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ABSTRACT  

Schrödinger's equation has beeen used to investigate theoretically the bound states in a 

system consisting of two object matter waves held together by their mutual gravitational 

attraction: a Gravitational Atom. In seeking the stationary stable states of this system we 

include the normal gravitational attraction and also allow for the gravitational effects of the 

relativistic increase in mass of the rapidly orbiting objects.  

In solving the equations, we find a series of solutions. These are of states corresponding to 

stationary matter waves that one might infer are stable, and would emit no gravitational 

radiation except in transitions to other states. Gravitational Atoms in these states may exist 

and be observable.  

From the infinitude of solutions, certain restrictions may be imposed to find physical possible 

solutions. Only systems composed of objects with an average rest mass less than 10
-9

 kg will 

have non-overlapping Schwartzchild Radii in the Ground State. Restrictions on the rest 

masses of composing objects are also imposed by requiring energy levels to be less than the 

estimated mass energy of the observable universe.  

Also: some ranges of rest masses of composing objects have states with negative energy 

levels greater in magnitude than the total rest mass energy of the composing objects. Systems 

in these states will have a net negative total energy, and so may display a negative mass, and 

repel normal matter gravitationally.  

INTRODUCTION 

In the study reported here, we consider theoretically the bound states of a gravitational atom 

consisting of the matter waves of two objects, one light and one heavy, moving only under 

the influence of their mutual gravitation. The basic qualitative idea is that the gravitational 

mass of the rapidly orbiting lighter object is increased as suggested in Special Relativity by 

its orbital kinetic energy. Using this simple model of Special Relativity [eg. Schwartz, 2007], 

the mass of the lighter object can be written:  

u = m + T/c
2
 = m.[ 1 + T/(mc

2
) ]      (6)  

where in MKS units [Allen, 1964] :  

m = rest mass of the light object, kg, 

u = travelling mass of the light object, kg, 

T = kinetic energy, J, 

c = velocity of light = 3.0 x 10
8
 m/s, 

V = potential energy, J, 

G = universal constant of gravitation = 6.7 x 10
-11

 m
3
kg

-1
s

-2
, 

r = separation of the two objects, m, 
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M = rest mass of the heavy object, kg, 

h = reduced Planck's constant = 1.1 x 10
-34

 J.s  

MATHEMATICAL DETAILS  

Quantitatively we may set up the Schrödinger equation to find the characteristic energies of 

the stationary states of this Gravitational Atom. In this simple exploratory study, we take the 

approximations that the objects are point masses, and that the lighter object moves around a 

stationary heavier object centred on the coordinate origin, then:  

V ≈ - GMu/r = - (GMm/r).[ 1 + T/(mc
2
) ]      (7)  

Then with E = total energy of the atom, we have  

E = T + V      (8)  

or  

E = T - (GMm/r).[ 1 + T/(mc
2
) ] = T.[1 - GM/(rc

2
)] - (GMm/r)      (9)  

or  

T.[1 - GM/(rc
2
)] - (GMm/r) - E = 0      (10)  

Following the usual development to find the stationary states (e.g [Houston, 1959]) we 

transform this using de Broglie's relationship:  

T → -(h
2
/2m).Δ      (11)  

where 

h = reduced Planck's constant = 1.1 x 10
-34

 J.s  

Δ is the Laplacian operator  

Thus we obtain:  

{ (h
2
/2m).[1 - GM/(rc

2
)]Δ + GMm/r + E }.ψ = 0      (12)  

where  

ψ = wave function of the smaller object  

Thus  

{ Δ + 2m.(GMm + E.r)/[ h
2
.(r- GM/c

2
) ] }.ψ = 0      (13)  

Writing this as  

{ Δ + [ B + C.r ]/[ r-A ] }.ψ = 0      (14)  

with  

A = GM/c
2
 (the Zero-Energy Radius of the heavier object)      (15) 

B = 2GMm
2
 / h

2
      (16) 

C = 2mE/h
2
      (17)  

Writing:  

[ B + C.r ]/[ r-A ] = F/[ r-A ] + C.[ r-A ]/[ r-A ]      (18)  

we have  

F = AC + B      (19)  



Changing the dependent variable to s:  

s = r - A      (20)  

we obtain the usual form of the hydrogen atom energy equation:  

{ Δ + F/s + C }.ψ = 0      (21)  

Writing ψ in spherical coordinates as the product of a radial function R and an angular 

function W:  

ψ = R(s).W(θ,φ)      (22)  

Assuming an angular momentum k about the point s = 0 (i.e. r = A), we can remove the 

angular dependence to obtain:  

(d
2
R/ds

2
) + (2/s).(dR/ds) + [ C + F/s - k(k+1)/s

2
 ].R = 0      (23)  

with  

k = 1,2,3,...  

We seek solutions for R that decay exponentially to zero as s → ∞ , so let:  

R = Q(s).e
-s.v

      (24)  

where:  

v
2
 = -C = -2mE/h

2
      (25)  

Then:  

(d
2
Q/ds

2
) - 2(v - 1.s).(dQ/ds) + [ (F-2v)/s - k(k+1)/s

2
 ].Q = 0      (26)  

This equation is known to have two solutions, which at the origin behave as  

Q ≈ s
k
   or   s

-(k+1)
      (27)  

The normalisation condition requires a finite value of  

  ∞   π   2π 

  ∫     ∫     ∫ ψ.ψ
*
.r

2
.sin(θ).dφ.dθ.dr      (28) 

  0    0    0  

or a finite value of  

  ∞   π   2π 

  ∫     ∫     ∫ ψ.ψ
*
.(s+A)

2
.sin(θ).dφ.dθ.ds      (29) 

-A    0    0  

which requires a finite value of  

  ∞ 

  ∫ Q
2
.e

(-2s.v)
.(s+A)

2
.ds      (30) 

-A  

In order to examine the solutions near the origin of s: let P(s) be a polynomial in s.  



Q = s
k
.P(s)      (31)  

where P(s) is a polynomial in s. The solutions of the form s
k
 are those of conventionally 

assigned to the hydrogen atom, but the solutions of the form s
-(k+1)

 are usually rejected 

because the singularity at r = 0 impedes normalisation of ψ. In the current case, the 

singularity is not at the lower limit of the integral, and these solutions may have some 

physical meaning, even though the integral encompasses the singularity.  

Changing the variable by the substitution  

y = 2s.v      (32)  

and assuming v ≠ 0 and C ≠ 0 gives a form of Kummer's Equation [Abramowits & Stegun, 

1972]:  

y.d
2
P/dy

2
 - (k+y).dP/dy + {(2k-F/v)/4}.P = 0      (33)  

which has as a solution the Confluent Hypergeometric Function:  

P = H( (F/v-2k)/4, k, y )      (34)  

This reduces to a finite length Laguerre polynomial if (F/v-2k)/4 is a negative integer, so let  

(F/v-2k)/4 = -j,     j = 0,1,2,..., k = 1,2,...,      (35)  

or  

F/v = 2k - 4j      (36)  

or  

( AC + B )/v = 2n,     n = k-2j = ...,-2,-1,0,1,2,...      (37)  

A unique Ground State exists when n = 0 (i.e. when k = 2j ):  

AC + B = 0      (38)  

or  

( G.M/c
2
 )( 2m.E/h

2
 ) + 2GMm

2
/h

2
 = 0      (39)  

or (aha) :  

E = -mc
2
      (40)  

The general states are found by solving:  

Av
2
 + 2nv - B = 0      (41)  

so  

v = [ -n ± (n
2
+AB)

1/2
 ]/A = -(n/A).[ 1 ± (1 + AB/n

2
)

1/2
 ]      (42) 

If the quantity AB/n
2
 is much smaller than 1, the square root may be expanded as a series, 

and the higher powers of this quantity truncated, giving  

v ≈ -(n/A){ 1 ± [1 + AB/(2.n
2
) ] }      (43) 

so that  

v+ ≈ -(2n/A)      (44) 

and 



v- ≈ B/(2n)      (45) 

From equation (25) the corresponding energies of these states are given by  

E = -(h.v)
2
/(2m)      (46) 

giving 

E+ ≈ -[ 2/m ].(h.n/A)
2
      (47)  

and 

E- ≈ -[ 1/(8m) ].(h.B/n)
2
      (48)  

Expanding the quantities A and B from equations (15) and (16) gives  

E+1 ≈ -(2/m).[ (h.c
2
)/(GM) ]

2
      (49) 

and 

E-1 ≈ -(m/2).[ GMm/h ]
2
      (50) 

ORBITS  

To gauge the size of the orbit, we may find an approximation to the radius of the peak value 

(rp) of the radial function ψ : the Modal Orbital Radius. We shall use:  

     s = r - A (from equation (20)) 

and 

     A = GM/c
2
 (from equation (15)) 

and 

     R(s) = Q(s).e
-s.v

 (from equation (24)) 

and 

     Q(s) = s
k
.P(s) (from equation (31)) 

and 

     P(y) = H( (F/v-2k)/4, k, y) (from equation (34)) 

and 

     y = 2s.v (from equation (32)) 

and 

     v
2
 = -C = -2mE/h

2
 (from equation (25)) 

and 

     (F/v-2k)/4 = -j, j = 0,1,2,... (from equation (35)) 

and 

     n = k-2j (from equation (37)) 

So: for example, taking the Ground State: E = -mc
2
 :  

     n = 0, j = 1, k = 2,      (51) 

and 

     (F/v-2k)/4 = -j = -1,      (52) 

then P(y) is the Laguerre polynomial:  

     P(y) = L1 = 1 - y      (53) 

so 

     Q(s) = s
2
.(1-2v.s)      (54) 



so 

     R(s) = s
2
.(1-2v.s).e

-v.s
      (55) 

and 

     v = (-C)
1/2

 = (-2mE)
1/2

/h      (56) 

The radial function R(s) of ψ has two zeroes, at s = 0, and s = 1/(2v), after which it has an 

oscillation decaying exponentially to zero at s = ∞ . So the peak value of R will be 

somewhere around halfway between the two zeroes, at approximately  

sp ≈ 1/(4v) = (h/4)/(-2mE)
1/2

 = h/(mc.(32)
1/2

)      (57) 

so that  

rp ≈ h/(5.7 x mc) + GM/c
2
      (58) 

or  

rp ≈ (0.64 x 10
-43

)/m + (0.74 x 10
-27

).M      (59) 

MASS DEPENDENCES  

The dependence of the orbital radius and energy levels on the masses m and M of the objects 

offers some interesting limitations on Gravitational Atoms.  

For the Ground State (n=0) the energy dependence on the masses can be found using 

equation (40) :  

E0 = -mc
2
 = -10

+17
m Joules      (71) 

For two objects in this Ground State to be separate entities, their orbital radius needs to lie 

outside the sum of their respective Schwartzchild Radii, so using equation (58), this requires 

that :  

rp ≈ h/(4mc) > rsM + rsm      (72) 

so 

h/(4mc) > 2G(m+M)/c
2
      (73) 

or if M ≈ m,  

(M.m)
1/2

 < [hc/(16.G)]
1/2

 ≈ 5 x 10
-9

 Kgm      (74) 

If the masses are greater than this limit, their Schwartzchild Radii would overlap in the 

Ground State, and it may be more appropriate to treat them as a single object.  

The energies of the next higher levels (n = ± 1) found using equation (49) and (50) as long as 

A.B << 1, where  

A.B = [ 2G
2
/(h.c)

2
 ].(M.m)

2
      (75) 

so the condition that A.B << 1 requires 

(M.m)
1/2

 << (h.c/G)
1/2

 ≈ 10
-8

 Kgm      (76) 

which is guaranteed if condition (74) is satisfied.  



The energy dependences on the masses below this limit are then :  

E+1 ≈ -(2/m).[ (h.c
2
)/(GM) ]

2
 ≈ -2.[ (h.c

2
)/G ]

2
 / (m.M

2
) ≈ -10

-14
 / (m.M

2
)      (77) 

and 

E-1 ≈ -[ h
2
/(8m) ].[ (2GMm

2
/h

2
 ]

2
 ≈ -(1/2).[ G

2
/h

2
 ].m

3
.M

2
 ≈ -10

+47
.m

3
.M

2
      (78) 

Taking a pair of masses near the upper limit of condition (74), say  

M = 10
-8

 and m = 10
-10

 Kgm      (79) 

then 

E+1 ≈ -10
+12

 Joules      (80) 

and 

E-1 ≈ -10 Joules      (81) 

SIMILAR OBJECTS  

Some general limits can be placed on the level E±1 states in the gravitational interaction 

between pairs of objects with similar masses.  

The Ground State of systems composed of two similar objects heavier than the ~ 10
-9

 Kgm 

limit would have orbits that are substantially inside their respective Schwartzchild Radii, 

Continuing to treat these as a double objects seems hardly appropriate for this situation.  

Consideration of level E±1 states also discloses some limits.  

The assumption that the total mass energy of the universe is ~ 10
+69

 Joules [Behr, 2007] sets 

some limits on Gravitational Atoms. Systems composed of two similar objects lighter than ~ 

10
-21

 Kgm, will have an E+1 value greater in magnitude than the mass of the observable 

universe. Similarly, systems composed of two similar objects heavier than ~ 10
6
 Kgm, will 

have an E-1 value greater in magnitude than the mass of the observable universe.  

Systems composed of two similar objects lighter than ~ 10
-8

, will have a negative E-1 value 

greater than the mass of composing objects, and so that state may appear to have a negative 

mass. Similarly, systems composed of two similar objects heavier than ~ 10
-13

 Kgm, will 

have a negative E+1 value greater than the mass of composing objects, and so that state may 

appear to have a negative mass. Thus systems composed of similar objects in the range 10
-13

 

to 10
-8

 Kgms will have both E1 energies greater than the mass of the composing objects, and 

so may exhibit negative masses in both states.  

DISCUSSION  

The solutions obtained above for the Ground State (n=0) of our Gravitational Atom, where 

the value of E = -mc
2
, are of the form where the rest mass of the lighter object is totally 

cancelled by the negative potential energy of the state it is in. In this state, to an outside 

observer: the mass of the orbiting object will seem to have disappeared, and the system will 

exhibit only a mass equal to that of the heavier object. This is similar to the result that was 

obtained in the Introduction when considering Zero-Energy Radius of an object. One might 

have thought the kinetic energy of the orbiting second object in the Gravitational Atom would 

contribute positively to the energy of this state, but curiously it does not seem to.  



One may expect the system still to have the combined charge of both participating objects, 

and also have an orbital angular momentum k, an integer, but this momentum would be about 

an origin at a distance from the centre of the larger object equal to half its Schwatzchild 

Radius. The relation of this off-centre spin to the spin of the participating objects is unclear.  

This study is simplistic in its treatment of relativity and gravitation, neglecting as it does any 

internal structure to the objects, and the other three forces of nature, spin, and charge, but 

some of the qualitative results might carry through to more sophisticated and realistic models.  
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APPENDIX 1  

 
Graphical representation of the constraints on the two first level excited states  



  

APPENDIX 2  

Primary Variables & Constants 

MKS units [Allen, 1964]  

c = velocity of light = 3.0 x 10
8
, m/s 

E = system energy, J 

G = universal constant of gravitation = 6.7 x 10
-11

, m
3
kg

-1
s

-2
 

h = reduced Planck's constant = 1.1 x 10
-34

, J.s  

m = rest mass of the light object, kg 

M = rest mass of the heavy object, kg 

r = separation of the two objects, m 

u = travelling mass of the light object, kg 

U = mass energy of the visible universe, J 

V = potential energy, J 

T = kinetic energy, J 

        

Equations defining 

Intermediate Variables  

A equation (15) 

B equation (16) 

C equation (17) 

F equation (19) 

H equation (34) 

j equation (35) 

k equation (23) 

L equation (53) 

n equation (37) 

P equation (34) 

R equation (22) 

Q equation (27) 

s equation (20) 

v equation (25) 

W equation (22) 

y equation (32) 

Δ equation (11) 

ψ equation (22) 
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