
Introduction 
We introduce a tractable image model based on a combination of 
multi-dimensional recurrent neural networks [1] and a specific 
mixture of experts [2]. Quantitative comparisons show that the 
model outperforms the state of the art in natural image density 
estimation. 

Directed graphical modeling 

The directed modeling approach turns the density estimation 
problem into a supervised problem of learning .  

 

This approach has been shown to work very well for natural images 
[e.g., 2, 3, 4]. 

Factorized mixtures of conditional GSMs 
As a basis for our model, we use a factorized form of the MCGSM [2]: 

  

The model generalizes mixtures of GSMs (MoGSM) but scales much 
better to large images: 

Spatial LSTMs 

We use multi-dimensional recurrent neural networks [1] to transform 
the neighborhoods  into hidden state vectors : 

  

where 

  

Recurrent image density estimator 
We combine the MCGSM with spatial LSTMs to form the recurrent 
image density estimator (RIDE), . 

 

Ensembles 
To further improve performance, we form ensembles over 
transformed models/images (e.g. rotation, flipping): 

  

Density estimation (natural images) 
 
 

Density estimation (dead leafs) 
The right-hand plot shows the performance of an MCGSM and RIDE 
as a function of neighborhood size. The saturation of the MCGSM 
deonstrates that the better performance of RIDE is not just due to the 
indirect access to more pixels, but that the nonlinear transformation 
matters. 

 

Texture synthesis 
We trained the factorized MCGSM and RIDE on individual Brodatz 
textures [5]. Textures not seen during training and samples are 
shown below: 

Texture inpainting 
We used Metropolis within Gibbs sampling to inpaint 71 x 71 pixel 
regions in textures: 

 

CIFAR-10 samples 
Samples of RIDE trained on 32 x 32 pixel images: 

Discussion 
• Deep and recurrent neural networks can improve image density 
estimation 
• Although our model is computationally tractable, it is still slow to 
train (recurrent structure not a good fit for GPU) 
• In future work we therefore want to explore alternative deep 
extensions of the MCGSM 

Code 
Python/caffe implementation of RIDE : 

    http://github.com/lucastheis/ride/ 
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Figure 3. The proposed framework trained on the CIFAR-10 [20] dataset. (a) Example training data. (b) Random samples generated by
the diffusion model.

will also be a Gaussian (binomial) distribution. The longer
the trajectory the smaller the diffusion rate � can be made.

During learning only the mean and covariance for a Gaus-
sian diffusion kernel, or the bit flip probability for a bi-
nomial kernel, need be estimated. As shown in Table
C.1, fµ
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is a function providing the bit
flip probability for a binomial distribution. For all results in
this paper, multi-layer perceptrons are used to define these
functions. A wide range of regression or function fitting
techniques would be applicable however, including nonpa-
rameteric methods.

2.3. Model Probability

The probability the generative model assigns to the data is
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Naively this integral is intractable – but taking a cue from
annealed importance sampling and the Jarzynski equality,
we instead evaluate the relative probability of the forward
and reverse trajectories, averaged over forward trajectories,
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This can be evaluated rapidly by averaging over samples
from the forward trajectory q
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to exactly evaluate the above integral, as can be seen by
substitution. This corresponds to the case of a quasi-static
process in statistical physics [36, 16].

2.4. Training

Training amounts to maximizing the model log likelihood,
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which has a lower bound provided by Jensen’s inequality,
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As described in Appendix B, for our diffusion trajectories
this reduces to,

L � K (13)
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where the entropies and KL divergences can be analytically
computed.

As in Section 2.3 if the forward and reverse trajectories are
identical, corresponding to a quasi-static process, then the
inequality in Equation 13 becomes an equality.
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the diffusion model.
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computed.

As in Section 2.3 if the forward and reverse trajectories are
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inequality in Equation 13 becomes an equality.
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