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Abstract

When training end-to-end learned models for lossy com-

pression, one has to balance the rate and distortion losses.

This is typically done by manually setting a tradeoff param-

eter β, an approach called β-VAE. Using this approach it

is difficult to target a specific rate or distortion value, be-

cause the result can be very sensitive to β, and the appro-

riate value for β depends on the model and problem setup.

As a result, model comparison requires extensive per-model

β-tuning, and producing a whole rate-distortion curve (by

varying β) for each model to be compared.

We argue that the constrained optimization method of

Rezende and Viola, 2018 [29] is a lot more appropriate

for training lossy compression models because it allows

us to obtain the best possible rate subject to a distortion

constraint. This enables pointwise model comparisons, by

training two models with the same distortion target and

comparing their rate. We show that the method does man-

age to satisfy the constraint on a realistic image compres-

sion task, outperforms a constrained optimization method

based on a hinge-loss, and is more practical to use for

model selection than a β-VAE.

1. Introduction

Deep latent variable models have started to outperform

conventional baselines on lossy compression of images

[4, 7, 25, 14, 15, 24, 23, 33, 36], video [19, 8, 27, 21, 31,

37, 20, 27, 6, 12], and audio [39, 36]. Nearly all of these

methods use a loss function of the form D + βR, where D

measures distortion, R measures bitrate, and β is a fixed

tradeoff parameter. We refer to this approach as β-VAE

[13], because this loss can be motivated from a variational

perspective [12].

Despite its popularity, β-VAE has several drawbacks.

Firstly, setting β to target a specific point in the R/D plane

can be tricky. One can show that a model trained with a

given β should end up at that point on the R/D curve where
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the slope ∂R

∂D
equals β [1]. However, because the shape of

the R/D curve depends on the model and hyperparameters,

and because the R/D curve can be very steep or flat in the

low or high bitrate regime, choosing β can be difficult.

Secondly, in order to compare models it is not sufficient

to train one instance of each model because the converged

models would likely differ in both rate and distortion, which

yields inconclusive results unless one model dominates the

other on both metrics. Instead, to compare models we need

to train both at several β values to generate R/D curves

that can be compared, which is computationally costly and

slows down the research iteration cycle.

A more natural way to target different regions of the R/D

plane is to set a distortion constraint and find our model

parameters through constrained optimization:

min
θ

R(θ) s.t. D(θ) ≤ cD, (1)

where θ refers to the joint parameters of the encoder, de-

coder and prior, and cD is a distortion target.

We can control the rate-distortion tradeoff by setting the

distortion target value cD. Setting this value is more intu-

itive than setting β, as it is independent of the slope of the

R/D curve, and hence independent of model and hyperpa-

rameters.

As a result, we can easily compare two different models

trained with the same distortion constraint; as we have fixed

the D axis we only have to look at the R performance for

each model.

Note that one could also minimize the distortion subject

to a rate constraint. This is less straightforward as putting

too much emphasis on the rate loss at the beginning of train-

ing can lead to posterior collapse [3, 11, 40, 28, 32].

There is a large literature on constrained optimization,

but most of it does not consider stochastic optimization and

is limited to convex loss functions. In this paper we eval-

uate, in addition to β-VAE, two constrained optimization

methods that are compatible with stochastic gradient de-

scent training of deep networks: A simple method based on

the hinge loss (free bits [17, 5, 1] but applied to distortion

rather than rate), and the Lagrangian distortion-constrained

optimization method of [29] (D-CO).
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(a) R/D performance for constrained optimization and hinge loss

baselines. Dashed lines indicate the distortion target value cD .

(b) R/D performance for constrained optimization and β-VAE.

Figure 1: Training rate / distortion performance for the same model trained using different optimization methods.

We evaluate these methods on a modern image compres-

sion system applied to a realistic compression benchmark.

We report on suitable hyperparameters and practical con-

siderations that are relevant in this domain. We show that

D-CO outperforms the hinge method, and reaches a similar

performance to β-VAE. At the same time, D-CO is easier

to work with and allows for pointwise model selection.

2. Related Work

2.1. Constrained Optimization

Several works have proposed algorithms to train deep

networks under equality or inequality constraints [22, 10,

9, 29]. We deploy the algorithm of [29] as the VAE context

is most similar to our setup.

The focus of [29] is on generative modelling rather than

data compression, and there are a number of reasons why

the models trained in [29] are not directly applicable to data

compression. Firstly, their models contain a stochastic en-

coder which is not suitable for lossy compression, where

bits-back coding is inapplicable. Secondly, [29] do not

report R/D performance but instead report log-likelihood.

Furthermore, their latent space is continuous while most

compression papers use a discrete latent space that allows

for entropy coding of the latents under the prior. Lastly,

they use a fixed Guassian prior whereas in lossy compres-

sion powerful learnable priors are used to decrease the bi-

trate as much as possible. In this paper we focus on the

implementation and evaluation of constrained optimization

for practical lossy image compression.

2.2. Hinge Loss

Another approach that was proposed for constrained op-

timization (in the context of avoiding posterior collapse) is

free-bits, where the rate loss is hinged D+βmax(R−cR, 0)
[17, 5, 1]. Like constrained optimization, this loss allows us

to set a target value, and as such has been used in lossy com-

pression [23]. However, we find that this method is inferior

to constrained optimization in terms of R/D performance

and has difficulty converging to the target value.

2.3. Variable Bitrate Models

A different approach of dealing with the rate-distortion

tradeoff is to train a single model that can compress at dif-

ferent bitrates [34, 30, 7, 38]. However, some of these

works do not meet the performance achieved with special-

ized models [38] or require disjoint training of autoencoder

and prior [34]. Other methods could benefit from con-

strained optimization (e.g. [38] still uses β multipliers that

could be replaced by a distortion target), an exercise that is

left for future research.

3. Method

3.1. Constrained Optimization

The Lagrangian of the primal problem in equation 1 is:

LLagrangian(θ,λ
D) = R(θ) + λD (D(θ)− cD) (2)

For a convex problem, we would find the minimum of

the dual at maxλD minθ LLagrangian(θ,λ
D).

For non-convex deep learning models, we deploy the al-

gorithm proposed by [29] and iteratively update θ and λD

using stochastic gradient descent and ascent respectively.
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(a) D-CO: minθ R(θ) s.t. D(θ) ≤ cd (b) β-VAE: minθ D(θ) + βR(θ)

Figure 2: Model selection using (a) distortion constrained optimization and (b) β-VAE. The baseline model (dark line) is

altered by halving the number of latent channels (light line). Models that are trained using the same distortion target (a) or

the same value of β (b) are connected using a dotted line.

Note that the β-VAE loss is the Lagrangian of a rate-

constrained optimization. However, the multiplier λR = β

is either fixed or updated according to a heuristic schedule

[3, 11, 40, 28, 32], and thus no constrained optimization is

performed.

Because we found that the optimal D-CO hyperparam-

eters were different depending on the target value, we nor-

malize our constraint function by the target value. Our loss

function thus becomes:

LD−CO(θ,λ
D) = R(θ) + λD

✓

D(θ)

cD
− 1

◆

(3)

3.1.1 Weight and Multiplier Updates

For each minibatch, we update θ using the Adam optimizer,

and λD using SGD with momentum, to respectively mini-

mize and maximize the batchwise Lagrangian (Eq. 3).

Like [29], we reparametrize µD = log λD in order to

enforce the positivity of λD (to satisfy the K.K.T. [18, 16]

conditions for inequality constraints). We also follow them

in updating ∆µD
t+1 ∝

∂L

∂λD

t

= Dt

cD
− 1 as this resulted in

smoother updates of our multipliers than using the actual

gradient (Dt

cD
− 1) exp (µD

t
).

We use a high momentum (α = 0.99) for our multiplier

updates, to ensure a smooth multiplier trajectory despite the

high variance of the MSE loss. As we use the PyTorch [26]

SGD implementation, we make sure to set dampening to be

equal to momentum. We clip our log-multiplier s.t. λD ≤

103 for stability.

Unlike [29] we choose to set our initial value of λD to

the clip value λD
0 = 103. This way, we focus on training

the autoencoder for distortion at the beginning of training,

which we found to be essential for high performance. The

final multiplier trajectories are shown in Figure 3.

4. Experiments

We conduct a series of experiments to show how con-

strained optimization is more suitable for training lossy

compression models than β-VAE or distortion hinge base-

lines.

4.1. General Setup

We use the autoencoder architecture of [23] but without

the mask. Our prior is the gated pixelCNN [35] as used in

[12]. Like [12] we jointly train our code-model and autoen-

coder, without any detaching of the gradients. We use scalar

quantization with a learned codebook and a straight-trough

estimator (hardmax during forward pass and softmax gradi-

ent during backward) [2, 23, 12].

We train our model on random 160x160 crops of Ima-

geNet Train, and evaluate on 160x160 center crops of Im-

ageNet Validation. Like [23] we resize the smallest side of

all images to 256 to reduce compression artifacts.

We train using the rate loss expressed in bits per pixel

(bpp) and using the distortion loss expressed in average

MSE computed on unnormalized images on a 0-255 scale.

We update our parameters using Adam with a learning

rate of 2 · 10−3 for the autoencoder and 1 · 10−4 for the

prior. We decay both learning rates every 3 epochs (120087

iterations) by a factor of 0.1. For the multiplier updates, we

use SGD with a learning rate of 5 · 10−3. We use a batch
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Figure 3: Trajectory of Lagrangian multipliers during training. Each curve represents a model with a different constraint.

size of 32.

4.2. D-CO vs. D-hinge

For this experiment we choose exponentially spaced D-

constraint values (60, 65, 70, 80, 100, 125, 150, 200, 300

MSE) and look at how well the methods converge to the

set target. We compare our D-CO training with the simpler

D-hinge baselines of the form:

LD-hinge(θ) = R(θ) + λD max

✓

D(θ)

cD
− 1, 0

◆

(4)

Unlike D-CO, λD is fixed during training, but we train

models with different values (0.01, 0.1, 1, 10, 100). In line

with D-CO, we use the normalized constraint function as

we verified that it worked better than the unnormalized one.

Results are shown in Figure 1a. Observe that the D-

CO models converge very closely to the set target (within 1

MSE point for achievable constraints). For the hinge mod-

els, the constraint is not satisfied reliably and overall R/D

performance is worse (some models converged to R/D val-

ues outside of the chosen display range). Furthermore, the

hinge models are sensitive to the value of λD, and the opti-

mal value differs per target.

Figure 3 shows the trajectories of the D-CO multipliers.

For stricter constraints, it takes longer before the multiplier

starts to drop, changing emphasis from D to R. In the limit

of an unachievable constraint (MSE < 62), the multiplier

remains constant at the clip value. All multipliers converge

to a relatively stable final value, which is dependent on the

target (as expected since the ∂R

∂D
slope is different).

4.3. D-CO vs. β-VAE

In the next experiment, we compare the R/D perfor-

mance of D-CO to the β-VAE baseline. We first train β-

VAE models for exponentially spaced β values (0.1, 10,

50, 100, 200, 250, 500, 750). For each β-VAE, we use the

distortion loss over the last training epoch as the target for

training a D-CO model.

Results are shown in Figure 1b (PSNR results in Figure

A.1). The R/D performance of the D-CO models is similar

to that of the β-VAEs. For bitrates higher than 0.4 bpp, we

see a slight advantage for the β-VAE. For these target val-

ues, the D-CO multipliers are almost constant (see the strict

constraints in Figure 3) and we thus attribute this difference

to the optimization hyperparameters being fine-tuned for the

scale of the β-VAE loss.

4.4. Model Selection

In the final experiment we highlight how constrained op-

timization can simplify the model selection process. We

adapt our architecture by changing the number of latent

channels from 32 to 16, effectively halving the maximum

channel capacity from 1.29 bpp to 0.64 bpp. We train β-

VAE models for the βs from Section 4.3 and D-CO models

using the targets from Section 4.2.

Results are shown in Figure 2. For both optimization

methods, the lowest achievable distortion has increased

from ∼ 70 MSE to ∼ 130 MSE for the model with de-

creased channel capacity.

For the β-VAE optimization, points with the same β now

end up at very different points on the R/D plane. For the

half-capacity model, we cover a narrow range of 240-128

MSE. In contrast, D-CO produces two comparable R/D

curves. Distortion targets below 130 MSE are unachiev-

able for the half-capacity model and are all collapsed into a

single point. However, for any achievable distortion target,

both models end up with a similar distortion which allows

us to do a pointwise comparison.

5. Conclusion

We present distortion constrained optimization (D-CO)

as an alternative to β-VAE training for lossy compression.

We report suitable hyperparameters and propose to nor-

malize the constraint function for better performance. We

demonstrate that D-CO gives similar performance to β-

VAE on a realistic image compression task, while at the

same time providing a more intuitive way to balance the

rate and distortion losses. Finally, we show how D-CO can

facilitate the model selection process by allowing pointwise

model comparisons.
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Joint autoregressive and hierarchical priors for learned im-

age compression. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 31, pages

10771–10780. Curran Associates, Inc., 2018. 1

[25] David Minnen and Saurabh Singh. Channel-wise autoregres-

sive entropy models for learned image compression. 1

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

5



Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-

perative style, high-performance deep learning library. 2019.

3

[27] Jorge Pessoa, Helena Aidos, Pedro Tomás, and Mário AT

Figueiredo. End-to-end learning of video compression using

spatio-temporal autoencoders. 2018. 1

[28] Tapani Raiko, Harri Valpola, Markus Harva, and Juha

Karhunen. Building blocks for variational bayesian learning

of latent variable models. J. Mach. Learn. Res., 8(Jan):155–

201, 2007. 1, 3

[29] Danilo J Rezende and Fabio Viola. Generalized ELBO with

constrained optimization, GECO. In Workshop on Bayesian

Deep Learning, NeurIPS. pdfs.semanticscholar.org, 2018. 1,

2, 3

[30] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-

age compression. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 2922–

2930. JMLR. org, 2017. 2

[31] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,

Alexander G Anderson, and Lubomir Bourdev. Learned

video compression. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 3454–3463,

2019. 1

[32] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,

SøRen Kaae Sønderby, and Ole Winther. Ladder variational

autoencoders. In D D Lee, M Sugiyama, U V Luxburg, I

Guyon, and R Garnett, editors, Advances in Neural Informa-

tion Processing Systems 29, pages 3738–3746. Curran Asso-

ciates, Inc., 2016. 1, 3

[33] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy

image compression with compressive autoencoders. In In-

ternational Conference on Learning Representations, 2017.

1

[34] George Toderici, Sean M O’Malley, Sung Jin Hwang,

Damien Vincent, David Minnen, Shumeet Baluja, Michele

Covell, and Rahul Sukthankar. Variable Rate Image

Compression with Recurrent Neural Networks. CoRR,

abs/1511.06085, Nov. 2015. 2

[35] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Ko-

ray Kavukcuoglu, Oriol Vinyals, and Alex Graves. Condi-

tional Image Generation with PixelCNN Decoders. In D D

Lee, M Sugiyama, U V Luxburg, I Guyon, and R Garnett,

editors, Advances in Neural Information Processing Systems

29, pages 4790–4798. Curran Associates, Inc., 2016. 3

[36] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete

representation learning. In Advances in Neural Information

Processing Systems, pages 6306–6315, 2017. 1

[37] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.

Video compression through image interpolation. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 416–431, 2018. 1

[38] Yibo Yang, Robert Bamler, and Stephan Mandt. Variable-

bitrate neural compression via bayesian arithmetic coding.

CoRR, abs/2002.08158, 2020. 2

[39] Yang Yang, Guillaume Sautière, J Jon Ryu, and Taco S Co-

hen. Feedback Recurrent AutoEncoder. 2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), Nov. 2019. 1

[40] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Tay-

lor Berg-Kirkpatrick. Improved variational autoencoders for

text modeling using dilated convolutions. In Proceedings

of the 34th International Conference on Machine Learning-

Volume 70, pages 3881–3890. JMLR. org, 2017. 1, 3

6


