backward the decoded
reference frame in forming a prediction of the target frame.
The residual between the motion-compensated frame and
the target frame is then separately compressed using learned
residual coding.

Although showing interesting performance as compared
to conventional codecs, like AVC/H.264 and HEVC/H.265,
learning-based video codecs often suffer from having to
signal a large amount of motion information, especially
when it comes to low bit-rate coding. Moreover, the single-
hypothesis prediction nature (i.e. each target pixel is pre-
dicted from a single pixel in the reference frame) of flow-
based motion compensation is susceptible to compression
quality of optical flow. To improve temporal prediction,
Ren et al. [3] introduce hierarchical bi-prediction with qual-
ity layers. To reduce motion overhead arising from bi-
prediction, they further derive motion information for bi-
prediction from that of uni-prediction, a technique often
used for optical flow-based frame interpolation. The use
of bi-prediction however incurs additional frame buffering
and processing delay.

Recognizing that a compromise between motion over-
head and prediction quality must be made, we propose a
backprop-based motion estimation scheme. We identify and
transmit motion vectors for only few critical pixels in the
target frame. This is followed by frame warping using para-
metric overlapped block motion compensation (POBMC),
a classic, multi-hypothesis prediction scheme. In particu-
lar, a dropout probability is learned for each critical pixel to
strike a better balance between motion overhead and resid-
ual energy. One striking feature of our approach is that we
view the determination of critical pixels and their motion
vectors for each video frame as an optimization problem
rather than a learning problem. Their values are optimized
explicitly based on minimizing a loss function through the
steepest descent and backprop.

We demonstrate compression results with HEVC-based
residual coding. As compared to flow-based frame warp-
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Figure 1. POBMC on a sparse motion field composed of 4 critical
pixels (blue boxes) and their motion vectors (black arrows).

ing, our parametric video prediction with sparse motion
achieves higher PSNR and MS-SSIM on CLIC validation
sequences under the P-frame prediction structure. More-
over, our critical pixel dropout mechanism is found benefi-
cial together with residual coding in terms of rate-distortion
performance.

The remainder of this paper is organized as follows: Sec-
tion 2 overviews our parametric video prediction. Sec-
tion 3 details our motion estimation scheme, with section 4
elaborating on the HEVC-based residual coding. Section 5
presents experimental results. Section 6 concludes this
work.

2. Parametric Video Prediction

At the heart of this proposal for P-frame coding is
the parametric overlapped block motion compensation
(POBMC) [1], a classic video prediction technique that
forms a multi-hypothesis prediction of every pixel s in the
target frame It by using a handful of sparse motion vectors.
Consider the example in Fig. 1, where we have a sparse
motion field composed of 4 critical pixels {si}4i=1 in the
target frame It along with their motion vectors {v(si)}4i=1

(see the blue dots and black arrows). In predicting the value
It(s) of a pixel s in the video frame It, POBMC computes
a weighted sum of four hypotheses

∑4
i=1 wiIr(s + v(si)),

each being a motion compensated signal Ir(s + v(si)) de-
rived from the reference frame Ir using the motion vector
v(si) associated with one of the four critical pixels {si}4i=1.
The optimal weights {w∗i }4i=1 are computed so as to mini-
mize the prediction residual at s in the mean-squared error
sense:

w∗i = argmin
wi

E

(It(s)− 4∑
i=1

wiIr(s+ v(si))

)2
 ,

(1)
subject to

∑4
i=1 wi = 1. Under some signal assumptions,

the optimal weight w∗i are computed in closed-form to be
inversely proportional to the Euclidean distance r(s, si) be-
tween the predicted pixel s and its surrounding critical pix-
els si [1]:

w∗i ∝
1

r(s, si)α
, (2)

where α is a signal dependent hyper-parameter.
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Figure 2. Optimization of the critical pixels {si} and their dropout
probabilities {πi}.

3. Backprop-based Motion Estimation
In the previous section, we make a strong assumption

that we know in advance the locations {si} of the critical
pixels and their motion vectors {v(si)}. We now describe
how they are obtained through back-propagation and optical
flow estimation. Our task is to determine K pairs of criti-
cal pixels and their motion vectors {(si, v(si))}Ki=1, in an
attempt to minimize the prediction residual between Ir and
It. In particular, for each of theseK critical pixels, a proba-
bility value πi ∈ (0, 1) is used to decide further which crit-
ical pixels and their motion vectors (among those K initial
candidates) should be compressed and involved in the pro-
cess of POBMC. In our current implementation, both si and
πi are parameters to be optimized via the back-propagation
of a prediction loss while v(si) are estimated by PWC-net
[4], a pre-trained optical flow estimation network. The re-
tained {si, v(si), πi} are compressed losslessly and sent to
the decoder.

3.1. Method Overview

Fig. 2 presents an overview of our scheme for determin-
ing {si, v(si), πi}Ki=1. The process begins with the estima-
tion of an optical flow map F describing the motion for
warping backward from It to Ir–i.e. It(s) ≈ Ir(s+F (s)).
Here we use the pre-trained PWC-net for flow estimation.
Because PWC-net yields a flow map that is one-sixteenth
the size of It and Ir, it is interpolated bi-linearly to full-size.
With this dense, full-size motion field F , the motion sam-
pler takes its samples at critical pixels {si}Ki=1, giving rise
to {v(si)}Ki=1 (Section 3.2). The predictor Ît(s) for a pixel
s in the target frame It is then evaluated as the weighted
sum Ît(s) =

∑
i∈N (s) w

∗
i Ir(s+ v(si)), where N (s) refers

to the four critical pixels si nearest to s. We then formu-
late a loss function L(·) (Section 3.3) taking into account
the difference between the target frame It and its predic-
tion Ît, together with πi, the contribution of each critical
pixel si to the prediction of It via POBMC. In turn, the loss
function is minimized via the steepest descent on πi and si.
The process of determining {si, v(si), πi} can collectively
be thought of as a form of sparse motion estimation.

3.2. Motion Sampler

In our scheme, the coordinates (s
(x)
i , s

(y)
i ) of a crit-

ical pixel si are continuous variables, with their values
bounded from the above by the width W and height H of



the input video, respectively. That is, s(x)i ∈ [0,W ] and
s
(y)
i ∈ [0, H]. It is however noted that the dense flow map
F is defined only on integer-pixel positions s = (s(x), s(y))
where s(x), s(y) ∈ Z. Therefore, for a critical pixel at a
sub-pixel position si, its motion vector v(si) is interpolated
bi-linearly between those F (s) at integer-pixel positions s:

v(si) =
∑
s

F (s)K(si, s), (3)

where the bi-linear interpolation kernel K(si, s) is defined
as K(si, s) = max(0, 1− |s(x)i − s(x)|)max(0, 1− |s

(y)
i −

sy)|).

3.3. Critical Pixel Dropout

As we indicate previously, a probability value πi ∈ (0, 1)
is attached to each selected critical pixel to identify which of
them need to be communicated to the decoder. This is im-
plemented as an automated mechanism to strike a balance
between the overhead for signaling motion information and
the reduced residual energy. At test time, only the critical
pixels with their πi exceeding a pre-defined threshold are
signaled.

To determine {πi}Ki=1 via back-propagation, we re-
parameterize it as πi = σ(αi), where σ(·) is the sigmoid
function and takes as input the parameter αi to be opti-
mized. Because now the critical pixel si and its motion
vector v(si) has a σ(αi) probability of being present for
POBMC, the expected value of the predictor Ît(s) is evalu-
ated as

Ît(s) =
∑

i∈N (s)

σ(αi)w
∗
i Ir(s+ v(si)), (4)

for which we further impose the unit gain constraint∑
i∈N (s) σ(αi)w

∗
i = 1 to ensure that the value of Ît(s) will

not be blown out. Using Eq. (4), we minimize the mean of
the squared prediction error between It(s) and Ît(s) over
all the pixels s ∈ It in the target frame It subject to the unit
gain requirement by minimizing

Lpred({αi, si}Ki=1) =
1

N

∑
s∈It

(It(s)− Ît(s))2∑
i∈N (s) σ(αi)w

∗
i

. (5)

with respect to {αi, si}Ki=1. In particular, to reduce the num-
ber of motion vectors to be sent to the decoder, we addi-
tionally require that only few πi should be non-zero. This
is achieved by regularizing the determination of αi with the
sparsity constraint

∑K
i=1 |πi| = M . As a result, our loss

function for motion estimation can be expressed as

L({αi, si}Ki=1) = Lpred({αi, si}Ki=1) + γ
1

K

K∑
i=1

|σ(αi)|,

(6)
where γ is a hyper-parameter that weights the sparsity con-
straint against the prediction loss Lpred.

4. Residual Coding

For residual coding, we adopt HEVC Test Model (HM-
16.7). Specifically, the motion-compensated residuals are
compressed in intra mode with quantization parameter (QP)
adaptation. To this end, the residual frames, having a dy-
namic range of [-255,255], are uniformly quantized and
converted (in a lossy way) into signals of value from 0 to
255 for 8-bit coding. The maximum Coding Unit size is set
to 64x64. Remarkably, the compression quality is adjusted
by varying the QP value so that every reconstructed video
frame has an MS-SSIM value larger than a pre-defined
threshold while meeting the bit rate constraint.

5. Experiments

5.1. Settings and Implementation Details

In terms of the number K of critical pixels to retain, we
experiment with three settings. The first two set K to 91
(Setting 1) and 282 (Setting 2), respectively, without critical
pixel dropout. They correspond roughly to sending 1 to 3
motion vectors per Coding Unit of size 64x64. The third
(Setting 3) invokes critical pixel dropout by setting K to
282 and keeping only 91 of them with the largest πi.

For carrying out the steepest descent update, the val-
ues of {si}Ki=1 are initialized to be on a uniform, rectangu-
lar 2-D grid that spans across the entire video frame, with
their αi starting at 0. To speed-up the process, the loss
L({αi, si}Ki=1) is evaluated on 2x down-sampled Ir, It, and
F . The resulting {si} are then scaled to full resolution for
motion compensation and residual generation.

As for the hyper-parameters, the number of iterations
for parameter update is fixed at 200. The temperature pa-
rameter of the sigmoid function is initialized to 5.5 and in-
creased incrementally by 0.25 after each gradient update.
The hyper-parameter γ in Eq. (6) is 1e-5.

5.2. Quantitative Comparison

Table 1 present the PSNR and MS-SSIM results over the
CLIC validation sequences. We compare two categories of
methods: motion-compensated inter-frame prediction (1)
without and (2) with residual coding. Among the meth-
ods without residual coding, our POBMC schemes with
sparse motion show consistently higher PSNR and MS-
SSIM. They all surpass the flow-based motion compensa-
tion, which requires sending a dense flow map. This is
because POBMC is a multi-hypothesis prediction scheme,
which has been proven superior to single-hypothesis pre-
diction. Interestingly, the one with critical pixel dropout
(POBMC 282-91) performs comparably to POBMC 282,
which uses 3 times more motion vectors, and better than
POBMC 91, which uses the same number of motion vec-
tors. As such, POBMC 282-91 + RC achieves the best
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Figure 3. Visualization of the reference frame (Copy Last), optical flow map, motion-compensated frames through optical flow-based
warping and our parametric motion-compensated prediction (POBMC). The purple areas show where the prediction residuals are located.
Overlaid on the motion-compensated frames (the bottom row) produced with our method are the critical pixels and their motion vectors.
The MSE for copy last (prediction with zero motion), optical flow-based warping, POBMC 91, POBMC 282, and POBMC 292-91 are 660,
19, 24, 10, and 13 respectively.

Table 1. PSNR and MS-SSIM for motion-compensated (MC) pre-
diction with and without residual coding (RC).

Settings PSNR MS-SSIM

M
C

Copy Last 23.81 0.9033
Optical Flow 27.60 0.9668
POBMC 91 28.19 0.9643
POBMC 282 28.49 0.9679
POBMC 282-91 28.38 0.9655

M
C

+R
C 91 + RC (QP30) 33.04 0.9853

282 + RC (QP33) 32.55 0.9829
282-91 + RC (QP30) 34.01 0.9879

PSNR and MS-SSIM results, allowing more bits for resid-
ual coding under the same rate constraint.

5.3. Qualitative Comparison

Fig. 3 present results for the dense optical flow and the
motion-compensated frames produced by flow-based warp-
ing and our parametric prediction. The large purple ar-
eas on the reference frame (Copy Last) suggest that there
is considerable motion between the reference and target
frames, as is also evidenced by the flow map. It can also
be seen that POBMC 282 (Setting 2) and POBMC 282-91
(Setting 3) display smaller purple areas, especially at the
object boundaries. By contrast, optical flow-based predic-
tion yields considerable errors at boundaries, explaining its
larger MSE. Interestingly, with more critical pixels, the re-
sult of POBMC 282 (Setting 2) reveals that after update,
they are mostly not far away from their initial positions. On
the other hand, with fewer critical pixels in POBMC 91 and
POBMC 282-91, they need to be more critically positioned.
Another intriguing observation is that with dropout, the sur-
viving critical pixels are oftentimes located at object bound-

aries in order to compensate for the less accurate motion
estimates produced by PWC-net.

6. Conclusion
This paper aims to minimize the motion overhead for

learning-based video compression. We introduce a para-
metric video prediction based on POBMC, for which we
identify critical pixels by back-propagating a loss function
on their locations and communicate their motion vectors to
the decoder. A dropout probability for each critical pixel is
estimated to balance motion overhead and prediction qual-
ity. The proposed scheme shows better prediction perfor-
mance than flow-based warping and can readily be incorpo-
rated into learned residual coding.
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