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Abstract

This paper presents a method for calibrating
the extrinsic and intrinsic parameters of a cam-
era and a lidar scanner. The approach uses
normalised mutual information to compare an
image with a lidar scan. A camera model that
takes into account orientation, location and fo-
cal length is used to create a 2D lidar image,
with the intensity of the pixels defined by the
angle of the normals in the lidar scan. Parti-
cle swarm optimisation is used to find the opti-
mal model parameters. The method is success-
fully validated in a natural environment with
images collected by a hyperspectral and a 3D
lidar scanner.

1 Introduction

Accurate calibration between lidar scanners and cameras
is important as it allows each point in the cloud produced
by the scanner to have a colour associated with it. These
coloured points can then be used to build up richer mod-
els of the area. This calibration is quite challenging due
to the very different modalities of the sensors and the
nature of the output information. Due to the difficulty
of aligning the sensors the majority of these systems are
calibrated by hand. This is currently done using reflec-
tive markers, chequerboards or by painstakingly hand
labelling large numbers of points. These methods are
slow, labour intensive and often produce results with sig-
nificant errors.

Our application for building a camera-lidar system is
in mining, where hyperspectral cameras are used to de-
tect ore quality. Hyperspectral cameras detect hundreds
or even thousands of different light frequencies and their
relative intensities, which is unlike regular cameras that
are typically sensitive to only three different frequencies
(red, green and blue). From all of the hyperspectral cam-
era readings an estimate of the reflectance of a point as
function of its frequency can be generated. These re-

Figure 1: Generated Lidar image (top) and Hyperspec-
tral image (bottom) of area 3 of the mine dataset

flectance plots can then be used to detect what material
is present at the location.

These cameras can be used to scan cliff faces in mines
and generate an image that shows the quality of ore
present in that face. If a depth map of the same face is
also available, the geometry of the face can be combined
with this map of the ore quality to give a 3D visualisa-
tion of the ore in the face. This information can be used
to estimate the amount of ore and greatly improve the
efficiency with which an area can be mined. It can also
prevent a large amount of wasted effort in the excava-
tion and processing of areas that only contain low quality
ore. This process however relies on knowing which pixel
in the hyperspectral image is assigned to each point de-
tected by the lidar and thus requires calibration of the
sensors.

To make the scanning of these mining areas easy and
practical it is desirable that the hyperspectral and li-
dar scans of an area can be made independently without
consideration for the exact location and orientation of
the scanners. The system also needs to operate using a
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single scan without any calibration objects such as che-
querboards placed in the scene. With these constraints
in mind this paper looks at a method for automatically
aligning a camera and a lidar scanner using scans of
an arbitrary environment. The method estimates the
extrinsic and some intrinsic parameters of the camera
in an automated process with minimal human interac-
tion. The process makes minimal assumptions about
the sensors and the environment making it applicable
for a wide range of lidar-camera calibration problems.
The approach is demonstrated by solving the calibra-
tion problem for a mining site that has been outlined.
An example of the data used is shown in Fig. 1.

The proposed method operates by creating a camera
model and projecting the lidar point cloud through it.
When the camera model has the same extrinsic and in-
trinsic parameters as the hyperspectral camera, a point
in the image generated by this model will be in the same
location as a point in the hyperspectral image. Then,
each point in the lidar point cloud can be assigned to
a hyperspectral pixel. The parameters for this camera
model are found in an automated fashion using the nor-
malised mutual information (NMI) between the gener-
ated and hyperspectral image as a measure of the align-
ment. The approach uses surface normals for the gener-
ated images pixel intensities. While normals have been
used for aligning 3D models using mutual information
as presented in [Corsini et al., 2009], it appears to never
have been applied to lidar image alignment. Parameters
are optimised using particle swarm [Kennedy and Eber-
hart, 1995]. Particle swarm optimisation was used as
it can find the global optima of a function with a large
number of local optima as our problem has.

2 Related work

Several methods exist for aligning a single image with
a 3D view of the same location. A recently proposed
method for registering aerial images and lidar scans
based on edges and corners is presented in [Li et al.,
2012]. Their method works by constructing closed poly-
gons from edges detected in both the lidar scan and
images. Once the polygons have been extracted they
are used as features and matched to align the sensors.
The method was only intended for and thus tested using
aerial photos of urban environments.

A method similar to our approach, registration by cre-
ating an image from the lidar is presented in [Mastin et
al., 2009]. The intensity of the pixels in the image gener-
ated from the lidar scan were either the intensity of the
return the laser had or the height from the ground. The
images were compared using mutual information and op-
timisation was done via downhill simplex. This method
operates quickly and produced accurate results although

its search space was rather limited requiring an initial
guess of the orientation of the camera that was correct
to within 0.5 degrees for roll and pitch. The method
was only tested in an urban environment where build-
ings provided a strong relationship between height and
image colour.

A large number of methods exist that exploit the de-
tection of straight edges in a scene [Lee et al., 2002;
Lyngbaek and Zakhor, 2008; Liu and Stamos, 2007].
While these methods work well in cities and with im-
ages of buildings they are unable to correctly register
natural environments due to the lack of strong straight
edges.

In a similar problem [Levinson and Thrun, 2012] cal-
ibrated the extrinsic parameters of a camera and velo-
dyne system using a series of 100 image scan pairs. Their
method involves finding edge images for both the laser
and images and using an element wise multiplication of
these images, assuming that when this is maximised the
two sensors are correctly aligned. There is also some ex-
tra processing done to improve the robustness and con-
vergence of the method.

Two methods have been presented for aligning hyper-
spectral images with lidar scans of cliff faces. In [Nieto
et al., 2010] the authors used a pre-calibrated camera
mounted on top of the lidar to render colour informa-
tion for the lidar scans. This colour information was
used to create an image with approximately the same
parameters as the hyperspectral image. Both images
were then converted to greyscale and roughly aligned us-
ing SIFT features. Fine registration was performed by a
piecewise linear transform where sum of squares differ-
ences (SSD) was used as the measure of match strength.
While this method produces good results it requires an
additional camera that has been pre-calibrated with the
lidar. A second approach is presented in [Kurz et al.,
2011]. Their method of registration is based on the use
of retro-reflective targets whose positions, once detected
by both sensors can be used to calibrate them.

In [Corsini et al., 2009] the authors looked into differ-
ent techniques for generating an image from a 3D model
so that mutual information would successfully register
the image with a real photo of the object. They used
NEWUOA optimisation in their registration and looked
at using the silhouette, normals, specular map, ambient
occlusion and combinations of these to create an image
that would robustly be registered with the real image.
They found surface normals and a combination of nor-
mal and ambient occlusion to be the most effective.

A fairly in depth look at many of the different meth-
ods for aligning images with lidar scans can be found in
[Mishra and Zhang, 2012].
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Figure 2: Overview of alignment method

3 Methodology

Fig. 2 shows a block diagram of the whole process.
An RGB image is obtained from the hyperspectral one,
which is then converted to grey scale. For the data given
by the laser scanner, first an approximation of the nor-
mals of each point is estimated. After that, a camera
model is used to generate a 2D image from the point
cloud, where the intensity of a pixel is defined as directly
proportional to the angle of its normal. Normalised mu-
tual information is then used as a measure to compare
the hyperspectral image with the laser projection. This
process is repeated for different camera model parame-
ters during the optimisation until convergence occurs.

3.1 Surface normals

The normals of the points are estimated by first taking
the difference between consecutive points in the scan.
Once this difference is obtained the angle between this
point and the horizontal x − z plane is obtained and
stored for use in the image generation process. This
process is shown in Eq. 1.

nm = arctan(
ym − ym+1√

(xm − xm+1)2 + (zm − zm+1)2
) (1)

Where n is the normal value, m is the point index and
x,y,z are the points location.

Surface normals were chosen for colouring the pixels
as the method results in a fairly strong correspondence
between the generated laser image and the image from
the hyperspectral camera. It also works well with mu-
tual information as was demonstrated by [Corsini et al.,
2009]. This relationship exists as the angle between a
surface, the camera and the light sources plays a large
role in determining the amount of light a surface reflects
into the camera and thus its intensity in the generated
image. Normals were used rather than the angle between
the surface and the camera as the normals are indepen-
dent of the camera location and so can be pre-calculated.
This is important as the calculation of the image from
the lidar scan is the most expensive computational step
in the optimisation. The angle between the normals and
a horizontal plane is used as it is assumed that most of
the light is coming from above and thus this angle has
the largest influence on the intensity.

3.2 Mutual Information

Mutual information is a measure of mutual dependence
between two signals. It was first developed in informa-
tion theory using the idea of Shannon entropy [Pluim et
al., 2003]. Shannon entropy is a measure of how much
information is contained in a signal and its discrete ver-
sion is defined as [Shannon, 1948]:

H(X) = H(pX) =

n∑
i=1

pilog(
1

pi
) (2)

where X is a discrete random variable with n elements
and the probability distribution pX = (p1, ..., pn). For
this purpose 0log∞ = 0. Using this idea of Shannon
entropy, mutual information is defined as

MI(M,N) = H(M) +H(N)−H(M,N) (3)

where H(M,N) is the joint entropy which is defined as

H(M,N) = H(p(m,n)) =
∑
m

∑
n

p(m,n)log(
1

p(m,n)
)

(4)
Mutual information when used for registration pur-

poses suffers from an issue in that it can be influenced
by the amount of total information contained in images
causing it to favour images with less overlap [Studholme
et al., 1999]. This unwanted effect is reduced by using
normalised mutual information defined as
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Figure 3: Cylinder model used to represent the hyper-
spectral imaging system

NMI(M,N) =
H(M) +H(N)

H(M,N)
(5)

In practice, for images, the required probabilities
p(M) and p(N) can be estimated using a histogram of
the distribution of intensity values.

Normalised mutual information is used as the metric
for evaluating the strength of the alignment between the
two images as it can cope with the non-linear relationship
between angle and intensity. It also accounts for issues
such as how different materials can appear dissimilar in
different sensor modalities. This strength means that it
can be assumed that the global maximum of normalised
mutual information (NMI) occurs when the images are
best aligned.

3.3 Camera model

To convert the laser data from a list of 3D points to a 2D
image the points are first passed into a transformation
matrix that aligns the cameras and the world axis. Af-
ter this has been performed, a basic panoramic camera
model that projects the points onto a cylinder is used, a
rough depiction of this is shown in Fig. 3. This model
projects the points using Eqs. 6 and 7 [Schneider and
Maas, 2003].

xpan = x0 − c arctan(
−y
x

) + ∆xpan (6)

ypan = y0 −
cz√
x2 + y2

+ ∆ypan (7)

where

xpan , ypan are the x and y position of the point in the
image.

x, y, z are the coordinates of points in the environment.

c is the principle distance of the model

x0 , y0 are the location of the principle point in the im-
age.

Figure 4: Examples of images obtained with the
panoramic camera model

∆x , ∆y are the correction terms used to account for
several imperfections in the camera.

These models ignore the effects of several other pa-
rameters such as the x and y axis of the camera not
being perfectly perpendicular and the radial distortion
of the lens. However, the simplified model can be justi-
fied as for a similar camera with a resolution of 10000 by
60000 pixels, the authors in [Schneider and Maas, 2003]

showed that the error caused by these parameters is less
than 10 pixels. For applications in remote sensing this
level of error in the images was taken to be acceptable.
The resulting output of the camera model can be seen
in Fig. 4.

3.4 Optimisation

Depending on the assumptions made by the camera
model and the accuracy of the initial scans position
the problem either has 4, 7 or 9 variables to solve.
This search space is also highly non-convex with a large
amount of local maximums. An example of the typical
shape when NMI is plotted in two dimensions is shown in
Fig. 5. With the simple histogram method of calculating
the mutual information used in this paper there is also
no information on the derivatives available. These diffi-
culties are further compound by the relatively expensive
process of generating an image from a point cloud that
is required for every function evaluation.

The fairly large range that the correct values can lie
in coupled with the local maximums mean that sim-
ple gradient accent type methods as used by others
to solve image lidar registration [Mastin et al., 2009;
Mishra and Zhang, 2012] cannot be used here. To
solve these problems particle swarm optimisation is used
[Kennedy and Eberhart, 1995; Mikki and Kishk, 2008].
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Figure 5: Example of NMI values for changing roll and
yaw

Particle swarm optimisation works by placing an initial
population of particles randomly in the search space.
Each iteration a particle moves to a new location based
on three factors: 1) it moves towards the best location
found by any particle. 2) it moves towards the best lo-
cation it has ever found itself. 3) it moves in a random
direction. The optimiser stops once all particles have
converged.

The entire algorithm for registration is summarised in
section 3.5.

3.5 Algorithm

Let
ri(t) be the position of particle i at time t
vi(t) be the velocity of particle i at time t
pi,Ln be the local best of the ith particle for the nth

dimension
pgn be the global best for the nth dimension
n ∈ 1, 2, ...N
t is the time
∆t is the time step
c1 and c2 are the cognitive and social factor constants
φ1 and φ2 are two statistically independent random

variables uniformly distributed between 0 and 1
w is the inertial factor

foreach iteration, l
if f(ri(l + 1)) > f(pi,L(l)) then
pi,L(l + 1) = ri

end
if f(ri(l + 1)) > f(pg(l)) then
pg(l + 1) = ri

end
vin(t+∆t) = wvin(t)+c1φ1[pi,Ln −xin(t)]∆t+c2φ2[pgn−

xin(t)]∆t

Figure 6: Hyperspectral camera and lidar setup used to
collect the data

rin(t+ ∆t) = rin(t) + ∆tvin(t)

end

4 Experiments

The method presented was evaluated on a dataset col-
lected in an open pit mine in western Australia [Nieto
et al., 2010]. The laser used was a Riegl LMS-Z420i and
the hyperspectral camera was a Neo HySpex VNIR and
SWIR, the setup can be seen in Fig. 6. RTK GPS was
used to provide the exact location of the camera and laser
scanner, however, due to the geography of the place, at
two of the locations this signal failed and only a standard
GPS location was given. The hyperspectral camera was
readjusted and the focal length changed before taking
each image so its intrinsics cannot be assumed to be the
same between images. Scan and image pairs from four
different sections of the mine were used. These images
were taken over the course of two days. These areas of
the mine were labelled a1,...,4. An initial guess at the ori-
entation of the camera was made. This guess was chosen
such that a comparison of the hyperspectral and initial
lidar scan could clearly show the alignment to be incor-
rect by a few degrees. The initial location of the camera
was taken to be the GPS coordinates. The initial guess
of the values are shown in Table 1

4.1 Optimisation

Each optimisation was run 3 times, each time with dif-
ferent set of parameters θ. Eq. 8 shows the three con-
figurations evaluated.

θ1 = [roll, pitch, yaw, c] (8)

θ2 = [roll, pitch, yaw, c, x, y, z]

θ3 = [roll, pitch, yaw, c, x, y, z,∆xpan,∆ypan]
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location θ ∆x ∆y ∆z roll pitch yaw c ∆xpan ∆ypan
a1 0 0 0 0 0 0 -44 1320 0 0

1 n/a n/a n/a -0.1 0.1 -45.1 1332 n/a n/a
2 -0.138 -0.109 -0.196 -0.82 0.1 -45.2 1334 n/a n/a
3 -0.049 -0.03 -0.205 -0.75 -0.1 -45.9 1333 16.8 19.5

a2 0 0 0 0 0 0 37 1320 0 0
1 n/a n/a n/a -2.6 5.9 39.1 1321 n/a n/a
2 0.77 1.3 0.265 -2.5 5.6 40.4 1315 n/a n/a
3 0.561 2.195 -0.33 -2.4 6.4 40.74 1307 10.0 1.6

a3 0 0 0 0 0 5 5 1320 0 0
1 n/a n/a n/a -1.1 6.1 5.1 1326 n/a n/a
2 1.998 1.97 0.459 -1.1 6.1 5.1 1326 n/a n/a
3 1.998 2 0.484 -1.2 6.3 5.3 1325 -3.8 -4.1

a4 0 0 0 0 0 4 50 1320 0 0
1 n/a n/a n/a -1.1 3.3 54.1 1337 n/a n/a
2 -0.098 -0.386 -0.319 -1.2 3.7 53.8 1338 n/a n/a
3 -0.949 -0.92 -0.32 -1.2 3.4 53.3 1332 -9.0 7.0

Table 1: Parameters found for camera model camera model. θ0 is the initial values

The search space for the optimizer was constructed
assuming the following:

• The roll, pitch and yaw of the camera were within
10, 20 and 5 degrees respectively of the lasers.

• The cameras principal distance was within 20 pix-
els of correct (for this camera principal distance ≈
1320).

• The x, y and z coordinates were either correct or
within 4, 4 and 0.5 meters of correct.

• The ∆xpan and ∆ypan were either 0 or within 20
pixels of correct.

The particle swarm optimiser was started with 100
particles and ran until the particles all converged to
within 0.1 in all dimensions of each other. This usually
took between 100 and 200 iterations.

The code was written in Matlab with mex files written
in C created for the generation of the lidar images and
mutual information calculations. The code was run on
a Dell latitude E6150 laptop with an Intel i5 M520M
CPU. Each function evaluation took around 0.1 seconds
and the total runtime for the code was 15 to 45 minutes
depending on the image resolutions, number of points in
the scan and how quickly convergence occurred.

4.2 Results

For all the data sets used, no ground truth as to the ori-
entation between the lidar and the hyperspectral cam-
era was given. This makes quantitative evidence of the
accuracy of the alignment difficult. However one of the
main applications of this alignment is for visualisation of
multi-model information and so how accurate the align-
ment appears to someone viewing the two images can be

used to provide some estimate on the effectiveness of the
method.

The parameters estimated by our approach are listed
in Table 1. For the areas a4 and a1 the RTK GPS was
operating and so any variation in position can be taken
as error. For dataset a1 all results are within 0.3m of
each other while in a4 the error is as large as 1.4m. This
error mainly occurred when all parameters were varied
and may be a result of the search space becoming too
large for the optimiser to locate the global maximum.
In the absence of ground truth values for the other pa-
rameters few conclusions can be drawn from the Table
alone. Instead, to visualise the accuracy of the align-
ment, four different scans are projected onto the images
and shown in Fig. 7. On inspection it can clearly be
seen that for all runs the approach converges to a solu-
tion that appears reasonable and is significantly better
than the initial guess provided. For a4 an image gener-
ated by using the calibrated camera model to colour the
point cloud is shown in Fig. 8, this gives some indication
to the accuracy as the only points clearly miscoloured are
caused by lidar returns off dust and tape that was blow-
ing in the wind. Note when viewing these outputs that
while a tripod with the hyperspectral calibration board
(for reflectance) is present in most of the images, it was
often moved between the time the hyperspectral image
and the lidar scan were taken meaning it cannot be used
to judge the quality of the alignment.

Experiments were run with larger allowances for the
roll, pitch and yaw with the aim of requiring no initial
guess for these values. It was found however that for
these larger tolerances 2 of the 4 images became stuck in
local maximums during optimisation and converged to
solutions that were clearly not optimal. These incorrect
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Figure 7: Results of optimisation. To visualise results
strong edges in the lidar data have been found and are
overlaid in blue on top of the red hyperspectral image.
Each area has shown the rgb bands of the hyperspectral
(top), the initial guess (middle) and the alignment found
changing θ2. The sites from top to bottom are a1, a2, a3
and a4.

results were caused by a problem with the optimisation
and not with the metric as the NMI value found for these
incorrect solutions was less than that the one found by
the more constrained optimisation.

5 Comparisons with other methods

For the dataset used with natural images, very few meth-
ods were appropriate to attempt comparison with. We
implemented the approach presented in [Mastin et al.,
2009]. However no images were successfully aligned by
this method. This failure was expected as the method
was designed for aerial images of urban scenes and the
intensity of the lasers return was not available. As our
problem involves calibration of range and image data,
the method presented in [Nieto et al., 2010] could not be
used in its standard form. We tried a modified version of
the method replacing the colour image with our laser im-
age coloured by the normals. We found that the images
could be successfully registered for some of the dataset.
This method however suffered from problems with out-
liers during SIFT matching due to the large differences
in modalities between the normals image and the hyper-
spectral. The method also suffers from the issue that it
operates by warping the images and so cannot be used
to calibrate the sensors. No other methods were found
that claimed to be able to register a ground based lidar
scan with a photo in a natural environment.

6 Conclusions and Future Work

A method for aligning a camera with a lidar scan suitable
for natural environments was presented. This method
operates by creating an image using a camera model
and the directions of the normals of points. Normalised
mutual information is used to compare the images and
maximised to find correct alignment of the images. The
method was demonstrated to successfully work to cali-
brate a hyperspectral camera and a 3D laser in a dataset
collected in a mine. In future work a dataset with ground
truth values will be obtained so that the accuracy of the
results can be quantitatively measured. Currently the
implementation is slow when compared to similar meth-
ods. The reason for this is transformation of the lidar
points which take over 90% of the time. An implemen-
tation that uses the GPU for this task or a method for
thinning the initial point cloud would solve this issue.
A pyramid implementation is also being looked into to
help this process.
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Figure 8: Point cloud of a4 coloured by the visible bands of the calibrated hyperspectral image

References

[Corsini et al., 2009] Massimiliano
Corsini, Matteo Dellepiane, Federico Ponchio, and
Roberto Scopigno. Image to Geometry Registration: a
Mutual Information Method exploiting Illumination-
related Geometric Properties. Computer Graphics Fo-
rum, 28(7):1755–1764, 2009.

[Kennedy and Eberhart, 1995]

James Kennedy and Russel Eberhart. Particle swarm
optimization. Proceedings of ICNN’95 - International
Conference on Neural Networks, 4:1942–1948, 1995.

[Kurz et al., 2011] Tobias H. Kurz, Simon J. Buckley,
John a. Howell, and Danilo Schneider. Integration of
panoramic hyperspectral imaging with terrestrial lidar
data. The Photogrammetric Record, 26(134):212–228,
June 2011.

[Lee et al., 2002] Sung Lee, Soon Jung, and Ram Neva-
tia. Automatic integration of facade textures into 3D
building models with a projective geometry based line
clustering. Computer Graphics Forum, 21(3), 2002.

[Levinson and Thrun, 2012] Jesse Levinson and Sebas-
tian Thrun. Automatic Calibration of Cameras and
Lasers in Arbitrary Scenes. In International Sympo-
sium on Experimental Robotics, pages 1–6, 2012.

[Li et al., 2012] Hui Li, Cheng Zhong, and Xianfeng
Huang. Reliable Registration of Lidar Data and Aerial
Images without Orientation Parameters. Sensor Re-
view, 32(4), 2012.

[Liu and Stamos, 2007] Lingyun Liu and Ioannis Sta-
mos. A systematic approach for 2D-image to 3D-range
registration in urban environments. 2007 IEEE 11th
International Conference on Computer Vision, pages
1–8, 2007.

[Lyngbaek and Zakhor, 2008] Kristian Lyngbaek and
Avideh Zakhor. Automatic registration of aerial im-
agery with untextured 3D LiDAR models. 2008 IEEE

Conference on Computer Vision and Pattern Recog-
nition, pages 1–8, June 2008.

[Mastin et al., 2009] Andrew Mastin, Jeremy Kepner,
and John Fisher III. Automatic registration of LIDAR
and optical images of urban scenes. Computer Vision
and Pattern Recognition, pages 2639–2646, 2009.

[Mikki and Kishk, 2008] Said M. Mikki and Ahmed a.
Kishk. Particle Swarm Optimization: A Physics-
Based Approach, volume 3. January 2008.

[Mishra and Zhang, 2012] Rakesh Mishra and Yun
Zhang. A Review of Optical Imagery and Airborne
LiDAR Data Registration Methods. The Open Re-
mote Sensing Journal, 5:54–63, 2012.

[Nieto et al., 2010] Juan Nieto, Sildomar Monteiro, and
Diego Viejo. 3D geological modelling using laser and
hyperspectral data. Geoscience and Remote Sensing
Symposium, pages 4568–4571, 2010.

[Pluim et al., 2003] Josien P. W. Pluim, J. B. Antoine
Maintz, and Max A. Viergever. Mutual-information-
based registration of medical images: a survey. Medi-
cal Imaging, IEEE, 22(8):986–1004, 2003.

[Schneider and Maas, 2003] Danilo Schneider and Hans-
Gerd Maas. Geometric modelling and calibration of a
high resolution panoramic camera. Optical 3-D Mea-
surement Techniques VI, 2003.

[Shannon, 1948] Claude Elwood Shannon. A Mathemat-
ical Theory of Communication. Bell System Technical
Journal, 27(3):379–423, 1948.

[Studholme et al., 1999] Colin Studholme, Derek L.G.
Hill, and David J Hawkes. An overlap invariant en-
tropy measure of 3D medical image alignment. Pattern
recognition, 32(1):71–86, January 1999.

Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.




