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Abstract

In this paper, a coding framework VIP-ICT-Codec is in-
troduced. Our method is based on the VTM (Versatile Video
Coding Test Model). First, we propose a color space con-
version from RGB to YUV domain by using a PCA-like op-
eration. A method for the PCA mean calculation is pro-
posed to de-correlate the residual components of YUV chan-
nels. Besides, the correlation of UV components is com-
pensated considering that they share the same coding tree
in VVC. We also learn a residual mapping to alleviate the
over-filtered and under-filtered problem of specific images.
Finally, we regard the rate control as an unconstraint La-
grangian problem to reach the target bpp. The results show
that we achieve 32.625dB at the validation phase.

1. Introduction

The image/video lossy compression performance has
been continuously improved with the development of the
coding draft/standard. JPEG, JPEG2000, BPG for image
and H.264/AVC, H.265/HEVC, H.266/VVC for video have
been published in decades. Some learning-based end-to-end
image compression methods [1, 2, 3] have been proposed
as well. The intra(image) coding architecture of H.26x in-
cludes the prediction, transformation, entropy coding and
loop filtering. It uses the neighbor pixels to predict the un-
known blocks. The difference between prediction and orig-
inal pixels are transformation and send to entropy coding.
Finally, the post-filtering is utilized to reduce the artifacts
in the reconstructed samples, such as blocking, ringing and
blurring. However, the VTM built-in filters are not satis-
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fying and the artifacts caused by the lossy image compres-
sion decrease the human perceptual quality. Recently, many
learning-based methods [4, 5, 6, 7] are proposed to decrease
those artifacts and achieve significant improvement in both
objective and subjective evaluation.

Video coding standard H.26x is mainly designed to com-
pression video or image in YUV color space, which has
a more concentrated variance then RGB space. ITU-R
BT.601[8] is widely used to convert the raw RGB image
into YUV space. However, this conversion can’t fully elim-
inate the correlation between different components. The op-
timal linear de-correlation transformation is principal com-
ponent analysis (PCA)[9], its coefficients are not the same
for different images. In the process of PCA, the images need
to minus their mean value firstly. Those residual of RGB is
used to calculate the covariance matrix. The eigenvalue and
eigenvector of the covariance matrix represent the variance
proportion and the basis of conversion space, respectively.
For the color space conversion from coded YUV images
to RGB, directly using the inverse transform matrix of P-
CA may be viable but not the best. The reconstructed sam-
ples are always accompanied by some noise, which will be
transformed as well and result in unbearable square errors.
A better solution to solve this question is using the least
squares measurement (LSM)[10] to distribute the noise in-
to all samples and achieves an overall best trade-off of the
whole image.

Considering what mentioned above, we propose a frame-
work based on VimicroABCnet[5] and some changes are
adopted to improve its coding performance. Firstly, we
modify the PCA to make the VTM[11] could compress the
transformed YUV components at a higher compression rate.
To decouple the difficult filtering problem of three compo-
nents to three independent ones, we build our filter in YUV
color space. This kind of filtering can use the unintention-
al pre-processing from PCA and reduce the noise of inputs
to LSM. Finally, the learned residual mapping is proposed

4321



Color 

Space 

Conversion

VTM

Learning 

based

Filter

Residual 

Mapping
LSM

RGB YUV
VTM Rec. 

YUV

Filtered

YUV

Mapped

YUV

Rec.

RGB

Bitstream
VTM 

Bitstream

Mapping

Flags 
Coef.

Intercept 

Figure 1. The proposed coding framework.

to improving the generalization ability of neural network-
based filter, we use the linear regression that has only few-
er parameters to learn a transformation between the filtered
residual and distortion, which helps a single neural network
to filter different images adaptively.

2. Proposed Methods

2.1. Framework Design

Our codec framework is shown in Fig. 1. The image
with RGB format is first converted to YUV by using col-
or space conversion. After that, the converted samples are
sent to the VTM codec. Both the VTM reconstruction and
bits are obtained after VTM coding. In the residual map-
ping phase, we map the learned residual to the distortion
between original and VTM reconstructed samples. Finally,
the mapped YUV is converted to RGB by using LSM.

During the encoding process, the input RGB and con-
verted YUV need to be sent to LSM and residual mapping to
obtain the coefficients for the transformation in these mod-
ules. Both the coefficients and VTM bits constitute the cod-
ed bitstream. For the decoding process, this bitstream is
sent to VTM, residual mapping and LSM, respectively. And
we can decode the reconstructed YUV and RGB sequential-
ly.

2.1.1 Color Space Conversion

Similar to ABC color space conversion[10], the PCA-like
algorithm is used to replace the standard color space conver-
sion BT.601. The difference mainly consists of two parts,
one is that the prediction value is used to replace the mean
value in PCA and the other one is the chroma components
rotation. The experiment shows that this method achieves
0.006dB gain in CLIC2020s valid dataset.

As we know, PCA can effectively reduce the pixel’s cor-
relation between different components. However, it is the
residual between prediction and input pixels that accounts
for the main proportion of coded bitstream in VTM. That is
to say, if the residuals of different components have some
correlation between each other, the transformed residual-
s may have correlated frequency components, which pro-
duces the redundancy in the bitstreams. Therefore, a better

method for the average calculation in PCA should consid-
er the VTM prediction, which better estimates the actual
residuals. The RGB to YUV conversion can be written as
follow.
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where both x and y are unknown matrices for this transfor-
m. The shape of x is 3 × 3 and that of y is 3 × 1. And
y is repeated in the second axis to match the size of input
image. We assume the x are the eigenvectors of covariance
matrix of [R − Rx, G − Gx, B − Bx]

T . So the left item
of all input samples is de-correlated in the Eq. 2. We let
the [Y − Ypred, U − Upred, V − Vpred]

T equal to this item,
which means the correlation in the residual is removed as
well. The subscript "pred" in Eq .3 indicates the prediction
samples in VTM.Y − Ypred
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From Eq. 1, we approximate that,
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Substituting Eq. 5 into Eq. 4,Rx

Gx

Bx
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 (6)

So [Rx, Gx, Bx]
T is obtained to calculate the unknown x

and y in PCA. For simplicity, we only use the DC prediction
mode in our experiment.
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For the chroma components rotation, we rotate the chro-
ma axis to let them have a correlation with each other. This
is because the two chrominance components share the same
coding tree in VTM. And we scale them to ensure the sum
of variance of chroma components unchanged.

x =

xy

xu

xv

 → x′ =
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xv′
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2
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2

 (7)

2.1.2 The Proposed Filtering

The main difference between the proposed framework with
VimicroABCnet is that we construct our learning-based fil-
ter in YUV space instead of RGB space. The reasons for
the design of the framework include three aspects. Firstly,
the images in YUV space is converted by PCA-like algo-
rithms. As we know, PCA that has a powerful capability to
pre-process the dataset can control the mean and variance of
the dataset effectively, which is quite helpful for the training
of our neural networks. In our cases, we set the mean and
range of YUV components are the same with BT.601 by us-
ing the proposed PCA. So the YUV datasets with the same
mean and range are sent to the training of neural networks,
while the RGB dataset has different means and ranges. Sec-
ondly, the artifacts for the learning-based filter to remove
is produced by lossy VTM codec, which coding images in
YUV color space. If we convert the lossy YUV image in-
to RGB space, those artifacts will be converted as well and
the distortion from different components may overlap each
other. Compared with RGB space, the YUV space is de-
coupled. So we can train three individual models for YUV
components, respectively. Those models can handle the ar-
tifacts independently and effectively. Moreover, we choose
models with different complexity for luma and chroma to
reduce complexity. The relative simple model is enough for
the filtering of chroma components in our experiments. An-
other important reason for choosing YUV space is to make
the LSM less affected by those artifacts. In the color space
conversion from RGB to YUV, the transform matrix and in-
tercept are the same for all pixels in one image. So if we
prefer to convert the color space before filtering, the differ-
ent levels of distortion in a specific image may make the
optimal transform matrix and intercept for different pixels
are not the same. Compared with VTM reconstructed im-
ages, the filtered images in YUV space have fewer artifacts
and is more close to the original images in YUV space. In
other words, this filtering process reduces the noise in the
inputs to LSM and make it less affected by the artifacts.

2.1.3 Learned Residual Mapping

Due to the uneven distribution of the training dataset, the
training process of a neural network is a trade-off be-

tween different training samples. For individual images, the
learning-based filter may be over-filtered or under-filtered,
which is unsatisfied with the human perceptual quality. To
solve this question and further improve the generalization
ability of the trained model, we use regression to map the
learned residual of the learning-based filter to the distortion
between original images and VTM reconstructed images.
Consequently, this kind of over-filtered or under-filtered can
be alleviated. This method balances the detail texture and
overall smoothness in terms of objective evaluation.

The output of VTM is denoted by x̂, so the reconstructed
images x̃ of the learning-based filter can be calculated by
the sum of the learned residual ε̃ and x̂.

x̂+ ε̃ = x̃ (8)

Correspondingly, the original images x can be formulated
as the sum of distortion ε and x̂.

x̂+ ε = x (9)

From the perspective of enhancing subjective quality, min-
imizing the mean square error(MSE) between x̃ and x is
equivalent to map ε̃ to ε with an accurate regression. In this
case, we use the linear regression f(·) to map the ε̃. The
reason for choosing linear regression is that it only needs 2
parameters for each component, named coefficients w and
intercept b.

f(ε̃) = wε̃+ b (10)

Considering only the intercept term in linear regression, it
is equivalent to the sample adaptive offset (SAO) in VTM.
Both of them are aimed at compensating offsets by using
the bias term. However, the bias term needs some extra bits
which are redundant if we use the SAO and the intercept
term of linear regression at the same time. Furthermore, the
whole image shares the same parameters to reduce the bits
and avoid artificial imprints in our design. For most images,
its reconstructed output is always unbiased, so we drop the
intercept term and quantify coefficients into fixed points to
save its consumed bits. Specifically, we set 16 and 8 dif-
ferent levels for luminance and chrominance, respectively.
The number of required bits is reduced from 192(2 floats per
component) to 10 (4 3 3 for YUV) per image. So the over-
head of this method is only 10/2000000 = 0.000005bpp
for a general image with 2000 × 1000. At the same time,
the case of not performing residual mapping is retained in
the candidate level. Therefore, the residual mapping could
ensure the coding gain with negligible rate overhead.

2.2. Rate Control

In this subsection, we describe our rate control algorith-
m, which is mainly based on the Lagrangian method. The
distortion and rate for different QPs and images are indi-
cated as Dij , Rij , where i and j are the index of QPs and
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Figure 2. PSNR comparison around 0.15bpp.

images, respectively. So the rate control problem with target
bits constraint C is

min
∑
j

Dij (11)

subject to:
∑
j

Rij ≤ C (12)

This constraint optimization problem can be converted into
an unconstraint Lagrangian function.

L =
∑
j

Dij + λ(
∑
j

Rij − C) (13)

=
∑
j

(Dij + λRij)− λC (14)

Furthermore, those images are independent with each other,
which means that minimizing the overall loss L is equiva-
lent to minimize the loss Dij +λRij of every single image.
So we fix the hyper-parameter λ and save the candidate QP
with the smallest loss of all images as a preliminary selec-
tion. Finally, we fine-tune the preliminary selection to make
its bits closer to the target constraints.

3. Experiment
The structure of the learning-based filter is similar to the

one in [5]. Differently, the depth and the number of feature
maps for luminance’s network are extended to 56 and 128,
respectively. CLIC2020 training set and DIV2K [12] with
patch size of 64× 64 are used in the training phase. We use
the VTM 7.1 without built-in filters as the anchor to produce
the training samples. Fig. 2 compared the PSNR between
the proposed model and the anchor. It can be found that our
proposed model achieves 32.625dB at 0.15 bpp.

4. Conclusion
In this paper, an image compression framework with a

neural network-based filter is proposed for CLIC 2020 chal-

lenge. This framework mainly consists of color space con-
version, VTM, learned residual mapping and LSM. First,
we introduce the detail in our color space conversion. The
VTM prediction and chroma rotation were utilized to mod-
ify the PCA. This color space conversion produces the
frames that have a higher VTM compression ratio than us-
ing standard PCA directly. Different from previous works,
we construct our filter in YUV space instead of RGB space.
To describe the reason for filtering in YUV space, we pro-
vide a detailed explanation from three different aspects, in-
cluding the relationship between the filtering module and
PCA-like conversion, filtering module itself and LSM. Af-
ter that, we proposed a novel module, called residual map-
ping. It is aimed at solving the over-filtered or under-filtered
for individual images while using the same trained model.
By using some additional bits, this module can further im-
prove the generalization ability of the trained model. By
using the Lagrangian method, a rate control method is de-
signed to find the best image set with the smallest mean
square errors finally. Experimental results show our pro-
posed framework achieves about 32.625dB for CLIC 2020
validation dataset.
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