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A. MODEL SUMMARY

A1. Background on you/your team

•Competition Name: Google AI Open Images - Visual Relationship Track

•Team Name: toshif

•Private Leaderboard Score: 0.22832

•Private Leaderboard Place: 4th

•Name: Toshiyuki Fukuzawa

•Location: London UK

•Email: tfukuzawa@live.jp

A2. Background on you/your team

•What is your academic/professional background?

https://www.kaggle.com/toshif
mailto:tfukuzawa@live.jp
mailto:tfukuzawa@live.jp


I studied Physics at Tokyo Institute of Technology to obtain my master 

degree and am currently a software engineer.

•Did you have any prior experience that helped you succeed in this 

competition?

No. In general, my prior Kaggle competitions helped me learn a lot 

and achieve this success. 

•What made you decide to enter this competition?

The high quality dataset of Open image V4 and GCP 500 Credits.

•How much time did you spend on the competition?

I worked on the competition for a month, spending 2 hours per day on 

average. 

A3. Summary

My approach consists of 2 models. The first model is to solve "is" visual relationship. The second is "non-

is". I took this way as I wanted to start simple in the beginning and to leverage a model established for the 

object detection track.

1. “is” relation

The distinct triplets of “is” relation were only 42 therefore I treated each of them as a separate class and 
trained SSD Resnet50 ( Retinanet ) with the 42 target classes. I chose this model as it was relatively 
lightweight and it was compatible with GCP TPU.

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50
_v1_fpn_shared_box_predictor_640x640_coco14_sync.config

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config


In the given triplet labels challenge-2018-train-vrd.csv, there were 194K “is” relations out of 374K samples. I
generated my “is” only model training set based on these triplets for the positive labels, mixing-in 10K 
images which don’t have any “is” relations as negative labels.

This first model gave me 0.09 on LB.

2. “non-is” relations

Next, I moved to “non-is” relations such as “under”, “on”, “holds” etc. I trained another Retinanet with all the 
62 target classes just to detect single boxes. This second training set was all the images with challenge-
2018-train-vrd-bbox.csv positive labels. Then I calculated the probabilities of possible valid box 
combinations in each image for the most 100 confident boxes. In other words, for each image, I got the 
most confident 100 combinations out of 10000 combinations of boxes ( 100 x 100 ). I used this formula to 
estimate the confidence for each combination C_c.

C_c = F_r x sqrt ( C_box1 x C_box2 )

Where C_box1 and C_box2 are the confidences for each box given by the box detection model. F_r is the 
relationship coefficient function for each box1-box2-relation combination. I used GBDT ( LightGBM ) to 
calculate this coefficient using simple features like box labels, relation label, Euclidean distance of boxes, 
relative distance ( distance divided by sum of total box area ), relative x-y position of box1 to box2 and raw 
box cordinates.

This second model gave me 0.16 on LB.

3. Ensemble

This is just a concatenation of the first and second model outputs. This is simply ok as they detect different 
types of relations. There shouldn't be any conflict or performance degradation.

The result was 0.25 on LB.

This summary also has been posted onto Kaggle Discussion .

https://www.kaggle.com/c/google-ai-open-images-visual-relationship-
track/discussion/64642

https://www.kaggle.com/c/google-ai-open-images-visual-relationship-track/discussion/64642
https://www.kaggle.com/c/google-ai-open-images-visual-relationship-track/discussion/64642


A4. Features Selection / Engineering

For the main models of neural nets, I didn’t do any feature 

engineering. The inputs were the given 500GB+ images and labels. I 

didn’t use any external data. 

For the sub model of LightGBM part, I used the simple features 

mentioned above but this part was far less important than the main 

models. 

A5. Training Method(s)

•What training methods did you use?

I trained my 2 Retinanets on TPUs on Google Compute Platform. The 

training configuration is the same as this config file on github.

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50

_v1_fpn_shared_box_predictor_640x640_coco14_sync.config

•Did you ensemble the models?

Yes, I just concatenated 2 models’ outputs as mentioned above. 

•If you did ensemble, how did you weight the different models?

The 2 models were with the same weights. 

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config


A6. Interesting findings

•What was the most important trick you used?

* trained 2 neural nets models ( “is” and “non-is” relations )

* used GBDT to calculate confidence coefficient

•What do you think set you apart from others in the competition?

* The training datasets which I generated from the original dataset for 

the 2 neural nets.

* Neural net architecture ( Retinanet SSD Resnet50 )

* used GBDT ( LightGBM ) to calculate the confidence coefficient

* Other Notes

My local environment was MacBook Pro and I managed everything on 

GCP within the given 500 GCP credits. This was challenging but it 

proved that if you use GCP resources efficiently, you can compete and

win a prize of a competition even with such a huge dataset. 

A7. Simple Features and Methods

Many customers are happy to trade off model performance for simplicity. With 
this in mind:

•Is there a subset of features that would get 90-95% of your final 

performance? Which features? *



No. Feature engineering was not important as the main models were 

neural nets. 

•What model that was most important? *

Retinanet

A8. Model Execution Time

Many customers care about how long the winning models take to train and 
generate predictions:

•How long does it take to train your model?

“is” relation Retinanet : 6 hours on GCP TPU 

“non-is” relation Retinanet : 12 hours on GCP TPU

•How long does it take to generate predictions using your model?

18 hours on a 2 core CPUs machine with a Nvidia Tesla K80 GPU. It can

be improved with a better resource. I chose a cheap option as I 

wanted to manage everything within the 500 GCP credit.

•How long does it take to train the simplified model (referenced in 

section A6)?

The model is already simple. I chose a lightweight neural net 

architecture to mange everything within the given 500 GCP credit. 



A9. References

Citations to references, websites, blog posts, and external sources of 
information where appropriate.
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