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Abstract

This notebook paper describes our solution from UTS-
CMU team in the THUMOS 2015 action recognition chal-
lenge. Our system contains two major components, video
representation generated by VLAD encoding from ConvNet
features and multi-skip improved Dense Trajectories. In ad-
dition, we explore optical flow ConvNet and acoustic fea-
tures such as MFCC and ASR in our system. We demon-
strate that our complete system can achieve state-of-the-art
performance in large-scale action recognition tasks.

1. Introduction

This paper describes the solution from UTS-CMU team
in the THUMOS action recognition challenge 2015. We in-
vestigate different state-of-the-art visual features to see how
they perform in the action recognition task, especially for
the untrimmed real-world videos. Action recognition has
attracted much research attention in recent years. Along
with the advances of visual features designed specifically
for the action recognition task, great improvements on this
task have been witnessed. The features designed for the ac-
tion recognition have been shown very powerful for general
video analysis as well, such as action localization task and
multimedia event detection. However, most of the previous
datasets utilized in the action recognition tasks are trimmed
manually into clips with duration of several seconds, which
is not realistic in the real-world application. In this note-
book paper, we investigate this task in a different scenario,
where the videos are temporally untrimmed and without any
manually preprocessing. In THUMOS 2015 challenge, the
whole dataset contains over 430 hours of video data and
45 million frames (70% larger than THUMOS 2014). Our
investigation shows that we can achieve very promising per-
formance in the large-scale real-world datasets. For the de-
tails for the THUMOS 2015 challenge, please refer to the
challenge description [2].

2. Convolutional Neural Networks Video Rep-
resentation

Our main component of the solution is the novel Convo-
lutional Neural Networks (CNN) video representation pro-
posed by Xu et al. [14], which is a general framework
to adapt the CNN frame-level descriptors to generate the
video representation. Average pooling on CNN based de-
scriptors has been shown worse performance than the state-
of-the-art hand-crafted feature improve Dense Trajectories
(IDT) [13]. Instead of applying standard approaches such
average pooling and max pooling on frame-level features,
Xu et al. [14] utilize state-of-the-art encoding methods such
as Fisher vectors (FV) [9, 10] and Vectors of Locally Ag-
gregated Descriptors (VLAD) [5, 6] to generate the video
representation. After extracting the CNN descriptors from
fully-connected layers such as fc6 and fc7 for each frame,
we aggregate all the frames into single video representation.
For the utilization of the features from convolutional lay-
ers, which contain spatial information and may potentially
improve the recognition accuracy, Xu et al. [14] propose
a novel descriptor called latent concept descriptors (LCD).
The latent concept descriptors (LCD) are generated by for-
mulating the output of convolutional layers and pooling lay-
ers into multiple M -dimensional descriptors for each spatial
location. The same encoding techniques as the features fc6
and fc7 are employed on LCD descriptors to generate the
final representation. With these two contributions, the pro-
posed video CNN representation achieves more than 30%
relative improvement over the state-of-the-art video repre-
sentation on the large scale TRECVID Multimedia Event
Detection (MED) dataset. To accelerate the execution pro-
cess in the video search, Xu et al. [14] conduct Product
Quantization (PQ) [4] techniques to compress the represen-
tation, which saves the storage space by a factor of 32 and
remains almost the same performance as the original repre-
sentation.

In this notebook paper, we show that the schemes pro-
posed in Xu et al. [14] are not specific for multimedia event
detection tasks but also show great performance advantages
over the hand-crafted features IDT in more general video
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analysis tasks such as the THUMOS challenge [2].

3. Enhancement on Improved Dense Trajecto-
ries

In this submission, we employ recent enhancement [7]
on improved Dense Trajectories [13] which extracts im-
proved Dense Trajectories using a family of differential fil-
ters parameterized with multiple time skips and encodes
shift-invariance into the frequency space. Lan et al. [7] is
proposed by the observation that the same action may occur
in different frequencies in the temporal scales, so we should
consider multiple temporal scales when we conduct action
recognition.

4. Experiment Results
For the Convolutional Neural Networks video represen-

tation part, we apply the state-of-the-art ConvNet model
from Simonyan and Zisserman [12]. Specifically, we uti-
lize the VGG-16 model kindly shared by Simonyan and
Zisserman [12]. We experiment with the VGG-16 model
and extract the features from layer fc6, fc7 and apply the
VLAD encoding. In addition, we extract the LCD descrip-
tors from the same model. We apply encoding on LCD de-
scriptors extracted by a GoogLeNet with Batch Normaliza-
tion [3] (denoted as Inception) reproduced by ourselves as
well. To change into a better ConvNet, we can demonstrate
the performance of video analysis can be directly enhanced
by building the encoding framework upon a better under-
lying ConvNet model. For simplicity, we apply PCA re-
duction on all kinds of descriptors into 256 dimension, and
the number of centers utilized in VLAD encoding (K) is
mostly 256 except that we utilize K = 512 as well for LCD
encoding from VGG-16 and Inception.

Beside the major two features, we utilize acoustic fea-
tures MFCC and ASR as common practice in TRECVID
MED task [15]1. Furthermore, we reproduce the tempo-
ral stream ConvNet in two-stream ConvNets as described
in [11] on UCF-101 datasets, and utilize the optical flow
stream ConvNet from UCF-101 split-1 (which is from train-
ing part of THUMOS 2015) to extract features for the THU-
MOS data. We only sample 50 video segments with stack-
ing length L = 10 due to our limited preparation time in the
THUMOS challenge.

For all of the experiments, we utilize Support Vector Ma-
chines (SVM) [1] to classify the actions. When classifying
one specific action, we regard all of the remaining actions
(100 actions) as the negative samples to train the model2.
The decision values from the classifier (linearly scaled into
[0, 1]) are served as the ranking scores for each action. We

1LEAR team [8] utilized acoustic features as well in THUMOS chal-
lenge 2014

2We do not utilize background videos.

fix C = 100 in SVM as the parameter shows consistently
good performance across different features over C = 1 or
C = 0.01.

4.1. Results for Validation 15 Dataset

We firstly show the results for each feature we utilize on
the standard dataset validation 15 provided by the organiz-
ers [2]. Tables 1 shows the great advantages of VLAD en-
coding on ConvNet features [14] over the standard approach
average pooling to generate the video representation from
frame-level features. Table 2 shows the performance of our
main component, the features generated from the methods
proposed in Xu et al. [14], while Table 3 shows the results
from other features for comparison. We can see from the
tables clearly that the features generated by VLAD encod-
ing on frame-level CNN descriptors outperforms other fea-
tures in a significant level. And for the most powerful fea-
ture VLAD encoding on LCD descriptors, a better ConvNet
model provides better performance on the final video classi-
fication performance (our trained Inception ConvNet model
has better performance than VGG-16 model on ImageNet
validation set), which verifies the general utilization of the
framework proposed in [14].

Average pooling VLAD encoding
fc6 0.521 0.589
fc7 0.493 0.566

Table 1. Performance comparisons between average pooling and
VLAD encoding [14, 6] for fc features on THUMOS val15 dataset.

LCD
LCD

from Inception fc6 fc7

mAP 0.619 0.628 0.589 0.566
Table 2. Performance comparisons of features generated from [14]
on (VLAD encoding) THUMOS val15 dataset.

FlowNet multi-skip IDT
mAP 0.416 0.547

Table 3. Performance of other features on THUMOS val15 dataset.

Note that a large amount of training data (UCF-101)
videos are silent so we did not report the relatively poor
performance on MFCC feature and ASR feature in this set-
ting. After late fusion of video representation from [14],
multi-skip IDT [7] [13], and FlowNet [11], we can achieve
mAP 0.689 for THUMOS val15 dataset.

4.2. Results on Cross-validation Sets Generated
from Validation 15

We follow the experiments from LEAR team last year [8]
and conduct cross-validation on the training and validation
set. We select 10 samples for each action from the val15 set



into the training set and all the remaining sample videos in
the val15 set serve as the test data. The experiments are re-
peated for 5 times and the average performance is reported.
Similar to the official validation setting, we compare the
performance of video representation generated from aver-
age pooling over the frames and from VLAD encoding over
the frame-level features, as shown in Table 4. We show the
results for VLAD encoding on LCD descriptors from VGG-
16 and Inception as well in Table 5. In Table 6, we list the
performance from other features on cross-validation sets for
reference.

Average pooling VLAD encoding
fc6 0.653 0.702
fc7 0.625 0.686

Table 4. Performance comparisons between average pooling and
VLAD encoding [14, 6] for fc features on cross-validation sets.

LCD
LCD

from Inception fc6 fc7

mAP 0.738 0.746 0.702 0.686
Table 5. Performance comparisons of features generated from
Xu et al. [14] (VLAD encoding) on cross-validation sets.

multi-skip
IDT MFCC ASR FlowNet

mAP 0.691 0.185 0.180 0.551
Table 6. Performance of other features on cross-validation sets

With increasing K in VLAD encoding from 256 to 512,
LCD from VGG-16 improves from 0.738 to 0.746, and
LCD from Inception improves from 0.746 to 0.752.

When fusing all the features with logistic regression, we
obtain mAP 0.842.

4.3. Results on THUMOS 15 Test Data

In the submissions, we utilize the following schemes
(numbered with the Run ID): (1) Fuse two different kinds
of features each time with grid search on fusion weights; (2)
Average late fusion; (3) Logistic regression fusion on visual
features; (4) Logistic regression fusion on all features; (5)
Average late fusion on VLAD encoded CNN features [14]
only. We choose the fusion parameters in (1) (3) and (4) on
the cross-validation sets, since the cross-validation sets are
more similar to the testing condition than the official valida-
tion set. The performance for each submitted run is shown
in Table 7 respectively, which is evaluated by the organiz-
ers.
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