
Team PFDet’s Methods for Open Images Challenge 2019

Yusuke Niitani∗ Toru Ogawa∗ Shuji Suzuki∗

Takuya Akiba Tommi Kerola Kohei Ozaki Shotaro Sano
Preferred Networks, Inc.

{niitani,ogawa,ssuzuki,akiba,tommi,ozaki,sano}@preferred.jp

Abstract

We present the instance segmentation and object detec-
tion methods used by team PFDet for Open Images Chal-
lenge 2019. Massive dataset size, huge class imbalance and
sparse annotations are handled. Using this method, team
PFDet achieved 3rd and 4th place in the instance segmen-
tation and object detection track, respectively.

1. Introduction

Open Images Detection Dataset V5 (OID) [9] is cur-
rently the largest publicly available object detection dataset,
including 1.7M annotated images with 12M bounding
boxes. The diversity of images in training datasets is the
driving force of the generalizability of machine learning
models. Successfully trained models on OID would push
the frontier of object detectors with the help of data.

Since the number of images in OID is extremely large,
the speed of training is critical. For faster training, we use
Fast R-CNN [5] instead of the more commonly used Faster
R-CNN [16]. Fast R-CNN omits time-consuming online
RoI (Region of Interest) generation during training by pre-
computing RoIs. We find that the selection of pre-computed
RoIs plays an important role in achieving good accuracy.
For instance, when the number of pre-computed RoIs is
small during training, the network overfits to those RoIs.
Faster R-CNN by default achieves a high variation of RoIs
during training, so the aforementioned problem is unique to
Fast R-CNN.

OID is a federated object detection dataset [6, 9]. This
means that for each image, only a subset of categories is
annotated. This is in contrast to exhaustively annotated
datasets such as COCO[11]. Federated annotation is a re-
alistic approach to expand the number of categories cov-
ered by the dataset, since without sparsifying the number of
annotated classes, the number of annotations required may
explode as the total number of categories increases.

∗The starred authors are contributed equally and ordered alphabetically.

When training a detector on an exhaustively annotated
dataset like COCO, the loss makes an assumption that no
objects is inside an unannotated region. However, for a fed-
erated object detection dataset, such assumption may be vi-
olated because some regions contain an object of an unveri-
fied category. We handled this problem by ignoring loss for
unverified categories.

In addition to the previously mentioned uniqueness of
OID, the dataset poses an unprecedented class imbalance
for an object detection dataset. The instances of the rarest
class Pressure Cooker are annotated in only 13 images, but
the instances of the most common class Person are anno-
tated in more than 800k images. The ratio of the occur-
rence of the most common and the least common class is
183 times larger than in COCO [11]. Typically, this class
imbalance can be tackled by over-sampling images contain-
ing instances of rare classes. However, this technique may
suffer from degraded performance for common classes.

As a practical method to solve class imbalance, we train
models exclusively on rare classes and ensemble them with
the rest of the models. We find this technique beneficial
especially for the first 250 rarest classes, sorted by their oc-
currence count.

To summarize our major contributions:

• Fast R-CNN: We present the effectiveness of Fast R-
CNN, and proposed methods to alleviate performance
penalty introduced by per-computed RoIs.

• Using Only Verified Categories: We found that it is
helpful to ignore unverified categories during training.

• Expert Models: We present the effectiveness of using
expert models, especially for classes that rarely appear
in the dataset.

2. Methods
2.1. Model architecture

Two stage object detectors such as Faster R-CNN [16]
are known to achieve excellent accuracy, but their GPU us-

age efficiency during training is sub-optimal. This is be-
cause RoIs used to train heads are determined between fea-
ture extraction and loss calculation. Thus, GPUs are forced
to wait for the ground-truth assignment of RoIs. To make
efficient use of GPUs, we use Fast R-CNN, which pre-
computes RoIs and assigns ground-truths to RoIs in parallel
to feature extraction.

For the instance segmentation track, we add a mask
head [7] that predicts a segmentation of an object given a
region around it and its category. The 300 categories for
instance segmentation is a subset of the 500 categories for
detection. We use all the 500 detection categories even for
training the instance segmentation model, where only 300
of these have instance masks. This worked better compared
to only using the 300 instance segmentation categories in
preliminary experiments.

2.2. Learning with a federated dataset

In federated object detection datasets [9, 6], for each im-
age, categories are grouped into positively verified, nega-
tively verified and unverified. For positively verified cate-
gories, annotations are exhaustively made for all objects of
those categories. For negatively verified categories, the an-
notators have made sure that the image contains no objects
of those categories. For unverified categories, the objects of
those categories may or may not exist in the image.

During training, each RoI is assigned to one of the
ground truth boxes if there is any that has sufficiently large
enough intersection. This assignment is used to calculate
classification loss and localization loss [16]. In this work,
the classification loss is calculated as the sum of sigmoid
cross entropy loss for each proposal and each category as:

Lcls = −
∑
i

∑
c

lic log pic

lic ∈ {−1, 0, 1} ,
(1)

where lic = 1 and lic = −1 when the i-th RoI is assigned or
not assigned to category c, respectively. Also, lic can be set
to 0, which means that the classification loss for category c
is ignored for the i-th RoI.

When the RoI i is not assigned to any of the ground truth
boxes, we set lic = −1 for categories c that are positively
and negatively verified and lic = 0 for categories c that
are unverified. When the RoI i is assigned to a ground
truth bounding box with the category c′, we set lic′ = 1
and lic = −1 for all negatively verified and positively cate-
gories that are not c′. For the unverified categories, lic = 0.
In practice, verified categories are expanded based on the
category hierarchy.

2.3. Expert models

In OID, there is an extreme class imbalance, which
makes it difficult for a model to learn rare classes. For in-

stance, there are 238 classes that are annotated in less than
1000 images, but the most common class Person is anno-
tated in 807k images. We use expert models fine-tuned from
a model trained with the entire dataset as done in our previ-
ous year’s submission [2].

We select a subset of categories to which an expert model
is trained based on one of the following criteria:

• Occurrence ranking in the detection subset of the
dataset. We group categories that are in a neighbor-
ing ranking so that sampling imbalance does not occur
among the categories in a subset.

• Occurrence ranking in the instance segmentation sub-
set of the dataset.

• Semantic similarity of categories. We cluster cate-
gories based on their similarity of embeddings by an
imagenet pretrained feature extractor [14].

When training an expert model, the annotation of cat-
egories that the expert is not responsible for is dropped.
Images that do not contain an annotation of the targeting
categories are discarded. Also, the bias term of the classifi-
cation layer is reinitialized so that the network only outputs
targeting categories.

2.4. Ensembling

When aggregating predictions from multiple models, we
apply non-maximum suppression to predictions from each
model and apply suppression once again to concatenation
of the predictions. In the second suppression step, we group
predictions that have a large enough intersection and is as-
signed to the same category. We compute a representative
prediction from each group, and the collection of them is
the final prediction. Given a group, the bounding box as-
signed to the group is the bounding box of the most confi-
dent prediction in the group. The segmentation is calculated
as the average segmentation from predictions in the group
weighted by confidence and spatial proximity.

2.5. Pre-computed RoIs

Faster R-CNN computes different set of RoIs depending
on the model weights for given image. Thus, high variation
of RoIs could be achieved without any effort. This variation
is lost when we use Fast R-CNN models with the same set
of pre-computed RoIs. This comes at the cost of degraded
performance. For training, RoIs that are used to compute
head losses are sampled from a pool of RoIs. When training
Fast R-CNN, the pool of RoIs is pre-computed, and we find
that the number of RoIs in the pool needs to be very high
in order for the network not to overfit to the RoIs. In many
published works [7], the number of RoIs in the pool for each
image is up to 2000. However, we find that this is not large
enough, so we prepare up to 16000 RoIs per image.

Selection of pre-computed RoIs is also important when
ensembling models. The set of RoIs used by each model
should be different when ensembling. This is because pre-
dictions made with different set of RoIs complement each
other better.

2.6. Post-processing

As stated in the dataset description, the size of an an-
notated object is larger than 40 × 80 or 80 × 40 1 Thus,
any predictions with a small segmentation are unlikely to
be counted as true positives during evaluation. We omitted
predictions whose area of the segmentation is less than 1600
pixels.

The competition submission file size is limited to 5GB.
Our submission file sometimes exceeded this limit, espe-
cially after ensembling. To combat the effect of this limit,
we found that predictions for some categories occur much
more frequently than the rest. We drop predictions of fre-
quently predicted categories to shrink the file size in order
to meet the limit.

3. Experiments
We used COCO [11], LVIS [6] and Objects365 as the

external data. We use Feature Pyramid Networks [10] for
our experiments. The feature extractor is SENet [8]. The
initial bias for the final classification layer is set to a large
negative number to prevent unstable training in the begin-
ning. We set the initial weight of the base extractor by the
weights of an image classification network trained on the
ImageNet classification task [4]. We use stochastic gradi-
ent descent with the momentum set to 0.9 for optimization.
The base learning rate is set to 0.00125 × batchsize. We
used up to 120 GPUs. The best single model is trained with
the batch size set to 240. We used multi-node batch nor-
malization [15] to make training stable. We trained for 16
epochs. The learning rate is scheduled by a cosine function
η = η0

cos (% of progress×π)+1
2 , where η and η0 are the learning

rate and the initial learning rate. We scale images during
training so that the length of the smaller edge is between
[650, 1056]. Also, we randomly flip images horizontally to
augment training data. In addition to that, for training ex-
pert models, we used an augmentation policy searched by
AutoAugment [3]. During inference, we did not do any
test-time augmentation. We used non-maximum suppres-
sion with threshold for intersection over union set to 0.5.
We use Chainer [17, 1, 13] as our deep learning framework.

3.1. Pre-computed RoIs

To study the best ensembling strategy of Fast R-CNN
models, we experimented ensembles of predictions from

1https://storage.googleapis.com/openimages/web/
factsfigures.html

Table 1: Comparison of ensembling results with different
set of RoIs. The top three rows show the scores with single
models with different weights and RoIs. The bottom two
rows show the scores of ensembling predictions from two
models. The last row shows the result when different set of
RoIs are used to make prediction for each of the two models.

Model RoI Segmentation val mAP

A 1 70.62
B 1 71.03
B 2 71.02
A, B 1, 1 71.02
A, B 1, 2 71.78

Table 2: Ablative study on the number of categories as-
signed to expert models. The mean average precision of
the baseline model is 65.39.

of categories per expert # of experts detection val mAP

50 1 69.19
25 2 70.45
10 5 71.37

two models with two sets of RoIs. The result is shown in
Table 1. When using the same set of RoIs for the prediction
of two models, the performance did not improve from the
single model. By using different sets of RoIs, the ensemble
outperformed the single model.

3.2. Expert models

Table 2 shows an ablative study of expert models with
different number of categories assigned. This is the result
when training expert models for the 50th to 99th rarest cat-
egories. When training multiple expert models for these
categories, the categories are split into disjoint sets. These
splits are made based on how frequent the categories ap-
pear in OID. For instance, when training two expert mod-
els, the first expert model is responsible for the 50th to 74th
rarest categories and the second model is responsible for the
75th to 99th rarest categories. As seen in the table, when an
expert is responsible for smaller number of categories, the
performance for each category improves on average. Since
the computational budget is limited, it is difficult to make
the number of categories assigned to expert models small.
Thus, the numbers of categories responsible by expert mod-
els in our final submission vary.

3.3. Competition results

Our final submission consists of the predictions from the
following models:

• Two Fast R-CNN models trained on 500 detection cat-
egories. One of them is trained for 16 epochs and an-
other is trained for 24 epochs.

https://storage.googleapis.com/openimages/web/factsfigures.html
https://storage.googleapis.com/openimages/web/factsfigures.html

Table 3: Mean average precision on the instance segmenta-
tion track. We did not set a file size limit for the validation
set, so the post processing of removing small masks was not
evaluated on the validation set. Some of the predictions of
Faster R-CNN models are from last year’s competition, so
we could not evaluate them on the validation set.

val public test private test

Full (16 epochs) 70.62 51.33 46.33
Full (24 epochs) 71.02 51.80 47.17
Ensemble of above two 71.61 52.67 47.32
+ Expert Models 75.74 54.55 50.55
+ Remove small masks 54.83 50.76
+ Faster R-CNN models 55.33 51.10

Table 4: Mean average precision on the detection track.
Some of the predictions of Faster R-CNN models are from
last year’s competition, so we did not have a way to evaluate
them on the validation set.

val public test private test

Full (16 epochs) 68.05 59.03 55.81
Full (24 epochs) 68.44 59.32 56.32
Ensemble of above two 69.02 60.31 57.14
+ Expert Models 73.10 64.54 61.26
+ Faster R-CNN models 65.45 62.22

• 47 Fast R-CNN expert models. On average each expert
predicts 43 categories.

• Faster R-CNN models. We used predictions from
Faster R-CNN models trained in the preliminary ex-
periments. Some of them are from the last year’s sub-
mission [12, 2].

The results for instance segmentation and object detec-
tion are shown in Table 3 and Table 4. We ranked 3rd and
4th place in the instance segmentation and object detection
tracks, respectively.

For instance segmentation, all ensemble results exceeded
the file size limit of 5GB. Thus, we needed to drop some
predictions for the frequently predicted categories. There-
fore, by adding more models, the instance segmentation test
results did not improve as much as the validation scores and
the object detection results.

4. Conclusion
In this paper, we described the instance segmentation

and object detection submissions to Open Images Challenge
2019 by team PFDet. Thanks to the fast research cycle en-
abled by an efficient usage of large GPU clusters, we de-
veloped several techniques that led to 3rd and 4th place in
the the instance segmentation and object detection track, re-
spectively.

Acknowledgments We thank K. Uenishi, R. Arai, T. Shiota
and S. Omura for helping with our experiments.

References
[1] Takuya Akiba, Keisuke Fukuda, and Shuji Suzuki. Chain-

erMN: Scalable Distributed Deep Learning Framework. In
LearningSys workshop in NIPS, 2017.

[2] Takuya Akiba, Tommi Kerola, Yusuke Niitani, Toru Ogawa,
Shotaro Sano, and Shuji Suzuki. Pfdet: 2nd place solution to
open images challenge 2018 object detection track. In ECCV
Workshop, 2018.

[3] Golnaz Ghiasi Tsung-Yi Lin Jonathon Shlens Quoc V. Le
Barret Zoph, Ekin D. Cubuk. Learning data augmentation
strategies for object detection. In arxiv, 2019.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR, 2009.

[5] Ross Girshick. Fast r-cnn. In ICCV, 2015.
[6] Agrim Gupta, Piotr Dollár, and Ross Girshick. Lvis: A

dataset for large vocabulary instance segmentation. In CVPR,
2019.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017.

[8] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. CVPR, 2018.

[9] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale.
arXiv:1811.00982, 2018.

[10] Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He,
Bharath Hariharan, and Serge J Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context. ECCV, 2014.

[12] Yusuke Niitani, Takuya Akiba, Tommi Kerola, Toru Ogawa,
Shotaro Sano, and Shuji Suzuki. Sampling techniques for
large-scale object detection from sparsely annotated objects.
In CVPR, 2019.

[13] Yusuke Niitani, Toru Ogawa, Shunta Saito, and Masaki
Saito. Chainercv: a library for deep learning in computer
vision. In ACM MM, 2017.

[14] Wanli Ouyang, Xiaogang Wang, Cong Zhang, and Xiaokang
Yang. Factors in finetuning deep model for object detection.
In CVPR, 2016.

[15] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu
Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large
mini-batch object detector. In CVPR, 2018.

[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, 2015.

[17] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Ni-
itani, Toru Ogawa, Shunta Saito, Shuji Suzuki, Kota Uenishi,
Brian Vogel, and Hiroyuki Yamazaki Vincent. Chainer: A
deep learning framework for accelerating the research cycle.
In KDD, 2019.

