
Deep Learning based Spatial-Temporal In-loop filtering for Versatile Video

Coding

Chi D. K. Pham1, Chen Fu1, and Jinjia Zhou1,2

1 Hosei University, Tokyo, Japan
2 JST, PRESTO, Saitama, Japan

{chi.kim.pham.do.94, chen.fu.6r}@stu.hosei.ac.jp, zhou@hosei.ac.jp

Abstract

The existing deep learning-based Versatile Video Coding

(VVC) in-loop filtering (ILF) enhancement works mainly

focus on learning the one-to-one mapping between the re-

constructed and the original video frame, ignoring the po-

tential resources at encoder and decoder. This work pro-

poses a deep learning-based Spatial-Temporal In-Loop fil-

tering (STILF) that takes advantage of the coding infor-

mation to improve VVC in-loop filtering. Each CTU is

filtered by VVC default in-loop filtering, self-enhancement

Convolutional neural network (CNN) with CU map (SEC),

and the reference-based enhancement CNN with the opti-

cal flow (REO). Bits indicating ILF mode are encoded un-

der CABAC regular mode. Experimental results show that

3.78%, 6.34%, 6%, and 4.64% BD-rate reductions are ob-

tained under All Intra, Low Delay P, Low Delay B, and Ran-

dom Access configurations, respectively.

1. Introduction

The coming video coding standard Versatile Video Cod-

ing (VVC) [2] has exceeded the predecessor High Effi-

ciency Video Coding (HEVC or H.265 [10]) in coding per-

formance. Despite VVC in-loop filtering (ILF) improve-

ment, reconstructed images are still affected by block-based

coding and lossy compression which cause undesirable

edges, blurring ringing artifacts, and missing information.

In recent years, Convolutional Neural Network (CNN)

has significantly contributed to enhancing the VVC in-loop

filters [4, 7, 8, 11, 6, 3]. In [4, 7], global skip connection is

used for learning the residual between the image distorted

by VVC encoding and the raw video frame. In [8, 3], skip

connections have played a vital role in designing the dense

residual convolutional neural network based in-loop filter

(DRNLF) [8], and the dense residual convolutional neural

network (DRN) [3] for enhancing VTM reconstructed im-

ages. Huang et al. [6] used Sobel and Laplace operators
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Figure 1. Illustration of the proposed STILF (blue arrows) inte-

grated to VVC.

to generate the divergence and second derivative of recon-

structed images, which highlight edge information and im-

age details to improve the performance of residual learning.

In [5], neighboring high-quality frames judged by a Peak

Quality Frames detector are adopted for enhancing the re-

constructed frames.

In this work, we propose a deep learning-based spatial-

temporal in-loop filtering (STILF) - a framework that takes

advantage of more potential resources in the encoder and

decoder for enhancing the VVC reconstructed images to

coding tree unit (CTU) precision. For each CTU, a syn-

tax filtering mode compression chooses one of three dif-

ferent ILF modes: VVC default ILF, the proposed Self-

enhancement CNN with CU map (SEC) exploiting the spa-

tial information within the frame, or the Reference-based

enhancement CNN with the optical flow (REO) utilizing the

temporal correlations between frames. Compared to VVC
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Figure 2. Self-enhancement CNN with CU map architecture (SEC). C(k, s, p) indicates the convolution layer with k s × s kernels and

padding p. Our RDSC block does recurrent for R times, output at time r ∈ R are concatenated with the input Fin for the next loop r + 1.

Test Model (VTM) 9.3, we obtain 3.78%, 6.34%, 6%, and

4.46% BD-rate reductions under All Intra, Low Delay P,

Low Delay B, and Random Access configurations, respec-

tively. Compared to the anchor VTM 3.0, we obtain 4.0%-

6.49% BD-rate reductions, which succeed 2.17%-3.29%

BD-rate reductions performed by related works under vari-

ous coding configurations.

2. The proposed STILF: deep learning based

spatial-temporal in-loop filtering

Figure 1 shows the proposed STILF (blue arrows) inte-

grated into VVC. The reconstructed frame is first processed

by VVC ILF before being filtered by our self-enhancement

CNN with CU map and the Reference-based enhancement

CNN with optical flow. At the encoder, we calculate Rate-

distortion (RD) cost of filtered images at the CTU level. For

each CTU, an ILF mode is chosen if it performs the smallest

RD-cost. Later, bits indicating chosen ILF mode is encoded

by CABAC regular mode. At the decoder, CTU will be fil-

tered by the ILF mode corresponding to the decoded bits.

2.1. Selfenhancement with CU Map (SEC)

Fig. 2 shows SEC architecture. Let C(k, s, p) denote the

convolution layer with k kernels size s × s and padding of

p. At first, two convolution layers followed by the PReLU

layer sequentially extract the feature maps from the input

image. We use three self-attention mechanisms during the

feeding forward: channel attention and spatial attention [12]

for emphasizing useful information, and a feedback mech-

anism to take full advantage of the low-level and the high-

level features. In SEC, the CU map from the VVC encoder

also plays an important role: visualizing the possible block-

ing artifacts after encoding. The CU map can be visualized

as a binary matrix where entries at CU borders are set to

one, and the rest areas are zero.

Recurrent dense skip connection block. Our recur-

rent dense skip connection block (RDSC) block includes n

convolutional layers, except the final layer, layer lth takes

(l+1)nf feature maps from l−1 previous convolution lay-

ers and RDSC input. High-level features are also fed back

to the low-level layer for the next enhancement step. Dur-

ing feedforward, RDSC does the feedback for R times. The

output F r
out at loop rth, r ∈ {1, ..., R} of RDSC block is

concatenated with input Fin feature maps to be the input

for the next loop (r + 1)th. Since loop r = 1 has no feed-

back F r−1

out , the input feature maps are then duplicated and

concatenated with themselves to be the input of the RDSC

block. For SEC, n is set as seven, and the network does the

recurrent R of four times. During training, we minimize

the L1 loss between the ground-truth y and each network

output ŷr:

L(Θ) =
1

N.R

N∑

i=1

R∑

r=1

Ir ‖ yi
0
− ŷir ‖1 (1)

where N is the number of training samples, and Θ denotes

the learned network parameters. Ir indicates the weight of

output ŷr and is set Ir to one for all the outputs follow [13].

2.2. Referencebased Enhancement with Optical
Flow (REO)

Fig. 3 shows the unfolding Reference-based enhance-

ment CNN with Optical flow architecture. Since motion

vectors between the current frame and the reference frame

are not always available, it is better to calculate optical flow

between the reconstructed reference frame and the recon-

structed current frame. Our hypothesis is that if there is an

optical flow between the current reconstructed image and

the reconstructed reference image, it is also the optical flow

between the enhanced current image and the enhanced ref-

erence image. SEC enhanced image will replace an input

of REO if the reference image of that input is not activated

in VVC. In REO, paddings are added during convolution to

keep the size of input images. In each loop rth, enhanced

features output from the RDSC block are stored and con-

catenated with the features from the previous layer before

input to the next loop (r+1)th of the recurrent RDSC block.

For reference-based enhancement CNN, we set the number

of convolution layers in RDSC block n = 9. R is set as five

and the loss function can also be written as equation 1.
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Figure 3. Reference-based enhancement CNN with optical flow

(REO) architecture after unfolding. The order r of reference image

is the from the long-term to short-term, POC after to before the

current image in the reference picture sets List 0 and List 1.

3. Experiments

Experimental settings. Xiph.org sequences [9], which

are not in the test set, are encoded by VVC Test Model

(VTM) 9.3 under Low Delay P configuration. In testing,

we evaluate STILF on VVC standard test sequences un-

der common test conditions (CTC) [1] with the support of

Tesla V100 GPUs. Bjøtegaard-Delta bit-rate (BD-rate) met-

ric is used to evaluate the coding efficiency between dif-

ferent coding methods. For reference-based enhancement

CNN, optical flows between the reference and the current

frames are acquired by Lucas–Kanade method. The net-

work parameters of SEC and REO are 1.7 ×106 and 7×105,

respectively.

Coding performance. Table 1 shows the overall per-

formance of the proposed STILF. The work mainly focuses

on enhancing the Y component, so the BD-rate of the U

and V components slightly increases for some sequences.

We obtain the Y BD-rate reduction of 3.78%, 6.34%, 6%,

and 4.64% on the AI, LDP, LDB, and RA configurations.

Besides, we recorded an encoding time of 1.31-1.84 and a

decoding time of 8.69-73.03 on average CTC.

Abaltion study. We perform an ablation study on atten-

tion mechanisms, including self-attention (SA) and CU map

(Table 2). The results show 1.84-11% coding performance

has been reduced when cutting these mechanisms. In order

to evaluate the performance of SEO and REC, an ablation

study on each is performed. As a result, STILF with SEO

has performed 5.0%, 0.5%, and 0.6% on Y, U, and V BD-

rate reductions on LDP configuration. On the other hand,

STILF with REC has performed 1.8%, -0.2%, and 0.3% Y,

U, V BD-rate reduction under LDP configuration.

Subjective visual quality. Figure 4 illustrates the visual

quality comparison of our proposal and the anchor VTM

Table 1. BD-rate(%) of our proposal compared to VVC under AI,

LDP, LDB, and RA configurations. (Anchor: VTM 9.3)

Class
All Intra Low Delay P

Y U V Y U V

A1 -2.78 0.1 0.11 -4.15 -0.29 -0.06

A2 -2.2 0.03 0.03 -3.38 0.23 -0.02

B -3.1 0.15 0.15 -5.21 -0.5 -0.11

C -4.27 0.38 0.38 -6.79 -0.88 -0.47

D -4.97 1.02 1.02 -9.81 -0.79 -0.53

E -5.25 0.31 0.32 -8.14 0.61 -0.8

All -3.78 0.35 0.35 -6.34 -0.34 -0.33

Class
Low Delay B Random Access

Y U V Y U V

A1 -2.95 -0.22 -0.21 -2.74 0.26 0.46

A2 -3.31 0.12 0.13 -3.51 -0.13 -0.05

B -5.27 -0.39 -0.77 -3.95 0.45 0.37

C -6.53 -0.54 -0.53 -4.98 -0.32 0.33

D -9.44 -1.05 -1.07 -6.42 -0.47 0.05

E -7.66 -0.54 -0.04 -5.95 0.13 0.17

All -6 -0.46 -0.48 -4.64 -0.01 0.23

Table 2. BD-rate (%) results of the proposed STILF without self at-

tention (SA) mechanisms and CU map under LDP configurations.

(Anchor: VTM 9.3)

Class
STILF
w/o SA

STILF
w/o CU map

STILF
w/o SA & CU map

B -4.95 -5.15 -4.71

C -6.68 -6.75 -6.12

D -9.75 -9.79 -8.77

E -7.81 -7.58 -6.92

9.3. It can be seen that STILF removes ringing artifacts and

obtains better visual quality at lower bitrates than VTM 9.3.

Comparing with related works. For a fair compari-

son, we re-implement our proposal on VTM 3.0, where the

works [4, 7, 8, 6] are performed. Table 3 shows our better

performance than related works in AI, LDB, and RA config-

urations. STILF obtains coding gains of 6.49% and 5.43%

Y BD-rate reductions, while the related works [4, 7, 8] ob-

tains up to 2.17% and 2.23% BD-rate reductions on the Y

component under LDB and RA configurations.

4. Conclusion

In this work, we propose a deep learning-based Spatial-

Temporal In-Loop Filtering for the coming video coding

standard VVC. Different from the existing approaches, this

work takes advantage of more potential resources from the

encoder and the decoder to improve the performance of

CNN in-loop filters. By choosing the best in-loop filter-

ing for each CTU, local areas are well enhanced and lead

to quality improvement over the entire video frame. Con-

sequently, 3.78% - 6.34% BD-rate reductions are obtained

under various configurations.
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Table 3. BD-rate (%) measurement of our proposal (STILF) compared to the related works (anchor VTM 3.0).

Sequences
All Intra Low Delay B Random Access

[4] [7] [8] [6]* Ours [4] [7] [8] Ours [4] [7] [8] Ours

Tango2 -0.06 -0.75 -1.18 - -2.6 - - - -3.82 -0.04 -1.17 -1.67 -3.73

FoodMarket4 -0.14 -1.07 -1.7 - -3.87 - - - -3.49 -0.17 -0.83 -1.09 -3.59

Campfire -0.04 -0.41 -1.74 - -2.21 - - - -2.46 -0.13 -0.9 -5.13 -2.63

CatRobot1 -1.08 -1.94 -2.52 - -3.2 - - - -5.21 -1.1 -2.47 -3.39 -5.08

DaylightRoad2 -0.2 -1 -1.33 - -2.03 - - - -5.19 -0.42 -2.46 -3.22 -5.48

ParkRunning3 -0.67 -1.41 -1.61 - -1.52 - - - -1.98 -0.5 -1.51 -1.14 -1.86

MarketPlace -1.02 -1.36 -1.49 - -2.42 -3.14 -0.73 -1.29 -4.01 -0.77 -1.18 -1.21 -3.22

RitualDance -0.99 -2.02 -2.91 - -4.38 -0.4 -1.57 -1.7 -4.34 -0.45 -1.92 -1.97 -3.68

Cactus -0.62 -1.26 -0.8 - -3.19 -0.31 2.45 -1.21 -5.72 -0.9 -1.52 -1.26 -4.92

BasketballDrive -0.07 -0.66 -0.58 - -3.58 -0.1 -0.91 -1.55 -5.34 -0.07 -1.04 -1.4 -4.91

BQTerrace -0.44 -0.82 -0.86 - -3.38 -0.11 -0.83 -1.91 -7.66 -0.67 -2.36 -2.52 -7

BasketballDrill -2.7 -3.08 -3.85 - -6.97 0.1 0.66 -0.88 -7.97 -1.16 -2.68 -1.77 -7.02

BQMall -1.61 -2.43 -3.23 - -4.81 -1 -1.7 -2.32 -8.76 -1.16 -2.61 -2.42 -6.93

PartyScene -1.49 -1.94 -2.45 - -3.8 -0.68 -0.57 -1.88 -7.04 -0.88 -2.11 -1.68 -5.39

RaceHorses -1.08 -1.56 -1.85 - -3.21 -0.87 -2.89 -2.3 -3.92 -0.73 -2.56 -2.42 -3.27

BasketballPass -2 -2.64 -3.48 - -5.1 -0.92 -3.93 -2.94 -8.67 -0.83 -3.57 -2.92 -6.42

BQSquare -2.04 -2.73 -3.77 - -7.3 -0.47 0.03 -1.93 -16.62 -0.96 -2.32 -2.05 -11.55

BlowingBubbles -1.9 -2.28 -2.91 - -3.86 -0.73 -1.15 -1.51 -6.54 -1.04 -2.2 -1.51 -5.85

RaceHorses -2.77 -3.16 -4.13 - -3.67 -2.29 -4.81 -3.63 -6.11 -1.68 -3.96 -3.54 -4.6

FourPeople -2.24 -3.03 -4.13 - -5.46 -1.02 0.57 -3.58 -8.62 - - - -7.12

Johnny -1.01 -2.04 -3.13 - -5.93 -0.43 -0.07 -2.79 -11.17 - - - -9.3

KristenAndSara -1.77 -2.99 -3.68 - -5.43 -1.16 -0.3 -3.27 -8.25 - - - -5.85

Average A1 -0.08 -0.74 -1.54 -1.1 -2.89 - - - -3.26 -0.11 -0.97 -2.63 -3.31

Average A2 -0.65 -1.45 -1.82 -1.94 -2.25 - - - -4.13 -0.68 -2.15 -2.58 -4.14

Average B -0.63 -1.22 -1.33 -2.51 -3.39 -0.81 -0.32 -1.53 -5.41 -0.57 -1.6 -1.67 -4.75

Average C -1.72 -2.25 -2.85 -4.03 -4.7 -0.61 -1.13 -1.84 -6.92 -0.98 -2.49 -2.07 -5.65

Average D -2.18 -2.7 -3.57 -5.33 -4.98 -1.1 -2.47 -2.5 -9.49 -1.13 -3.02 -2.5 -7.1

Average E -1.68 -2.69 -3.65 -4.41 -5.61 -0.87 0.07 -3.21 -9.35 - - - -7.42

Average All -1.18 -1.84 -2.42 -3.29 -4.00 -0.85 -0.98 -2.17 -6.49 -0.72 -2.07 -2.23 -5.43

*: The work MGLNF [6] only provided average BD-rate results under AI configuration.
VTM 9.3 Ours Raw video frame

31.65 dB @ 1544 bits 31.85 @ 1461 bits  BQTerrace, POC 33

35.67 dB @1312 bits 35.98 dB @ 1241 bits KristenAndSara, POC 575

Figure 4. Visual comparison with VVC (anchor VTM 9.3). From top-down, KristenAndSara POC 575 and BQTerrace POC 33 encoded

under Low Delay P with QP 37 are chosen for illustration.
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