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Abstract

We present a new learning strategy based on an efficient blocked Gibbs sampler
for sparse overcomplete linear models. Particular emphasis is placed on statistical
image modeling, where overcomplete models have played an important role in dis-
covering sparse representations. Our Gibbs sampler is faster than general purpose
sampling schemes while also requiring no tuning as it is free of parameters. Using
the Gibbs sampler and a persistent variant of expectation maximization, we are
able to extract highly sparse distributions over latent sources from data. When ap-
plied to natural images, our algorithm learns source distributions which resemble
spike-and-slab distributions. We evaluate the likelihood and quantitatively com-
pare the performance of the overcomplete linear model to its complete counterpart
as well as a product of experts model, which represents another overcomplete gen-
eralization of the complete linear model. In contrast to previous claims, we find
that overcomplete representations lead to significant improvements, but that the
overcomplete linear model still underperforms other models.

1 Introduction

Here we study learning and inference in the overcomplete linear model given by

x = As, p(s) =
∏
i

fi(si), (1)

where A ∈ RM×N , N ≥ M , and each marginal source distribution fi may depend on additional
parameters. Our goal is to find parameters which maximize the model’s log-likelihood, log p(x), for
a given set of observations x.

Most of the literature on overcomplete linear models assumes observations corrupted by additive
Gaussian noise, that is, x = As+ ε for a Gaussian distributed random variable ε. Note that this is a
special case of the model discussed here, as we can always represent this noise by making some of
the sources Gaussian.

When the observations are image patches, the source distributions fi(si) are typically assumed to be
sparse or leptokurtotic [e.g., 2, 20, 28]. Examples include the Laplace distribution, the Cauchy distri-
bution, and Student’s t-distribution. A large family of leptokurtotic distributions which also contains
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Figure 1: A: In the noiseless overcomplete linear model, the posterior distribution over hidden
sources s lives on a linear subspace. The two parallel lines indicate two different subspaces for
different values of x. For sparse source distributions, the posterior will generally be heavy-tailed and
multimodal, as can be seen on the right. B: A graphical model representation of the overcomplete
linear model extended by two sets of auxiliary variables (Equation 2 and 3). We perform blocked
Gibbs sampling between λ and z to sample from the posterior distribution over all latent variables
given an observation x. For a given λ, the posterior over z becomes Gaussian while for given z, the
posterior over λ becomes factorial and is thus easy to sample from.

the aforementioned distributions as a special case is formed by Gaussian scale mixtures (GSMs),

fi(si) =

∫ ∞
0

gi(λi)N (si; 0,λ−1i ) dλi, (2)

where gi(λi) is a univariate density over precisions λi. In the following, we will concentrate on
linear models whose marginal source distributions can be represented as GSMs. For a detailed
description of the representational power of GSMs, see Andrews and Mallows’ paper [1].

Despite the apparent simplicity of the linear model, inference over the latent variables is computa-
tionally hard except for a few special cases such as when all sources are Gaussian distributed. In
particular, the posterior distribution over sources p(s | x) is constrained to a linear subspace and can
have multiple modes with heavy tails (Figure 1A).

Inference can be simplified by assuming additive Gaussian noise, constraining the source distribu-
tions to be log-concave or making crude approximations to the posterior. Here, however, we would
like to exhaust the full potential of the linear model. On this account, we use Markov chain Monte
Carlo (MCMC) methods to obtain samples with which we represent the posterior distribution. While
computationally more demanding than many other methods, this allows us, at least in principle, to
approximate the posterior to arbitrary precision.

Other approximations often introduce strong biases and preclude learning of meaningful source
distributions. Using MCMC, on the other hand, we can study the model’s optimal sparseness and
overcompleteness level in a more objective fashion as well as evaluate the model’s log-likelihood.

However, multiple modes and heavy tails also pose challenges to MCMC methods. General purpose
methods are therefore likely to be slow. In the following, we will describe an efficient blocked Gibbs
sampler which exploits the specific structure of the sparse linear model.

2 Sampling and inference

In this section, we first review the nullspace sampling algorithm of Chen and Wu [4], which solves
the problem of sampling from a linear subspace in the noiseless case of the overcomplete linear
model. We then introduce an additional set of auxiliary variables which leads to an efficient blocked
Gibbs sampler.
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2.1 Nullspace sampling

The basic idea behind the nullspace sampling algorithm is to extend the overcomplete linear model
by an additional set of variables z which essentially makes it complete (Figure 1B),[

x
z

]
=

[
A
B

]
s, (3)

where B ∈ R(N−M)×N and square brackets denote concatenation. If in addition to our observation
xwe knew the unobserved variables z, we could perform inference as in the complete case by simply
solving the above linear system, provided the concatenation of A and B is invertible. If the rows of
A and B are orthogonal, AB> = 0, or, in other words, B spans the nullspace of A, we have

s = A+x+B+z, (4)

where A+ and B+ are the pseudoinverses [24] of A and B, respectively. The marginal distributions
over x and s do not depend on our choice ofB, which means we can chooseB freely. An orthogonal
basis spanning the nullspace of A can be obtained from A’s singular value decomposition [4].

Making use of Equation 4, we can equally well try to obtain samples from the posterior p(z | x)
instead of p(s | x). In contrast to the latter, this distribution has full support and is not restricted to
just a linear subspace,

p(z | x) ∝ p(z,x) ∝ p(s) =
∏
i

fi(w
>
i x+ v>i z), (5)

where w>i and v>i are the i-th rows of A+ and B+, respectively. Chen and Wu [4] used Metropolis-
adjusted Langevin (MALA) sampling [25] to sample from p(z | x).

2.2 Blocked Gibbs sampling

The fact that the marginals fi(si) are expressed as Gaussian mixtures (Equation 2) can be used
to derive an efficient blocked Gibbs sampler. The Gibbs sampler alternately samples nullspace
representations z and precisions of the source marginals λ. The key observation here is that given
the precisions λ, the distribution over x and z becomes Gaussian which makes sampling from the
posterior distribution tractable.

A similar idea was pursued by Olshausen and Millman [21], who modeled the source distributions
with mixtures of Gaussians and conditionally Gibbs sampled precisions one by one. However, a
change in one of the precision variables entails larger computational costs, so that this algorithm is
most efficient if only few Gaussians are used and the probability of changing precisions is small. In
contrast, here we update all precision variables in parallel by conditioning on the nullspace repre-
sentation z. This makes it feasible to use a large or even infinite number of precisions.

Conditioned on a data point x and a corresponding nullspace representation z, the distribution over
precisions λ becomes factorial,

p(λ | x, z) = p(λ | s) ∝ p(s | λ)p(λ) =
∏
i

N (si; 0,λ−1i )gi(λi), (6)

where we have used the fact that we can perfectly recover the sources given x and z (Equation 4).
Using a finite number of precisions ϑik with prior probabilities πik, for example, the posterior
probability of λi being ϑij becomes

p(λi = ϑij | x, z) =
N (si; 0,ϑ−1ij )πij∑
kN (si; 0,ϑ−1ik )πik

. (7)

Conditioned on λ, s is Gaussian distributed with diagonal covariance Λ−1 = diag(λ−1). As a linear
transformation of s, the distribution over x and z is also Gaussian with covariance

Σ =

[
AΛ−1A> AΛ−1B>

BΛ−1A> BΛ−1B>

]
=

[
Σxx Σxz
Σ>xz Σzz

]
. (8)
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Using standard Gaussian identities, we obtain

p(z | x,λ) = N (z;µz|x, Σz|x), (9)

where µz|x = Σ>xzΣ
−1
xxx and Σz|x = Σzz − Σ>xzΣ

−1
xxΣxz . We use the following computationally

efficient method to conditionally sample Gaussian distributions [8, 14]:[
x′

z′

]
∼ N (0, Σ), z = z′ + Σ>xzΣ

−1
xx (x− x′). (10)

It can easily be shown that z has the desired distribution of Equation 9. Together, equations 7 and 9
implement a rapidly mixing blocked Gibbs sampler. However, the computational cost of solving
Equation 10 is larger than for a single Markov step in other sampling methods such as MALA. We
empirically show in the results section that for natural image patches the benefits of blocked Gibbs
sampling outweigh its computational costs.

A closely related sampling algorithm was proposed by Park and Casella [23] for implementing
Bayesian inference in the linear regression model with Laplace prior. The main differences here are
that we also consider the noiseless case by exploiting the nullspace representation, that instead of
using a fixed Laplace prior we will use the sampler to learn the distribution over source variables,
and that we apply the algorithm in the context of image modeling. Related ideas were also discussed
by Papandreou and Yuille [22], Schmidt et al. [27], and others.

3 Learning

In the following, we describe a learning strategy for the overcomplete linear model based on the idea
of persistent Markov chains [26, 32, 36], which already has led to improved learning strategies for
a number of different models [e.g., 6, 12, 29, 32].

Following Girolami [11] and others, we use expectation maximization (EM) [7] to maximize the
likelihood of the overcomplete linear model. Instead of a variational approximation, here we use the
blocked Gibbs sampler to sample a hidden state z for every data point x in the E-step. Each M-step
then reduces to maximum likelihood learning as in the complete case, for which many algorithms
are available. Due to the sampling step, this variant of EM is known as Monte Carlo EM [34].

Despite our efforts to make sampling efficient, running the Markov chain till convergence can still
be a costly operation due to the generally large number of data points and high dimensionality of
posterior samples. To further reduce computational costs, we developed a learning strategy which
makes use of persistent Markov chains and only requires a few sampling steps in every iteration.

Instead of starting the Markov chain anew in every iteration, we initialize the Markov chain with
the samples of the previous iteration. This approach is based on the following intuition. First, if the
model changes only slightly, the posterior will change only slightly. As a result, the samples from
the previous iteration will provide a good initialization and fewer updates of the Markov chain will
be sufficient to reach convergence. Second, if updating the Markov chain has only a small effect
on the posterior samples z, also the distribution of the complete data (x, z) will change very little.
Thus, the optimal parameters of the previous M-step will be close to optimal in the current M-step.
This causes an inefficient Markov chain to automatically slow down the learning process, so that the
posterior samples will always be close to the stationary distribution.

Even updating the Markov chain only once results in a valid EM strategy, which can be seen as
follows. EM can be viewed as alternately optimizing a lower bound to the log-likelihood with
respect to model parameters θ and an approximating posterior distribution q [18]:

F [q, θ] = log p(x; θ)−DKL [q(z | x) || p(z | x, θ)] . (11)

Each M-step increases F for fixed q while each E-step increases F for fixed θ. This is repeated
until a local optimum is reached. Importantly, local maxima of F are also local maxima of the
log-likelihood, log p(x; θ).

Interestingly, improving the lower bound F with respect to q can be accomplished by driving the
Markov chain with our Gibbs sampler or some other transition operator [26]. This can be seen
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Figure 2: A: The average energy of posterior samples for different sampling methods after deter-
ministic initialization. Depending on the initialization, the average energy can be initially too low
or too high. Gray lines correspond to different hyperparameter choices for the HMC sampler, red
and brown lines indicate the manually picked best performing HMC and MALA samplers. The
dashed line represents an unbiased estimate of the true average posterior energy. B: Autocorrelation
functions for Gibbs sampling and the best HMC and MALA samplers.

by using the fact that application of a transition operator T to any distribution cannot increase its
Kullback-Leibler (KL) divergence to a stationary distribution [5, 15]:

DKL [Tq(z | x) || p(z | x, θ)] ≤ DKL [q(z | x) || p(z | x, θ)] , (12)

where Tq(z | x) =
∫
q(z0 | x)T (z | z0,x) dz0 and T (z | z0,x) is the probability density of making

a transition from z0 to z. Hence, each Gibbs update of the hidden states implicitly increases F . In
practice, of course, we only have access to samples from Tq and will never compute it explicitly.

This shows that the algorithm converges provided the log-likelihood is bounded. This stands in
contrast to other contexts where persistent Markov chains have been successful but training can
diverge [10]. To guarantee not only convergence but convergence to a local optimum of F , we would
also have to prove DKL [Tnq(z | x) || p(z | x, θ)] → 0 for n → ∞. Unfortunately, most results on
MCMC convergence deal with convergence in total variation, which is weaker than convergence in
KL divergence.

4 Results

We trained several linear models on log-transformed, centered and symmetrically whitened image
patches extracted from van Hateren’s dataset of natural images [33]. We explicitly modeled the
DC component of the whitened image patches using a mixture of Gaussians and constrained the
remaining components of the linear basis to be orthogonal to the DC component.

For faster convergence, we initialized the linear basis with the sparse coding algorithm of Olshausen
and Field [19], which corresponds to learning with MAP inference and fixed marginal source dis-
tributions. After initialization, we optimized the basis using L-BFGS [3] during each M-step and
updated the representation of the posterior using 2 steps of Gibbs sampling in each E-step. To repre-
sent the source marginals, we used finite GSMs (Equation 8) with 10 precisions ϑij each and equal
prior weights, that is, πij = 0.1. The source marginals were initialized by fitting them to samples
from the Laplace distribution and later optimized using 10 iterations of standard EM at the beginning
of each M-step.

4.1 Performance of the blocked Gibbs sampler

We compared the sampling performance of our Gibbs sampler to MALA sampling—as used by
Chen and Wu [4]—as well as HMC sampling [9], which is a generalization of MALA. The HMC
sampler has two parameters: a step width and a number of so called leap frog steps. In addition, we
slightly randomized the step width to avoid problems with periodicity [17], which added an addi-
tional parameter to control the degree of randomization. After manually determining a reasonable
range for the parameters of HMC, we picked 40 parameter sets for each model to test against our
Gibbs sampler.
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Figure 3: We trained models with up to four times overcomplete representations using either
Laplace marginals or GSM marginals. A four times overcomplete basis set is shown in the cen-
ter. Basis vectors were normalized so that the corresponding source distributions had unit variance.
The left plot shows the norms of the learned basis vectors. With fixed Laplace marginals, the al-
gorithm produces a basis which is barely overcomplete. However, with GSM marginals the model
learns bases which are at least three times overcomplete. The right panel shows log-densities of the
source distributions corresponding to basis vectors inside the dashed rectangle. For reference, each
plot also contains a Laplace distribution of equal variance.

The algorithms were tested on one toy model and one two times overcomplete model trained on
8 × 8 image patches. The toy model employed 1 visible unit and 3 hidden units with exponential
power distributions whose exponents were 0.5. The entries of its basis matrix were randomly drawn
from a Gaussian distribution with mean 1 and standard deviation 0.2.

Figure 2 shows trace plots and autocorrelation functions for the different sampling methods. The
trace plots were generated by measuring the negative log-density (or energy) of posterior samples
for a fixed set of visible states over time, − log p(x, zt), and averaging over data points. Autocorre-
lation functions were estimated from single Markov chain runs of equal duration for each sampler
and data point. All Markov chains were initialized using 100 burn-in steps of Gibbs sampling, inde-
pendent of the sampler used to generate the autocorrelation functions. Finally, we averaged several
autocorrelation functions corresponding to different data points (see Supplementary Section 1 for
more information).

For both models we observed faster convergence with Gibbs sampling than with the best MALA
or HMC samplers (Figure 2). The image model in particular benefited from replacing MALA by
HMC. Still, even the best HMC sampler produced more correlated samples than the blocked Gibbs
sampler. While the best HMC sampler reached an autocorrelation of 0.05 after about 64 seconds, it
took only about 26 seconds with the blocked Gibbs sampler (right-hand side of Figure 2B).

All tests were performed on a single core of an AMD Opteron 6174 machine with 2.20 GHz and
implementations written in Python and NumPy.

4.2 Sparsity and overcompleteness

Berkes et al. [2] found that even for very sparse choices of the Student-t prior, the representations
learned by the linear model are barely overcomplete if a variational approximation to the posterior is
used. Similar results and even undercomplete representations were obtained by Seeger [28] with the
Laplace prior. The results of these studies suggest that the optimal basis set is not very overcomplete.
On the other hand, basis sets obtained with other, often more crude approximations are often highly
overcomplete. In the following, we revisit the question of optimal overcompletness and support our
findings with quantitative measurements.

Consistent with the study of Seeger [28], if we fix the source distributions to be Laplacian, our
algorithm learns representations which are only slightly overcomplete (Figure 3). However, much
more overcomplete representations were obtained when the source distributions were learned from
the data. This is in line with the results of Olshausen and Millman [21], who used mixtures of two
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Figure 4: A comparison of different models for natural image patches. While using overcomplete
representations (OLM) yields substantial improvements over the complete linear model (LM), it still
cannot compete with other models of natural image patches. GSM here refers to a single multivariate
Gaussian scale mixture, that is, an elliptically contoured distribution with very few parameters (see
Supplementary Section 3). Log-likelihoods are reported for non-whitened image patches. Average
log-likelihood and standard error of the mean (SEM) were calculated from log-probabilities of 10000
test data points.

and three Gaussians as source distributions and obtained two times overcomplete representations for
8× 8 image patches.

Figure 3 suggests that with GSMs as source distributions, the model can make use of three and
up to four times overcomplete representations. Our quantitative evaluations confirmed a substantial
improvement of the two-times overcomplete model over the complete model. Beyond this, however,
the improvements quickly become negligible (Figure 4).

The source distributions discovered by our algorithm were extremely sparse and resembled spike-
and-slab distributions, generating mostly values close to zero with the occasional outlier. Source dis-
tributions of low-frequency components generally had narrower peaks than those of high-frequency
components (Figure 3).

4.3 Model comparison

To compare the performance of the overcomplete linear model to the complete linear model and
other image models, we would like to evaluate the overcomplete linear models’ log-likelihood on a
test set of images. However, to do this, we would have to integrate out all hidden units, which we
cannot do analytically. One way to nevertheless obtain an unbiased estimate of p(x) is by introduc-
ing a tractable distribution as follows:

p(x) =

∫
p(x, z) dz =

∫
q(z | x)

p(x, z)

q(z | x)
dz. (13)

We can then estimate the above integral by sampling states zn from q(z | x) and averaging over
p(x, zn)/q(zn | x), a technique called importance sampling. The closer q(z | x) is to p(z | x), the
more efficient the estimator will be.

A procedure for constructing distributions q(z | x) from transition operators such as our Gibbs sam-
pling operator is annealed importance sampling (AIS) [16]. AIS starts with a simple and tractable
distribution and successively brings it closer to p(z | x). The computational and statistical efficiency
of the estimator depends on the efficieny of the transition operator. Here, we used our Gibbs sam-
pler and constructed intermediate distributions by interpolating between a Gaussian distribution and
the overcomplete linear model. For the four-times overcomplete model, we used 300 intermediate
distributions and 300 importance samples to estimate the density of each data point.

We find that the overcomplete linear model is still worse than, for example, a single multivariate
GSM with separately modeled DC component (Figure 4; see also Supplementary Section 3).
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An alternative overcomplete generalization of the complete linear model is the family of products of
experts (PoE) [13]. Instead of introducing additional source variables, a PoE can have more factors
than visible units,

s = Wx, p(x) ∝
∏
i

fi(si), (14)

where W ∈ RN×M and each factor is also called an expert. For N = M , the PoE is equivalent to
the linear model (Equation 1). In contrast to the overcomplete linear model, the prior over hidden
sources s here is in general not factorial.

A popular choice of PoE in the context of natural images is the product of Student-t (PoT) distri-
butions, in which experts have the form fi(si) = (1 + s2i )

−αi [35]. To train the PoT, we used
a persistent variant of minimum probability flow learning [29, 31]. We used AIS in combination
with HMC to evaluate each PoT model [30]. We find that the PoT is better suited for modeling the
statistics of natural images and takes better advantage of overcomplete representations (Figure 4).

While both the estimator for the PoT and the estimator for the overcomplete linear model are con-
sistent, the former tends to overestimate and the latter tends to underestimate the average log-
likelihood. It is thus crucial to test convergence of both estimates if any meaningful comparison
is to be made (see Supplementary Section 2).

5 Discussion

We have shown how to efficiently perform inference, training and evaluation in the sparse overcom-
plete linear model. While general purpose sampling algorithms such as MALA or HMC have the
advantage of being more widely applicable, we showed that blocked Gibbs sampling can be much
faster when the source distributions are sparse, as for natural images.

Another advantage of our sampler is that it is parameter free. Choosing suboptimal parameters
for the HMC sampler can lead to extremely poor performance. Which parameters are optimal can
change from data point to data point and over time as the model is trained. Furthermore, monitoring
the convergence of the Markov chains can be problematic [28]. We showed that by training a model
with a persistent variant of Monte Carlo EM, even the number of sampling steps performed in each
E-step becomes much less crucial for the success of training.

Optimizing and evaluating the likelihood of overcomplete linear models is a challenging problem.
To our knowledge, our study is the first to show a clear advantage of the overcomplete linear model
over its complete counterpart on natural images. At the same time, we demonstrated that with the
assumptions of a factorial prior, the overcomplete linear model underperforms other generalizations
of the complete linear model. Yet it is easy to see how our algorithm could be extended to other,
much better performing models. For instance, models in which multiple sources are modeled jointly
by a multivariate GSM, or bilinear models with two sets of latent variables.

Code for training and evaluating overcomplete linear models is available at

http://bethgelab.org/code/theis2012d/.
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