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Abstract

We study mixture modeling using the el-
liptical gamma (EG) distribution, a non-
Gaussian distribution that allows heavy and
light tail and peak behaviors. We first con-
sider maximum likelihood parameter estima-
tion, a task that turns out to be very chal-
lenging: we must handle positive definite-
ness constraints, and more crucially, we must
handle possibly nonconcave log-likelihoods,
which makes maximization hard. We over-
come these difficulties by developing algo-
rithms based on fixed-point theory; our
methods respect the psd constraint, while
also efficiently solving the (possibly) non-
concave maximization to global optimality.
Subsequently, we focus on mixture model-
ing using EG distributions: we present a
closed-form expression of the KL-divergence
between two EG distributions, which we then
combine with our ML estimation methods to
obtain an efficient split-and-merge expecta-
tion maximization algorithm. We illustrate
the use of our model and algorithms on a
dataset of natural image patches.

1 Introduction

Several applications involve data of a non-Gaussian
nature. Sometimes to capture manifold structure in
data [3, 26, 7], or to model structure such as sparsity
[18, 28]. Other common non-Gaussian situations arise
when modeling data with heavy or light tails [25, 18],
when studying independence [21, 16], or in a host of
other situations. Our focus in this paper is also on
non-Gaussian data modeling, in particular with the
Elliptical Gamma (EG) distribution [19].
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Figure 1: EG density on R2 with shape parameter a = 1,
1/3, and 3 (row-wise). All displayed densities have equal
covariances; the density corresponding to a = q/2 = 1
(top) is a Gaussian density.

The EG density (mean-zero case) with a q × q scatter
matrix Σ � 0 is given by

peg(x; Σ, a, b) :=
Γ(q/2)

πq/2Γ(a)ba|Σ|1/2
ϕ(x>Σ−1x)

ϕ(t) := ta−q/2e−t/b,

(1.1)

where Γ is the usual Gamma function, and a, b > 0 are
density shaping parameters [8], and ϕ is the so-called
“density generating function”. Density (1.1) general-
izes the Gaussian, which corresponds to ϕ(t) = e−t/b

(obtained for a = q/2). The additional elliptical fac-
tor (x>Σ−1x)a−q/2 can be used to encode different tail
and peak behaviors; Figure 1 illustrates this point.

Motivation. EGDs are broadly applicable and of-
fer rich modeling power: a mixture of zero-mean
EGDs can approximate any symmetric distribution [8].
EGDs actually belong to a wider class of distributions
called Elliptically Contoured Distributions, which have
found use in for multivariate density estimation [25],
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Bayesian statistical data modeling [2], signal denoising
[33], financial data modeling [4], and pattern recogni-
tion [34]. Mixtures of ECDs have been used success-
fully in many applications such as robust statistical
modeling [20], denoising [27], signal processing, among
others—see also the survey [25].

We consider the following two aspects of EGDs in this
paper: (i) algorithms for efficient maximum likelihood
(ML) parameter estimation; and (ii) mixture model-
ing using EGDs, along with a brief application to the
modeling of image patches.

A further motivation is robust recovery of multiple
subspaces—see e.g., [22]. This topic has for instance
various applications in unsupervised learning, com-
puter vision and biomedical engineering—see [30] and
references therein.

Surprisingly, even the basic task of obtaining ML esti-
mation for the parameters of an EGD turns out to be
numerically very challenging: the log-likelihood may
fail to be concave making maximization hard, and the
positive-definiteness constraint Σ � 0 imposes a com-
putational burden. This background motivates the fol-
lowing main contributions of this paper.

Contributions.

• Two new non-Euclidean fixed point algorithms for
ML parameter estimation with EGDs. Our algo-
rithms address both the concave (a ≥ q/2) but
still numerically challenging case, as well as the
nonconcave (a < q/2) case, which, we still man-
age to efficiently maximize to global optimality.

• A computationally efficient “split-and-merge” ex-
pectation maximization (EM) algorithm for esti-
mating parameters for a mixture of EGDs. This
algorithm uses our ML estimation algorithms for
its M-step, and a particular KL-divergence deriva-
tion (details in [13] due to space paucity) for its
“merge” decisions.

• An illustrative application of our model and algo-
rithms to natural image patches.

2 Background

Let us begin by recalling basics of elliptically contoured
distributions (ECDs), of which EGDs are a special
case. A q-dimensional random vector X is distributed
according to an ECD with a mean parameter µ ∈ Rq

and “scatter” matrix Σ ∈ Rq×q if its characteristic
function is of the form ΦX(t) = exp(i t>µ)g(t>Σ−1t),
for some function g : R+ → R. If it exists, the density
of an ECD has the form (for a suitable function f):

pX(x) ∝ |Σ|−1/2f
(
(x− µ)>Σ−1(x− µ)

)
.

For simplicity, we consider mean-zero ECDs, so that

pX(x) ∝ |Σ|−1/2f
(
x>Σ−1x

)
. (2.1)

Under this assumption, one can factor X into a uni-
form hyper-spherical component and a scaled-radial
component, so that X = Σ1/2RU with U uniformly
distributed over the unit hypersphere Sq−1 and R a
univariate random variable given by R = ‖Σ−1/2X‖2
[9]. The random variable R has the p.d.f.

pR(r) := 2πq/2f(r2)rq−1/Γ( q
2 ).

For EGDs the squared radial component Υ = R2 is
Gamma distributed, according to

pΥ(υ) = υa−1Γ(a)−1b−a exp (−υ/b) , (2.2)

where a is a shape parameter and b a scale parameter.

Using (2.2) as the radial distribution, we obtain the
density shaping function ϕ = f for (2.1); therewith, we
obtain the EGD density shown in (1.1). If Σ equals
the covariance matrix of the distribution, i.e., Σ =
E[XX>], then b = q/a (see [9, Equation 2.16]).

Calculating ML estimates of the parameters of an ECD
is generally not analytically possible, though in special
cases such as multivariate t-distributions, a recursive
algorithm is known [20]. For a review of ML estimation
of ECDs see Ollila et al. [25] and references therein, as
well as some more recent works [32, 40].

However, for EGDs, we can derive efficient ML esti-
mation procedures; we present an outline in the next
section, mentioning only the high-level ideas. The de-
tails are quite interesting (in our opinion) but rather
technical, and are presented in [13].

3 ML parameter estimation

Let {xi} be an i.i.d. sample from an EGD; then their
log-likelihood (up to some constant C) is

`(x|a, b,Σ) =
(
a− q

2

)∑n

i=1
log(x>i Σ−1xi)

− b−1
∑n

i=1
x>i Σ−1xi − n

2 log |Σ|+ C
(3.1)

We consider ML estimation of Σ for fixed a and b.
From (3.1) we see that if a ≥ q/2, then the log-
likelihood ` is strictly concave in Σ−1, and therefore
any critical point must be unique. But when a < q/2,
` is not concave, though uniqueness still holds (see Ap-
pendix B of [13]; another proof of uniqueness follows
from [17, Theorem 2.2]).

Kent and Tyler [17] presented an iterative algorithm
for computing the unique ML solution (for a < q/2)—
but in contrast to our methods, their proof depends
on existence of the ML-solution, a nontrivial fact that
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must be first established. We present new iterative ML
estimation algorithms and prove their convergence for
both the concave (a ≥ q/2) and nonconcave (a < q/2)
versions of the log-likelihood (3.1).

Since we are optimizing over an open set, we have the
first-order necessary condition ∇Σ` = 0. This yields,

−n
2 Σ−1−

(
a− q

2

)
Σ−1

( n∑
i=1

xix
>
i

x>i Σ−1xi
+ 1

bxix
>
i

)
Σ−1 = 0.

To this equation, add n
2 Σ−1 and rescale by

√
2
nΣ

1
2 to

get

c
n∑

i=1

Σ−1/2xix
>
i Σ−1/2

x>i Σ−1xi
+d

n∑
i=1

Σ−1/2xix
>
i Σ−1/2 = I,

(3.2)

where c = − 2(a−q/2)
n and d = 2

bn . A positive definite
solution to (3.2) is a candidate local maximum of the
log-likelihood. To ease our presentation, we further
modify (3.2) to simplify its second term. Introduce
therefore the following matrix,

B = d
∑n

i=1
xix

>
i ,

and apply the transformation yi = B−1/2xi to (3.2).
Defining Γ = B−1/2ΣB−1/2 and using the fact that
the square root of Γ has the form B−1/2Σ1/2Q> for a
suitable orthogonal matrix Q, (3.2) turns into

c
n∑

i=1

Γ−1/2yiy
>
i Γ−1/2

y>i Γ−1yi
+ Γ−1 = I. (3.3)

From a solution Γ∗ to (3.3), we recover Σ∗ =
B1/2Γ∗B1/2 as the corresponding solution to (3.2).

Our solution to equation (3.3) splits into two cases: (i)
concave (c < 0); and (ii) nonconcave (c > 0).

3.1 The concave case c ≤ 0

The case c = 0 is trivial so we ignore it. Noting
that c < 0, we rearrange (3.3) to obtain from it the
“positivity-preserving” iteration (p ≥ 0):

Γp+1 =

(
−c

n∑
i=1

Γ
−1/2
p yiy

>
i Γ
−1/2
p

y>i Γ−1
p yi

+ I

)−1

. (3.4)

Clearly, if Γ0 � 0, then every Γp � 0 by construction.
Any limit point of (3.4) is also positive definite and
satisfies (3.3), and therefore yields the ML solution.

We analyze (3.4) via fixed-point theory. Consider
therefore the following nonlinear map:

G ≡ S 7→ I + c′S1/2Y DSY
>S1/2,

where matrix Y has yi as its ith column, S = Γ−1,
DS = Diag(1/y>i Syi) (diagonal matrix), and c′ = −c.
To show that G is a fixed-point map, we first need the
following technical result.

Proposition 1. Define D := {S | I � S � µI}, for
µ > (1 + c′n), then G(D) ⊂ D.

Proof. See Lemma 3 of [13].

The main result of this section is Theorem 2.

Theorem 2. Let S0 ∈ D (where D is a compact set
defined by Prop. 1). Then, the iteration Sp+1 = G(Sp)
converges to a unique fixed-point S∗, and (S∗)−1

solves (3.4).

Proof Sketch. Since D is compact (Prop. 1), G(D) ⊂
D, and G is continuous, using Brouwer’s fixed-point
theorem [11] we know that G must have a fixed point in
D. However, this does not mean that one can just iter-
ate Sp+1 = G(Sp) to obtain a fixed point. Fortunately,
since c < 0, the log-likelihood is strictly concave, so if
it exists, its maximum must be unique. Even then, we
cannot yet conclude convergence. But using concavity
and Brouwer, we can inductively show that the map
Gm has a unique fixed point for all m ≥ 1. Then, us-
ing Proposition 4 of [13], we can conclude that actually
iterating Sp+1 = G(Sp) takes us to this unique fixed
point. This fixed point clearly provides the optimal
point, as it satisfies the first order necessary condi-
tions, which are also sufficient due to concavity.

3.2 The nonconcave case: c > 0

The fixed-point iteration (3.4) does not apply to c > 0
since positive definiteness can be no longer guaranteed.
We therefore rewrite (3.3) differently. Multiplying it
on the left and right by Γ1/2 and introducing a new
parameter α > 0, we obtain the iteration (p ≥ 0)

Γp+1 = αpΓ
1/2
p NpΓ

1/2
p , (3.5)

where αp > 0 is a free scalar parameter and Np is
given by the following equation:

Np = c
n∑

i=1

Γ
−1/2
p yiy

>
i Γ
−1/2
p

y>i Γ−1
p yi

+ Γ−1
p .

We show that under a specific choice of αp, itera-
tion (3.5) converges, and that in addition αp → α∗ =
1. Thus, limp→∞ Γp = Γ∗ satisfies 3.3, and Γ∗ is there-
fore the desired ML solution.

Our proof relies on Lemma 3 which shows that one can
find αp values that lead to the increase of the smallest
eigenvalue ofNp and decrease of the largest eigenvalue
of Np (Lemma 5 of [13]).
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Lemma 3. Let λ1,p > α−1
p and λq,p < α−1

p repre-
sent the largest and smallest eigenvalues of Np, re-
spectively. If the data set {xi}ni=1 spans Rq then
λ1,p+1 ≤ λ1,p and λq,p+1 ≤ λq,p+1.

The main result of this section is Theorem 4, which
shows that there is a sequence {αp} → 1, for
which (3.5) converges (details of the proof may be
found in Theorem 6 of [13]).

Theorem 4. Let λ1,p ≥ 1 and λq,p ≤ 1 represent the
largest and smallest eigenvalues of Np respectively. If
the data set {xi}ni=1 spans Rq then one can find an
αp such that 1 ≤ λ1,p+1 ≤ λ1,p and λq,p ≤ λq,p+1 ≤
1. This implies that iteration (3.5) converges. If ML
solution Γ∗ exists , the iteration converges to the ML
solution. Moreover, αp → 1, and one possible choice
for αp is given by:

(i) αp = 1 if the largest eigenvalue λ′1 and the smallest
eigenvalue λ′q of the matrix N ′ given below are larger
and smaller than one, respectively. The matrix N ′ is
given by

N ′ = c
n∑

i=1

Γ′−1/2yiy
>
i Γ′−1/2

y>i Γ′−1/2yi
+ Γ′−1,

where Γ′ = Γ
1/2
p NpΓ

1/2
p .

(ii) αp = λ−1
q if λ′1 ≤ 1 and λ′q ≤ 1. Where λq is the

smallest eigenvalue of the following matrix:

Γ′ − c
n∑

i=1

yiy
>
i

y>i Γ′−1yi
. (3.6)

(iii) αp = λ−1
1 if λ′1 ≥ 1 and λ′q ≥ 1. Where λ1 is the

largest eigenvalue of the matrix in (3.6).

One can invoke a result of [17] or the more general
theory of [31] to obtain convergence proofs for a dif-
ferent iteration that computes Γ. But the convergence
results of both [17, 31] depend on the existence of an
ML solution.

We note that upon existence of ML solution, the fixed-
point iteration works even without αp (or equivalently
with αp = 1). Indeed, the case αp = 1 corresponds to
the classic iteration of Kent and Tyler [17]. Another
but more restrictive way of proving the convergence of
fixed-point iteration is by showing that the fixed-point
map is contraction [32]. However, including a variable
αp can be seen as improving the contracting factor in
the contraction map, which speeds up the empirically
observed convergence shown in Section 5.

Theorem 4 proves a stronger result because it does
not depend on any existence requirement on the ML
solution. This generality has some important conse-
quences: (i) if the ML solution exists, then inevitably

iteration (3.5) converges to it; but (ii) when the ML
solution does not exist (which is well possible), then
the iterative algorithm still converges, though now the
convergent solution is singular. This singular matrix
possesses specific structure that can be then used for
robust subspace recovery, which incidentally also gen-
eralizes the subspace recovery approach of [39]. This
topic is, however, beyond the present paper and will
be considered elsewhere.

It worth mentioning that the above theorem suggests
αp values which are not necessarily optimal, though
easy to calculate. In practice, we observed that if one
chooses the parameter αp such that the trace of the
matrix Np+1 becomes q, that is αp = tr(Γ′−1)/(2a),
then the convergence is faster. However, for this case
our convergence proof does not apply.

4 Mixture modeling with EGDs

After the above theory we are now ready to dis-
cuss mixture modeling algorithms. In Section 4.2, we
present a “split-and-merge” expectation maximization
(EM) algorithm for estimating parameters of an EGD
mixture model. This algorithm uses a certain KL-
Divergence computation mentioned in Section 4.3 to
makes its “merge” decisions (i.e., to decide whether
two mixture components should be merged into one).

4.1 EM Algorithm for mixture of EGDs

A K-component mixture of Elliptical Gamma distri-
butions (MEG) has the disitribution

p(x) =
∑K

k=1
pkpeg(x; Σk, ak, bk), (4.1)

where
∑

k pk = 1 (pk ≥ 0).

We use a block coordinate ascent algorithm for im-
plementing the maximization step. Specifically, we
fix ak and bk and apply one step of EM to obtain
Σk (1 ≤ k ≤ K) using the fixed-point algorithms
developed above. Next, we fix Σk and update ak,
bk. Here, the following variable change υk = xTΣkx
proves helpful, because with it the (4.1) turns into

p(x) =
∑K

k=1
pkpga(υk; ak, bk),

where pga is the Gamma density (2.2).

The two main steps of an EM algorithm for the first
stage are as follows:

• E-step: Compute the weights (for each data-point i
and component k):

tki =
pkpeg(xi; Σk, ak, bk)∑K
l=1 plpeg(xi; Σl, al, bl)

=
pkpga(υki; ak, bk)∑K
l=1 plpga(υki; al, bl)
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• M-step: Update the parameters of the mixture
model by maximizing:

`k(Σk, ak, bk; {xi}ni=1) =

n∑
i=1

tki log peg(xi; Σk, ak, bk),

where the priors pk are as usual pk = n−1
∑n

i=1 tki.

The fixed-point methods of Section 3 can be easily
modified to accommodate weighted log-likelihoods.

Similar to the first stage, one step of EM for the sec-
ond stage also consists of two steps that are applied se-
quentially until convergence. The E-step and updates
to pk are similar to the first stage. But for updating
ak and bk parameters in the M-step, we maximize the
following objective function:

`k(ak, bk; {υki}ni=1) =
∑n

i=1
tki log pga(υki|ak, bk)

The maximum weighted log-likelihood estimates of
these parameters can be calculated efficiently using
Generalized Newton method [23]. Modifying the
method explained in [23] to account for weights, we
will obtain the following fixed-point iteration:

1

aknew

=
1

ak
+

log υk − log ῡk + log ak −Ψ(ak)

a2
k( 1

ak
−Ψ′(ak))

Where z̄ is weighted mean over z (
∑

i tkizki/
∑

i tki)
and Ψ is the digamma function. The other parameter
is calculated simply using the following equation:

bk = ῡk/ak.

4.2 Split-and-Merge EM for MEG

To counter the problem of poor local optima that im-
pede EM, following [36] we derive below a more re-
fined “split-and-merge” EM procedure. Ueda et al.
[36] identified false division of the number of mixture
components in different parts of the data cloud as a
major impediment. Consequently, they proposed a
remedy for countering local minima that is quite ef-
fective in practice. The idea is to iteratively find can-
didates to merge and candidates to split while max-
imizing the log-likelihood. This process is continued
until further splitting or merging fails to improve the
model fit. [5] added new criteria for splitting and merg-
ing to the ones given in [36, 37] and also modified the
original split-and-merge algorithm. One criterion ex-
plained in [5] is to find two components that have the
minimum symmetric KL-Divergence difference. We
observed that this criterion seems to correctly specify
the components, merging which leads to the highest
improvement in likelihood. However, all three differ-
ent criteria for splitting given in [5] have problems in

identifying the correct component to split. In prac-
tice, these methods often select the component with
the highest entropy, though clearly this component is
not necessarily the best candidate for splitting.

Algorithm 1: Pseudo-code for split-then-merge algorithm

Input:
Number of components: K; Observations: {xi}ni=1;
Maximum components: Kmax

Initialize:
k ← 1; I ← {1}; ∆`1 ←∞;
θ∗1 = arg maxθ1 `(θ1; {xi}ni=1); `cur ← `(θ∗1 ; {xi}ni=1)
Splitting stage:
while ∃i,∆`i > −∞ and k < Kmax do

ī = arg maxi∈I ∆`i;
{θ̄ī, θ̄k} = arg maxθī,θk `({θ∗i }i∈I−{ī},θī,θk+1; {xi}ni=1)

`new ← `n(x|{θ∗i }i∈I−{ī}, θ̄ī, θ̄k+1) ; d = `new − `cur

if d > h then
k ← k + 1; θ∗ī ← θ̄ī; θ

∗
k+1 ← θ̄k+1; ∆`ī ← d;

∆`k ← d; I = I ∪ {k}; `cur ← `new

else
∆`ī ← −∞

end if
end while
Merging stage:
while k > K do
{̄i, j̄} = arg mini,j∈I KL

[
EGD(θ∗i )||EGD(θ∗j )

]
I = I − {j̄};
θ∗ī = arg maxθī

`({θ∗i }i∈I−{ī},θī; {xi}ni=1)
k ← k − 1

end while
Overall Optimization:
{θ∗i }i∈I = arg max{θi}i∈I `({θi}i∈I ; {xi}ni=1)
return {θ∗i }i∈I

Therefore, we propose a variant of the split-and-merge
algorithm that not only solves the problem of finding
the component that needs to be split, but does so com-
putationally efficiently—pseudocode is provided as Al-
gorithm 1. Therein, θk represents parameters of com-
ponent k, i.e., {θk} ≡ {pk, ak, bk, Σk}. The first
stage of the algorithm splits components until no fur-
ther improvement is possible, or when the number of
components reaches an upper limit Kmax. The al-
gorithm chooses components, which in their previous
split led to the highest improvement in log-likelihood
(∆`i). If after a split the improvement is less than a
threshold denoted by t, the split is not accepted and
the component is not further split. The second stage
of the algorithm finds components with the minimum
KL-Divergence and merges them. This process is con-
tinued until the number of components reaches K. At
the last stage, the algorithm performs one step of opti-
mization over all components. The proposed algorithm
is efficient: optimization is performed only over the
parameters of the split or merged components; com-
putational complexity of the splitting step is equal to
optimizing the mixture model with two components;
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Figure 2: Left to right: ground truth mixture (red line)
and empirical density; mixture recovered by our split-and-
merge method; mixtures recovered by the SMILE [5] and
SMEM [37] algorithms.

complexity of merging step is equal to ML estimation
for just one component.

Here we discuss some points regarding split-and-merge
algorithm described above.

• For each step of the splitting stage, initialization
over split mixture is done simply by randomly per-
turbing the parameters before splitting.

• For initialization in the merging step, we can sim-
ply use one of the mixtures that are merged.

• Parameter Kmax is chosen based on the maximum
computational time. The typical value of Kmax ≈
2K works well in practice.

• If there is no validation set that is checked during
optimization to avoid overfitting, then the thresh-
old h can be chosen by

h = d
K+1∑
k=1

nknew

nknew − d− 1
+ d

K∑
k=1

nkold

nkold
− d− 1

,

where d = q(q+ 1)/2 + 1 is the number of param-
eters for each component and nknew , nkold

are the
number of data in component k after and before
split, respectively. The quantity dn/(n − d − 1)
is corrected Akaike Information Criterion (AICc)
[15] that approximately measures expected cross-
validation bias between training and test sets.

• If early-stopping is used to avoid overfitting, then
threshold t can be chosen to be smaller number
(a fraction of d like d/10 works fine in practice).

The results of applying proposed algorithm to a mix-
ture of one-dimensional Gaussian is shown in Fig. 2,
which shows that our algorithm successfully recovers
the distribution. The second and third plots in Fig. 2
show the result of an alternative algorithm (SMILE)
explained in [5] and the basic SMEM algorithm of [37].
Due to the problem of finding good candidates for
splitting, the SMILE and SMEM approaches could not
recover the underlying mixture accurately.

4.3 KL Divergence between EGDs

We conclude this section by presenting an expression of
the KL-Divergence between two EGDs (for derivation

details see Section 4 of [13]). This computation plays
a role in the merge step of Algorithm 1, and may be
of independent interest too.

Let P and Q be EGDs with parameters (ap, bp,Σ1)
and (aq, bq,Σ2) respectively. The KL-Divergence be-
tween P and Q is given by:

KL(P‖Q) = log

(
Γ(aq)b

aq
q

Γ(ap)b
aq
p

)
+ (ap − aq)Ψ(ap)− ap

− 1
2 log(|Σ|) +

apbp
qbq

tr(Σ)− (aq − q
2 )A,

where Ψ is the digamma function [1, Chapter 6.3],
Σ = Σ1Σ

−1
2 , and A = E[log

∑q
i=1 λin

2
i ]−Ψ( q

2 )− log 2;
the nis are independent zero mean and unit variance
Gaussian variables; the λis are eigenvalues of Σ. To
compute A one needs a numerical procedure (practical
approaches are described in Appendix C of [13]). The
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Figure 3: Top plot: KL-divergence between two EGDs
as dimension q increases. Observed distribution is a EGD
with some arbitrary scale parameter and the model distri-
bution is a Gaussian with the same covariance matrix. Bot-
tom plots: KL-divergence of two EGDs with the same scale
parameter in two dimensions (left plot) first part of the ex-
pression normalized by the shape parameter (tr(Σ)/q− 1)
and (right plot) the term A. Observed distribution is ro-
tated version of the model distribution and the X-axis rep-
resents the rotation degree. Y-axis is the ratio of the largest
eigenvalue to the smallest eigenvalue.

top plot in Fig. 3 shows the KL-Divergence between
two EGDs as dimension q increases. The observed
distribution is an EGD with arbitrary scale parameter
while the model is a Gaussian with the same covari-
ance. This plot reveals that if the scale parameter is
very small or if it is very large, the KL-Divergence be-
comes very large, growing to infinity in the limit. This
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shows that the “goodness-of-fit” can be substantially
improved for the EGD model relative to the Gaussian.

If we have two EGDs with the same shape parameter a
such that the covariance matrix, say Σ1, of one of the
distributions is viewed as a rotation of the other (Σ2).
Then, we have KL(P‖Q) = a

(
tr(Σ1Σ

−1
2 )/q − 1

)
−(a−

q/2)A. The left plot (2nd row) in Fig. 3 shows contours
of the term tr(Σ1Σ

−1
2 )/q− 1 and the right plot shows

contours of the term A. The x-axis is the rotation
degree and the y-axis is the ratio of the largest eigen-
value to the smallest one. For small a the two terms get
similar signs and since the behavior of two terms look
similar, KL-divergence changes more by changing ro-
tation degree and condition number of the covariance
matrix. For large a, those terms will get opposite signs
and cancel each other.

5 Experiments and application

5.1 ML-estimation using fixed-point iteration

In our first set of experiments we report results on
the convergence speed of our fixed-point algorithms,
namely (3.4) and (3.3). Fig. 4 compares our algo-
rithms to three state-of-the-art (Riemannian) mani-
fold optimization techniques: limited-memory BFGS
(lbfgs), trust-region and conjugate gradient [6]; we also
compare the classic iteration (when it applies) of Kent
and Tyler [17]. We remark that we also tested other
optimization techniques such as interior-point meth-
ods [24] but do not include them in the results be-
cause they were vastly slower than manifold optimiza-
tion techniques.

To generate these results, we sampled 10,000 points
from an EGD with a random covariance matrix, and
initialized the iterations with a random covariance.
The left plot in Fig. 4 shows the result for the case
a = 1 (nonconcave maximization) and right plot is for
the case a = 50 (concave case). As can be seen from
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Figure 4: Comparison of the proposed fixed-point algo-
rithms against manifold optimization techniques for EG
distributions with dimension equal to 64 (left plot) a = 1
(right plot) a = 50

Fig. 4 (which is on a log-scale), our fixed-point the-
ory yields methods that run much faster (5–10 times)
than competing techniques, for both the difficult non-

concave case, as well as the concave case.

5.2 Application: Natural Image Statistics

We use MEG to model statistical distribution of natu-
ral image patches. The data used for fitting the model
is patches sampled from random locations in a natu-
ral image dataset. Fig. 5 provides intuition as to why
we model statistics of image patches using MEGs than
just a mixture of Gaussians.

We extracted image patches of two different sizes 8×8
and 16×16 from random locations in the van Hateren
dataset [38]. This dataset contains 4167 images; we
excluded images that had problems, e.g., were noisy,
blurred, etc. We extracted 200,000 training image
patches, and 10 sets of 100,000 test image patches from
remaining 3632 images. We preprocess image patches
by log-transforming pixel intensities. Then, we added
Gaussian white noise with standard deviation equal to
1/32 of the standard deviation of images.

We ran our experiments on several different random
samplings, but got very small errorbars between 0.01–
0.02, so we do not include these in the comparisons to
avoid clutter.
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0
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0.03

0.04
Histogram and pdf for one component of MoG

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02
Histogram and pdf for one component of MEG

Figure 5: Plots of the radial distribution of one com-
ponent randomly chosen from 8 components in a mix-
ture of Gaussians (left) and in MEG (right). The MEG
component (up to a scaling) seems to describe the data
distribution much more accurately.

We evaluate the performance of different models us-
ing the Multi-Information Rate (MI-Rate) criterion.
MI-Rate (in bits/pixel) has the intuitive flavor that
it approximately shows the number of bits per pixel
that one saves if the patch-level model distribution is
used compared to the case that all pixels are modeled
independently. Formally, it is defined as

MI-Rate ≈
(
H(X0) + 1

n−1`(θ;x1, . . . ,xn)
)
/ log 2,

where H(X0) is the entropy of one pixel. The relation
becomes exact if n→∞ [14].

Table 1 summarizes the performance of different pro-
cedures in terms of MI-Rate. In all models, the DC
component is modeled independently using mixture of
Gaussians with 10 components. Two different sizes are
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included in order to observe how the MI-Rate estimate
of different models change if the patch size is increased.
Among different methods, MEG shows the best per-
formance, yielding the highest MI-Rate per pixel.

In the table, Gauss denotes the simple Gaussian
model; the MI-Rate captured by this model is called
the amount of second-order information present in
the data. The number of layers in hierarchical ICA
(HICA) is 8 for 8×8 patches and 4 for 16×16 patches
[12]. The number of mixtures for MoG and MEG is
8 [41]. Note that both MoG and HICA are universal
approximators, therefore theoretically they may reach
the performance of MEG but with more parameters.
In practice, however, parsimonious models are usu-
ally preferred. Lp-spherical model is a density model
proposed in Sinz et al. [29]. RG+ICA corresponds to
radial Gaussianisation followed by one layer ICA [12].
DBN corresponds to Deep Belief Networks and GRBM
corresponds to Gaussian Restricted Boltzmann Ma-
chine. The MI-Rate of DBN and DRBM were eval-
uated by the method explained in [35].

We emphasize that the differences in MI-Rate shown
in Table 1 are significant, because closer to the upper
limit of the MI-rate any improvement means captur-
ing a lot of perceptually relevant regularities of the un-
derlying distribution, a claim grounded in the recent
psychophysical results in [10].

Finally, Fig. 6 visualizes the effect of number of mix-
ture components on the performance. The baseline
Gaussian MI-Rate is plotted as a dotted line.

Model 8× 8 16× 16

Gauss 2.50 2.60
GRBM 2.69 2.74
DBN 2.73 2.79
ICA 2.73 2.83
EG 2.83 2.90

HICA 2.84 2.91
Lp-spherical 2.85 2.95
RG + ICA 2.87 3.00

MoG 2.89 2.98
MEG 2.93 3.02

Table 1: MI-Rate (bits/pixel; higher is better) for different
models and two different patch sizes. The differences in
MI-Rate are significant (please see text for discussion).

6 Discussion and future work

We studied a powerful class of symmetric distributions,
namely, Elliptical Gamma distributions. We presented
theory outlining existence and uniqueness of maximum
likelihood estimators for EGDs and developed simple
and computationally effective algorithms computing
these. As an application of our theory, we illustrated
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Figure 6: MI-Rate for MEG and other methods with in-
creasing number of parameters. Unsurprisingly, with large
enough number of parameters (number of mixture compo-
nents / layers) the differences between the models become
less severe, but MEG still retains an edge.

numerical results against state-of-the-art manifold op-
timization solvers [6] as well as classical methods [17]:
in all cases, the fixed-point algorithms presented in
the paper were seen to be much faster than compet-
ing approaches. Subsequently, we also studied mixture
models based on EGDs and tested them on an appli-
cation involving natural image statistics, for which our
models seem to offer state-of-the-art performance.

Several avenues of further research remain open. The
most important direction is to study robust subspace
recovery and its applications [30]. Other potential
directions involve developing mathematical tools to
study stochastic processes based on EGDs, as well as
to investigate other applications where non-Gaussian
data can benefit from EGDs or their mixture models.
We hope that the basic theory and practical applica-
tion outlined in this paper encourage other researchers
to also study non-Gaussian modeling with EGDs or
families richer than them.
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