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Abstract

Deep learning based image compression methods have

achieved superior performance compared with transform

based conventional codec. With end-to-end Rate-Distortion

Optimization (RDO) in the codec, compression model is

optimized with Lagrange multiplier λ. For conventional

codec, signal is decorrelated with orthonormal transfor-

mation, and uniform quantizer is introduced. We propose

a variable rate image compression method with dead-zone

quantizer. Firstly, the autoencoder network is trained with

RaDOGAGA [6] framework, which can make the latents

isometric to the metric space, such as SSIM and MSE. Then

the conventional dead-zone quantization method with arbi-

trary step size is used in the common trained network to pro-

vide the flexible rate control. With dead-zone quantizer, the

experimental results show that our method performs com-

parably with independently optimized models within a wide

range of bitrate.

1. Introduction

Image compression is a kind of traditional and well-

studied technique. With the key challenge of rate and dis-

tortion tradeoff, traditional codecs, such as JPEG [14] and

JPEG2000 [10], usually break the pipeline into 3 modules:

transformation, quantization, and entropy codec. Joint opti-

mization over rate and distortion has longly been considered

as an intractable problem. For transform coding [5], com-

ponents are optimized separately, then they are fit together

manually. Taking JPEG for example, it uses 8x8 block in

Discrete Cosine Transform (DCT), then adapts run-length

encoding to exploit the sparsity pattern of extracted fre-

quency coefficients. Quantization is applied on coefficients

to realize different compression level.

With the development of deep learning technology, more

and more methods have been proposed to realize end-to-end

rate distortion tradeoff [1, 2, 7–9, 16, 17]. Autoencoder has

been proved to reduce dimensionality effectively by intro-

ducing an ′information bottleneck′ that forces the net-

work to find and exploit redundancies. Variational AutoEn-

coder (VAE) was evolved to model the underlying data dis-

tribution explicitly with sacrifice of distortion. To some ex-

tent the autoencoder-based compression methods [2,12] can

be seen as VAEs, while the entropy model for rate estima-

tion corresponds to the prior on the latents.

In these RDO methods, the Lagrange multiplier λ is in-

troduced to modulate tradeoff between rate and distortion

as R + λ · D. A common way for rate adaptation is train-

ing multiple models with different λ, which is very tedious.

To deal with such limitation, many methods have been pro-

posed [3, 4, 12, 13]. Toderici et al. [13] proposed a RNN

based progressive encoding and decoding scheme to gen-

erate target quality from low to high level, which requires

large hardware storage and high performance in application.

Choi et al. [3] combines the Lagrange multiplier and quan-

tization bin size to realize rate control. But the range of

quantizer is constrained within a small range to reduce per-

formance degradation. To cover a broad rate range, multiple

models trained with different λ are used.

Taking traditional codec into consideration, if neural net-

work based image compression can be trained to realize or-

thonormal transformation, such as Karhunen-Loéve trans-

form (KLT) and DCT, we can introduce the conventional

quantization method to the neural network based orthonor-

mal encoder. Inspired from this, we propose a variable rate

image compression method with dead-zone quantizer [15].

RaDOGAGA [6] can realize an orthonormal latent space

with minimal entropy, such as KLT and DCT. Because of

orthonormality (orthogonal and uniform scaling) and mini-

mal entropy, the common network can be used for an arbi-

trary quantizer. Firstly, the autoencoder network is trained

with RaDOGAGA with metrics such as Mean Square Error

(MSE), and Multi-Scale Structural SIMilarity (MS-SSIM),

et al. Latents isometric to these metric spaces are derived.

In inference, a uniform quantizer is utilized to obtain vari-

able rates with different step sizes as traditional codec with
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Figure 1. The RaDOGAGA framework for training

fixed encoder/decoder. To further improve its performance,

the dead-zone quantizer is introduced. According to our

experimental results, our method can achieve comparable

R-D performance with models optimized separately both in

PSNR and MS-SSIM.

2. Variable rate image compression

2.1. Training framework: RaDOGAGA

As for RaDOGAGA, which is a rate-distortion optimiza-

tion guided autoencoder, it proves that deep autoencoder

can achieve orthonormal transform with RDO. Just like

common compression framework, it mainly contains en-

coder fθ(x), decoder gφ(y) and factorized entropy model

Cumulative Density Function CDFψ(y) with parameters

θ, φ and ψ. For the factorized entropy model as described

in [2], bounds of latents y should be finite and known ahead.

The bounds for latents are also trained, which contains not

only the maximum and minimum ranges, but also median

value as a kind of quantization offset. The probability can

be calculated as follows from CDFψ(y), where α<1.

Pψ(y) = CDFψ(y +
α

2
)− CDFψ(y −

α

2
) (1)

Compared with the mainstream R + λ ·D loss, the dif-

ference can be illustrated from two aspects. The first is that

two inputs exist for the decoder gφ(y). One is the extracted

latents y, and the corresponding output is x̂. The other is

noised latents y+ ǫ, where ǫ is uniform noise with variance

σ, and the corresponding output is x̆. The second aspect is

loss function shown in Eq. 2.

L = −log2(Pψ(y))+λ1 · h(D(x, x̂))+λ2 ·D(x̂, x̆) (2)

The first distortionD(x, x̂) is for reconstruction, and the

second D(x̂, x̆) aims to influence the scaling, i.e., Jaco-

bian matrix. According to Rolı́neck et al. [11], D(x, x̆) ≃
D(x, x̂)+D(x̂, x̆). Here we use h(d) = log(d), which can

encourage better reconstruction and orthogonality. D(·) is

an arbitrary metric, such as MSE, SSIM, or Binary Cross

Entropy (BCE), etc.

As shown in RaDOGAGA, the latent becomes orthonor-

mal to the metric defined image space with minimal en-

tropy such as KLT. Let D(x, x̂) be a metric such as SSIM,

MSE, and so on. Usually D(x,x+ δx) can be approxi-

mated by T δxAxδx where δx is an arbitrary micro dis-

placement and Ax is a Riemannian metric tensor at x. By

using RaDOGAGA, each row vector of Jacobi matrix be-

comes orthonormal at any x in the inner product space with

metric Ax as follows, where δij denotes Kronecker’s delta.

T (
∂x

∂yi
)Ax(

∂x

∂yj
) =

1

2λ2σ2
δij (3)

2.2. Compression framework with quantization

In this section, we’ll explain a compression framework

with an arbitrary step sized quantization by using the com-

mon encoder fθ(x), decoder gφ(y) and entropy model

CDFψ(y,Q). After training with RaDOGAGA, the la-

tents are optimized to be orthonormal to metric defined in-

ner product space. For example, if trained with MS-SSIM,

the space of latent is isometric against Riemannian mani-

fold whose metric is MS-SSIM. Thus rate control can be

realized as conventional way.

Firstly, input signal is decorrelated by orthonormal trans-

formation with the Encoder. Then decorrelated data y can

be quantized uniformly with arbitrary Q, short for quanti-

zation step size. Then quantized symbols ŷenc are entropy

coded using the Entropy Model after Quantizer. In the

decoder procedure, the symbols are entropy decoded loss-

lessly using the arithmetic coding with the estimated prob-

ability, dequantized, and fed to the Decoder as shown in

Figure 2(b). Thus, with arbitrary Q, flexible rate control

can be realized easily.

(a) The encoder procedure

(b) The decoder procedure

Figure 2. The compression framework

2.3. Dead­zone quantizer

We employ a simple dead-zone quantizer widely used

in image compression such as H.264 as shown in Figure

3. Based on the trained CDFψ , quantizer, and dead-zone

offset, the probability of each latent in ŷ is estimated in ad-

vance for each representative.

Compressed symbols ŷenc for entropy codec is shown in

Eq. 4 with dead-zone quantizer, where sgn(·) is the signum



function. y is centered on the median value from trained

CDFψ , while 0 is used for simplicity. The offset can be

from 0 to 0.5. If offset = 0.5, it means round quantization.

ŷenc = sgn(y) · ⌊
|y|

Q
+ offset⌋ (4)

Then ŷ can be obtained with De-Quantizer(Q).

ŷ = ŷenc ·Q (5)

Figure 3. The dead zone quantizer.

Figure 3 shows the upper yupper and lower ylower bound

of y for each quantized representative value. A probabil-

ity for a quantize symbol ŷ is estimated with equations as

follow, where 0 < ω < 1.

yupper = (ŷenc+0.5+sgn(ŷenc+ω)×(0.5−offset)) ·Q
(6)

ylower = (ŷenc−0.5+sgn(ŷenc−ω)×(0.5−offset)) ·Q
(7)

Pŷenc
= CDF (yupper)− CDF (ylower) (8)

3. Experiments

3.1. Training method

The training dataset contains more than 6000 images.

Some of them are from lossless dataset, such as dataset from

Workshop and Challenge on Learned Image Compression

(CLIC)1 and DIV2K, a super-resolution dataset. Others are

from flickr.com, where images are not in lossless format

with 2× 2 down sampling to reduce compression artefacts.

In training, the network is fed with 256 × 256 × 3 patches

cropped from these full resolution images randomly with a

minibatch size of 8. Each image is normalized by dividing

by 255 for each RGB channel.

To compare the performance of our variable rate com-

pression method with independently optimized method, we

1https://www.compression.cc

use the same network structure in [1], and models are

trained with its official open source code2. We set the bot-

tleneck number 128. If optimized for MSE, it’s calculated

after scaling the normalized images to 255.

3.2. Conventional model with independent training

For neural network based conventional method, such as

[1], the R-D curve is pointed through models trained with

different λ. Each point represents a compression level op-

timized with a specific R-D tradeoff λ independently. Such

method can achieve ideal performance, but it requires more

memory to store and more computing to train them. In other

words, the training time is multiplied. To compare the RD

curves both in PSNR and MS-SSIM, different λ and loss

are used. For PSNR, MSE is distortion in training, and λ ∈
{0.001, 0.003, 0.005, 0.01, 0.02, 0.03, 0.1}. For MS-SSIM,

it’s the same training loss with λ ∈ {4, 8, 16, 32, 64, 96}.

3.3. Proposed model with arbitrary quantization

We train our model as RaDOGAGA framework ex-

plained in section 2.1 with MS-SSIM and MSE. Parameters

are shown in Table 1. If optimized for MSE, it means two

distortions in Eq. 2 are MSE in training. Once the train-

ing is completed, Q in a relative wide range can be used to

tune the desired rate/distortion. What’s more, we use the

dead-zone quantizer in compression. Different quantization

step sizes are applied to obtain different rates. For example,

Q ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4} are used

in models optimized for MS-SSIM.

Distortion λ1 λ2 α

MSE 5 0.2 0.2

MS-SSIM 1 256 0.2

Table 1. Parameters for our model

3.4. Performance

Evaluated on 24 Kodak images3, the comparison results

are shown in Figure 4. MS-SSIM scores are measured in

dB: MS-SSIMdB = −10 · log10(1 −MS-SSIM). To

check the influence of different offsets in dead-zone quan-

tizer, offset ∈ {0.4, 0.45, 0.5} are used. As we can see,

our performance is comparative with independently opti-

mized model both on PSNR and MS-SSIM with offset =
0.45. With small offset, quantization error increases for the

centered value, which will result in aggravating distortion.

So appropriate offset is beneficial to improve performance.

Figure 5 shows the reconstructed images through our

variable rate image compression method to assess their vi-

sual quality. For Q = 4, we can find that our method can

maintain the texture well, such as areas of girl’s eyelash and

2https://github.com/tensorflow/compression
3http://r0k.us/graphics/kodak



(a) R-D curve of PSNR

(b) R-D curve of MS-SSIM dB

Figure 4. PSNR 4(a) and MS-SSIM 4(b) comparison on Kodak

dataset. The ’λ = 16’ around the red curve indicates model is

optimized with R + 16 · D. The blue text ’Q = 1’ means that

quantization step is 1.

hair. However, the independently optimized model smooths

small texture to realize better R-D tradeoff. If using larger

quantization step, although the objective performance does

not degrade, there is mosquito noise on the crisp edge of

objects, which is a common phenomenon in classical codec

compressed with DCT.

4. Conclusion

In this paper, we propose a variable rate image compres-

sion method based on a common autoencoder. We find that

RaDOGAGA framework can realize the orthonormal latent

space, which can be seen as the way of getting DCT coef-

ficients. From this point, we introduce conventional quan-

tizer, such as the one in JPEG/MPEG. According to our ex-

perimental results, our method can vary rate without objec-

tive metric degradation. We can deploy the trained model

within a broad range of rate flexibly, which will bring great

convenience in practical application. In this paper, we used

simple one layer model. However, the concept of isomet-

ric latent space is generic, and will be widely applicable to

more complex multi-layer compression model.
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[1] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

End-to-end optimized image compression. arXiv preprint

arXiv:1611.01706, 2016.
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