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Abstract

Recent advances in deep generative models led to the
development of neural face video compression codecs that
use an order of magnitude less bandwidth than engineered
codecs. These neural codecs reconstruct the current frame
by warping a source frame and using a generative model to
compensate for imperfections in the warped source frame.
Thereby, the warp is encoded and transmitted using a small
number of keypoints rather than a dense flow field, which
leads to massive savings compared to traditional codecs.
However, by relying on a single source frame only, these
methods lead to inaccurate reconstructions (e.g. one side
of the head becomes unoccluded when turning the head and
has to be synthesized). Here, we aim to tackle this issue by
relying on multiple source frames (views of the face) and
present encouraging results.

1. Introduction
Neural image and video compression research has made

great strides over the past few years. In particular, the lat-
est models leverage advances in deep generative modeling
to produce neural compression models, which outperform
their state-of-the-art engineered counterparts by significant
margins in rate-distortion performance when taking human
perceptual quality into account [9, 10]. Even larger gains
can be achieved by learning a domain-specific compression
model when the data domain is constrained.

Designing and training compression models specific to
video calls is one of the most recent breakthrough stories
along these lines [6, 11, 17], with some works reporting an
order of magnitude of bit rate reduction at a given percep-
tual quality compared to engineered codecs [17]. In a nut-
shell, these face video compression algorithms rely on a
source frame (view) of the face, warp this view to approx-
imate the target frame to be transmitted, and process the
warped source view (or features extracted from the source
view) with a generator to compensate for imperfections in
the warped source view. Thereby, the warp is parametrized
using a small set of keypoints or local affine transforms, ex-
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Figure 1. Rate-distortion performance comparison of our single-
frame baseline, our max pooling model based random view sam-
pling (for 3, 5, and 8 source views), and H264.

tracted from the target frame using a corresponding learned
predictor, which enables highly efficient coding and trans-
mission of the warp.

While these models achieve excellent (perceptual) rate-
distortion performance in the average case, they have some
clear limitations due to relying on single source view. In-
deed, a single view might not provide appearance details
about one side of the face if the head in the source view
is slightly rotated to the left or right. Similarly, a source
view showing the face with a closed mouth does not provide
any information about the appearance of the mouth interior.
More generally, it is usually impossible to faithfully infer
person-specific shape and appearance details for different
facial expressions by solely relying on a single view of the
face [26].

In this paper, we take a first step towards leveraging mul-
tiple views of the face to improve neural face video com-
pression algorithms. Specifically, we explore two key ques-
tions of multi-view neural face compression, namely how to
select different views, and how to fuse information across
different views. We present ablations along these two axes,
and show that our best 3-view model, which is based on a
simple and computationally inexpensive backbone, outper-
forms the state-of-the art single frame model at significantly
lower per-frame rate. Furthermore, we outline and discuss
future research directions to push neural face compression
algorithms to production quality.

2. Related work
While research on general neural video compression al-

ready features a rich body of literature (e.g. [3,8,9,13,21]),



there is only a handful of works on neural face video com-
pression [6, 11, 17]. Oquab et al. [11] study the suitability
of different talking head synthesis approaches for compres-
sion, targeting a mobile low-resource scenario. Konuko et
al. [6] propose a simple procedure to select one out of mul-
tiple source views used to reconstruct the target frame using
exhaustive search on the reconstruction error at encoding
time. Wang et al. [17] introduce a high-fidelity model which
allows adapting the head pose while decoding.

Closely related to neural face video compression is (2D)
talking head synthesis, which uses different mechanisms for
motion transfer from a source to a target view, including
warping, supervised or unsupervised keypoints, conditional
normalization or a combination of these to [2, 12, 14, 16,
20, 23, 24]. The resulting motion representations can have
various forms and are often not suited for compression. One
line of work attempts to overcome inaccurate modeling of
subject identity by relying on multiple frames [2,16], but no
approach considers careful frame selection beyond random
sampling.

3. Method
We build on top of the first order motion model (FOMM)

from [14], which also underlies [17]. We start by briefly
summarizing the FOMM (cf. [14, Fig. 2]), which consists
of a keypoint detector, a dense motion predictor, a generator
and a corresponding encoder. Given a target frame f and a
source frame (view) v, the FOMM first extracts sparse key-
points and corresponding local affine transformations from
f and v, which together define a coarse flow field. The
keypoints and transformations are then processed with the
dense motion predictor, which refines the coarse flow field
and also predicts an occlusion map. Finally, the flow is
used to warp features extracted from v, mask them using
the occlusion map, and to reconstruct f̂ with the generator.
Note that the keypoint extractor and the encoder only have
to be applied once to v. In a video call, the source view is
transmitted first, and all subsequent frames are encoded and
transmitted via their corresponding keypoints and affines.
The transmission cost of the source view is amortized across
the entire call.

To extend the FOMM to multiple source views {vk}Kk=1

we apply the keypoint detector to every view vk to obtain a
coarse flow for every k and corresponding refined flow by
applying the dense motion predictor to every coarse flow.
We then obtain warped and masked features for every view
and pass them to an aggregation module (discussed in more
detail below) whose output is fed to the generator to recon-
struct the target frame f (see Fig. 3 in arXiv:2203.15401).

Preliminary experiments showed that when using mul-
tiple source views, predicting local affine transformations
does not improve performance, so we rely on keypoints
only. Note that as for the single frame model we trans-

mit only the keypoints for the current target frame; each
view only has to be transmitted once (and corresponding
keypoints only have to be extracted once) so that transmis-
sion costs are again amortized for reasonably long video
sequences. The only additional cost we incur compared to
the single frame model is computational, namely we need
to compute dense flow fields occlusion maps for K source
views instead of one, and apply the aggregation module to
fuse the warped features from the K source views.

Given the architecture described in the preceding para-
graph, the following two questions arise naturally.

• What is an effective and efficient architecture design
for the aggregation module?

• How to select the source views in order to achieve sub-
stantial improvements over just using a single source
view?

In this paper, we take a first step in exploring these ques-
tions, as described next.

3.1. View aggregation module

The view aggregation module should have two proper-
ties, namely 1) it should be invariant to the order in which
the views are aggregated, and 2) it should be able to aggre-
gate a changing number of views as more views will arrive
over time. Indeed, as discussed below, we are interested
in having diverse views with complementary information,
which will only become available over time, as the caller
moves their head and shows different facial expressions.

We consider two different architectures. The first one
amounts to simple, permutation-invariant pooling such as
max pooling and average pooling [22]. In order to facilitate
fusion of the features, we first apply the same stack of two
residual blocks to the features extracted from every view
after warping/masking, and pool the features across views.

The second pooling architecture we consider is based on
self-attention (SA) as formulated in [18] between identi-
cal spatial locations in feature space, across views. This is
in contrast to the more common SA across different spa-
tial locations within one image. The motivation for at-
tending to the same location across views is to allow our
model to pixel-wise attend to the most useful (pre-warped)
source view for reconstructing the target frame. In more
detail, let z(k)i,j ∈ Rc be the feature extracted from view
k after warping and masking at spatial location i, j, and
Zi,j = [z

(1)
i,j , . . . , z

(K)
i,j ]⊤ ∈ RK×c the matrix obtained by

stacking the z
(k)
i,j . We obtain query, key and value matrices

as Qi,j = Zi,jWq , Ki,j = Zi,jWk, and Vi,j = Zi,jWv ,
respectively, where Wq,Wk ∈ Rc×d,Wv ∈ Rc×c. The
SA output at spatial location i, j in feature space, for all K
views, is then computed as

Ai,j = softmax(Qi,jK
⊤
i,j/

√
d)Vi,j . (1)



Figure 2. How well do models trained with a fixed number of source views generalize to a different number of source views? This
figure shows the performance of aggregation modules, source view sampling strategies, and number of training source views (legend
format <aggregation strategy>-<sampling strategy>-<number of training source views>) as a function of
the number of testing source views. We report the L1 reconstruction error, PSNR, SSIM and MS-SSIM [19], as well as LPIPS [25].

Note that computing Qi,j , Ki,j , and Vi,j over all spatial lo-
cations amounts to 1× 1 convolution. To build a SA block,
we add a residual branch to the SA output, apply Chan-
nelNorm [10], and append another 3 × 3 convolution layer
(maintaining the number of channels) followed by Channel-
Norm. We stack two such blocks and apply a convolution
producing a W ×H×K output, which we normalize along
the channel dimension using softmax. Finally, we average
the z

(k)
i,j across views with the softmax output as weights.

3.2. View selection strategies

We consider two different sampling strategies: Random
sampling (RS) and furthest point sampling (FPS) based on
facial landmarks. RS amounts to picking the first frame as
well as K−1 frames at random among the remaining frames
in the video sequence. For FPS [5] we first extract 2D fa-
cial landmarks from each frame using a simple and efficient
landmark detector similar to [15], and use the stacked coor-
dinates of the landmarks as feature vectors for each frame.
We then sample frames, selecting first the initial frame, and
then at each iteration selecting the frame whose feature vec-
tor maximizes the minimal Euclidean distance to the feature
vectors of the previously selected frames.

For this initial study we focus on batch (per-video) sam-
pling algorithms for simplicity, and note that online algo-
rithms are necessary to enable a real-time video call sce-
nario. Online uniform RS can be realized using reser-
voir sampling [7]; a similar reservoir-based streaming al-
gorithm can be derived for FPS. Note that these online
approaches likely require careful tuning to ensure a small
enough (amortized) bit rate increase.

4. Experiments

Experimental setup We use the VoxCeleb2 data set [1]
which contains 150k videos of 6k celebrities, split into
1.1M individual speech sequences, cropped and scaled to
224 × 224 pixels, and split into a train and test set with
disjoint subject identities. As we are interested in model-
ing real-world scenarios where video calls can span sev-
eral minutes to hours, unless stated otherwise, we concate-
nate speech sequences of every video and use the result-
ing videos for our evaluations. These videos are generally

harder to compress than individual speech sequences as the
target frames may deviate more from a given set of source
views as the video length increases.

Our baseline model is a precise re-implementation of
the FOMM from [14] without local affine transformations
(as these did not significantly reduce reconstruction errors
in our experiments). To obtain multi-frame models, we
extend the baseline model with one of the view aggrega-
tion modules described in Sec. 3.1 and select views ac-
cording to the strategies described in Sec. 3.2. We em-
ploy the multi-scale VGG-based perceptual loss from [4]
(following the implementation of [14]) and the Adam op-
timizer, and select for every model the learning rate from
{3 ·10−6, 1 ·10−5, 3 ·10−5} that leads to the lowest training
loss. We train our models on 4 V100 GPUs for 300k iter-
ations with a batch size of 48 (we increase the number of
iterations for smaller batch sizes such that the total number
of training frames seen by all models is identical).

Comparison of aggregation / view selection strategies
We combine the max pooling and SA view aggregation
modules each with RS and FPS, and train the so-obtained
models using 3 or 8 source views. We then evaluate
these models with a number of source views in the range
{3, . . . , 12}. The results are shown in Fig. 2. It can be seen
that, while all models obtain smaller reconstruction errors
as the number of source views increases at evaluation time,
the model MAX-RS-3 (i.e. the model with view aggrega-
tion based on max pooling combined with RS, trained on 3
source views) performs best.

Upon visually inspecting the models that were trained
with 8 source views, we observe that these models do not
generalize well in situations where the target frame se-
mantics differ significantly from those in the source views.
Thus, it seems that the 8-view models do not see a diverse
enough set of source views during training to learn to inter-
polate/aggregate the source views when the target frame se-
mantics differ significantly from those in the source views.
In contrast, models trained with 3 source views are forced
to predict larger semantic changes during training.

One possible explanation for RS performing better than
facial landmark-based FPS could be that while FPS is ben-
eficial for reconstruction the face region, it might lead to



an increase in reconstruction error in the background re-
gion, and thereby of the overall reconstruction error. As for
the simple max pooling outperforming the more complex
SA-based aggregation, we speculate that SA might lead to
larger benefits in scenarios where the source views are not
pre-aligned with the keypoint-based warp so that the SA
module is applied to the unmodified source view features as
in [2], handling both feature alignment and aggregation.

Comparison with prior work We compare our single-
view baseline model and our best 3-view model (MAX-RS-
3) with [14, 16, 17, 23] in Table 1 when evaluated on sin-
gle speech sequences rather than concatenated speech se-
quences (as this is the evaluation protocol in the referenced
papers). Our MAX-RS-3 outperforms the closest competi-
tor [17] in three out of four metrics while using one third of
the (uncoded) bits to encode the keypoints (our model uses
10 2D keypoints resulting in 20 floats per frame while [17]
uses 20 3D keypoints resulting in 60 floats) and arguably a
simpler model. Note however, that the model from [17] al-
lows re-rendering the head from a different (angular) view-
point, which our model cannot do. Further [17] attain sub-
stantial reduction in the bits transmitted per frame by mak-
ing the number of keypoints used adaptive and by using en-
tropy coding. Both techniques can be applied to our model
as well and are expected to achieve similar reductions.

Comparison with H264 Work [17] reports an order of
magnitude rate reduction of their model over H264 at the
same reconstruction quality in terms of learned perceptual
image patch similarity (LPIPS) [25], when trained and eval-
uated on a proprietary data set. Here, we compare the rate-
distortion performance of our single view baseline as well
as our best multi-view models MAX-RS-3/5/8 to H264 in
Fig. 1. All of our models transmit the same information
on a per-frame basis, namely 10 2D keypoints encoded as
16 bit floats. The only rate overhead incurred is due to
the transmission of multiple source views. This rate over-
head, even when amortized over hundreds of frames, still
affects the rate distortion tradeoff quite significantly. How-
ever, asymptotically this overhead vanishes leaving a pure
distortion complexity tradeoff, i.e., the blue marker and the
orange curve would align vertically in Fig. 1. Further, our
method obtains a rate reduction of only about 2× over H264
which is a substantially smaller reduction than what is re-
ported by [17]. We reiterate that [17] uses an adaptive num-
ber of keypoints as well as entropy coding, and evaluates on
a higher-resolution data set.

5. Conclusions

We presented a first exploration and evaluation of dif-
ferent approaches to selecting and aggregating information
across views in the context of neural face video compres-
sion. Our best 3-view model outperforms the state-of-the-

L1 PSNR SSIM MS-SSIM

fs-vid2vid [16] 17.10 20.36 0.710 –
FOMM [14] 12.66 23.25 0.770 0.830
Bi-Layer [23] 23.95 16.98 0.660 0.660
NVIDIA [17] 10.74 24.37 0.800 0.850

single-frame 13.16 22.79 0.758 0.828
MAX-RS-3 10.00 24.87 0.795 0.872

Table 1. Comparison of our single-view baseline and best per-
forming 3 view model with prior work on VoxCeleb2; the prior
work values are taken from [17, Table 1].

art single view model at a significantly lower per-frame bit
rate. Furthermore, we identified multi-view models as an
effective means to navigate the tradeoff between distortion
and decoding complexity. We conclude by outlining future
research directions.
Computationally efficient models Neural models have
excellent rate-distortion performance but still consume or-
ders of magnitude more power than engineered codecs with
dedicated hardware accelerators. Particularly important in
the context of real-time on-device compression scenarios,
such as video calls, is therefore to substantially improve the
computational efficiency of neural compression models. We
believe that relying on multiple views can help along these
lines as less of the face modeling work needs to be done by
the decoder model.
Online view selection Developing more sophisticated
view selection mechanisms is important to gradually gather
fine-grained appearance information about the caller in or-
der to produce faithful reconstructions reflecting person-
specific expression details. This selection mechanism
should be computationally inexpensive (it could e.g. rely
on the learned keypoints underlying the warp) and should
potentially allow updating views, e.g. when the background
or the lighting situation changes. Online updates of source
views will, however, incur a transmission overhead so they
cannot occur often. As a consequence the neural codec will
need to model uncertainty about the face regions or expres-
sions it has not seen and reliably identify frames that pro-
vide additional information. Work [6] proposes an online
selection mechanism, but incurs a large increase in encod-
ing complexity and is not suited for real-time scenarios.
Better data sets Whereas celebrity interview videos as
abundantly available on the web and collected in the Vox-
Celeb2 data set present a good starting point, they are cer-
tainly not representative of all video call scenarios. To de-
velop neural face codecs tailored to everyday situations data
sets, featuring a broader set of video call situations (includ-
ing e.g. calls from handheld devices while walking, and
recorded with a large range of different cameras) are neces-
sary. A corresponding public data set could greatly acceler-
ate development of robust and product grade algorithms.
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Matthias Nießner, and Christian Theobalt. State of the art
on monocular 3d face reconstruction, tracking, and applica-
tions. In Computer Graphics Forum, volume 37, pages 523–
550, 2018. 1


