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Abstract— This paper presents an evaluation of a
new metric for registering two sensors of different
modality. The metric operates by aligning gradients
present in the two sensors’ outputs. This metric is
used to find the parameters between the sensors that
minimizes the misalignment of the gradients. The
metric can be applied to a wide range of problems and
has been successfully demonstrated on the extrinsic
calibration of two different lidar-camera systems as
well as the alignment of IR and RGB images. Unlike
most of previous techniques, our method requires no
markers to be placed in the scene and can operate on
a single scan from each sensor.

I. INTRODUCTION

Most mobile robotic platforms rely on a large range
of different sensors to navigate and understand their
environment. However before multiple sensors can work
together to give information on the same target the
sensor outputs must be registered. This registration is
far from trivial due to the very different modalities via
which different sensors may operate. This registration
has traditionally been performed by either hand labelling
points or placing markers such as corner reflectors or
chequerboards in the scene. The location of these markers
are detected by all of the sensors and their positions are
used for calibration.

The calibration produced by hand-labelling or maker-
based methods, while initially accurate, is quickly de-
graded due to the robot’s motion. For mobile robots
working on topologically variable environments, such as
agricultural or mining robots, the motion can result in
significantly degraded calibration after as little as a few
hours of operation. Under these conditions marker based
calibration quickly becomes tedious and impractical. To
maintain an accurate calibration, an automated system
that can recalibrate the sensors using observations made
during the robot’s normal operations is required. We
envision a system that would periodically retrieve a set
of scans from the sensors and then, while the robot
continues its tasks, process it to validate the current
calibration and update the parameters when needed.

Towards that aim, we have developed a new metric,
the gradient orientation measure (GOM) that can ef-
fectively align the outputs of two sensors of different
modalities. The metric can calibrate multi-sensor plat-
forms by optimising through a set of observations, and,
unlike most current calibration approaches, the metric is
also able to calibrate from a single scan pair. This last

property makes our approach suitable for a broad range
of applications since it is not restricted to calibration
based on multiple observations from sensors attached to
a rigid mount. To demonstrate the metric’s potential and
versatility we present results on three different datasets:
(i) the alignment of two hyper-spectral camera images,
(ii) the calibration of a rotating panoramic camera with
a single high resolution scan and (iii) the calibration of
a panospheric camera with a series of Velodyne scans. In
each of these tests the proposed approach is compared
with state of the art methods. An example of the results
obtained with our system is shown in Figure 1.

Fig. 1. Camera and lidar scan being combined. Raw lidar data
is shown in the top left, with the camera image shown in the top
right. The textured map obtained with our approach is shown at
the bottom.

II. RELATED WORK

The most common techniques in multimodal registra-
tion are mutual information (MI) and normalized mutual
information (NMI). Both measures use Shannon entropy
to give an indication of how much one sensor output
depends on the other. They have both been widely
used in medical image registration, a survey of MI-based
techniques has been presented in [1].

A. Mastin et al. achieved registration of an aerial lidar
scan by creating an image from it using a camera model
[2]. The intensity of the pixels in the image generated
from the lidar scan was either the intensity of the laser
return or the height from the ground. The images were
compared using the joint entropy of the images and
optimisation was done via downhill simplex. The method
was only tested in an urban environment where buildings



provided a strong relationship between height and image
colour.

One of the first approaches used to successfully register
Velodyne scans with camera images that did not rely
on markers was presented in [3]. Their method operates
on the principle that depth discontinuities detected by
the lidar will tend to lie on edges in the image. Depth
discontinuities are isolated by measuring the difference
between successive lidar points and removing points with
a depth change of less than 30 cm. An edge image
is produced from the camera that is then blurred to
increase the capture region of the optimiser. The average
of all of the edge images is then subtracted from each
individual edge image to remove any bias to a region.
The two outputs are combined by projecting the isolated
lidar points onto the edge image and multiplying the
magnitude of each depth discontinuity by the intensity
of the edge image at that point. The sum of the result is
taken and a grid search used to find the parameters that
maximise the resulting metric.

Two very similar methods that also operate on
Velodyne-camera systems have been independently de-
veloped by Pandey et al. [4] and Wang et al. [5]. These
methods use the known intrinsic values of the camera
and estimated extrinsic parameters to project the lidar’s
scan onto the camera’s image. The MI value is then taken
between the lidar’s intensity of return and the intensity
of the corresponding points in the camera’s image. When
the MI value is maximised, the system is assumed to be
perfectly calibrated. The only major difference between
these two approaches is in the method of optimisation
used; Pandey et al. makes use of the Barzilai-Borwein
(BB) steepest gradient ascent algorithm, while R. Wang
et al. makes use of the Nelder-Mead downhill simplex
method. In both implementations, aggregation of a large
set of scans is required for the optimisers used to converge
to the global maximum.

III. MULTI-MODAL SENSOR CALIBRATION

Our method can be divided into two main stages:
feature computation and optimisation.

The feature computation stage converts the sensor
data into a form that facilitates comparisons of different
alignments during the optimisation stage. The initial
step is to perform histogram equalisation on the input
intensities to ensure high contrast in the data. Next,
an edge detector is applied to the data to estimate the
intensity and orientation of edges at each point; the
edge detector used depends on the dimensionality of the
data. The strength of the edges is histogram equalised
to ensure that a significant number of strong edges are
present. This edge information is finally passed into the
optimisation, completing the feature computation step.

The sensors’ outputs are aligned during the optimi-
sation. This is done by defining one sensor’s output as
fixed (called the base sensor output) and transforming
the other sensor’s output (referred to as the relative

sensor output). In our framework, the base output is
always 2D. For two 2D images, an affine transform is
used, and for 2D-3D alignment, a camera transform is
used to project the 3D points of the relative output onto
the 2D base output. Once this has been done, the base
output is interpolated at the locations that the relative
output was projected onto to give the edge magnitudes
and directions at these points.

Finally, GOM is used to compare the edge features
between the two outputs and to provide a measure of
the quality of the alignment. This process is repeated
for different transformations until the optimal set of
parameters is found. !

A. Transformation

The transformation applied to align the sensors’ out-
puts depends on the dimensionality of the two sensors. If
one sensor outputs 3D data, for example a lidar, and the
other sensor is a camera, then a camera model is used
to transform the 3D output. If both sensors provide a
dense 2D image, then an affine transform is used to align
them. A more detailed look at calculating the transforms
is covered in [6].

B. Gradient calculation

The magnitude and orientation of the gradient of a
camera’s image intensity is calculated using the Sobel op-
erator. Calculation of the gradient from 3D data sources
is slightly more challenging and performed using the
method outlined in [6]

C. The Gradient orientation measure

The formation of a measure of alignment between two
multi-modal sources is a challenging problem. Strong
features in one source can be weak or missing in the
other. A reasonable assumption when comparing two
multi-modal images is that, if there is a significant change
in intensity between two points in one image, then there
is a high probability there will be a large change in
intensity in the other modality. This correlation exists
as these large changes in intensity usually occur due to
a difference in the material or objects being detected.

GOM exploits these differences to give a measure of
the alignment. GOM operates by calculating how well
the orientation of the gradients are aligned between two
images. For each pixel, it gives a measure of how aligned
the points are by taking the absolute value of the dot
product of the gradient vectors:

alignment; = |ga ) - 92,5l (1)

where g(; ;) is the gradient in image i at point j. The
absolute value is taken, as a change going from low to
high intensity in one modality may be detected as going
from high to low intensity in the other modality.

LAIl the code used for our method as well as addi-
tional results and documentation is publicly available online at
http://www.zacharyjeremytaylor.com




Summing the value of these points results in a measure
that is dependent on the alignment of the gradients.
An issue, however, is that this measure will favour
maximising the strength of the gradients present in the
overlapping regions of the sensor fields. To correct for
this bias, the measure is normalised after the sum of the
alignments has been made, by dividing by the sum of all
of the gradient magnitudes. This gives the final measure
as shown in Equation 2.
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The measure has a range from 0 to 1, where, if 0, every
gradient in one image is perpendicular to that in the
other, and 1 if every gradient is perfectly aligned. Some
typical GOM values for a range of images is shown in
Figure 2. The NMI values are also shown for comparison.

A= 1548

Fig. 2.  GOM and NMI values when the base image shown on the
left is compared with a range of other images.

D. Optimisation

The registration of one-off scans, and the calibration of
a multi-sensor system tend to have significantly different
constraints on their optimisation. Because of this, our
approach for optimising each problem differs.

For cases where multiple scans can be aggregated, the
optimisation is performed using the Nelder-Mead simplex
method [7] in combination with a Gaussian pyramid. In
our experiments, four layers were used in the pyramid,
with Gaussians with o of 4, 2, 1 and 0 applied.

When optimization from a single scan is required
and/or there is significant error in the initial guess for
the calibration, the search space becomes highly non-
convex and a local optimization method such as Nelder-
Mead cannot reliably find the global minimum. In these
situations the metric is optimized using Particle swarm.
Particle swarm optimisation works by randomly placing
an initial population of particles in the search space. On
each iteration a particle moves to a new location chosen
by summing three factors: i) it moves towards the best
location found by any particle, ii) it moves towards the
best location it has ever found itself and iii) it moves in a
random direction. The optimiser stops once all particles
have converged. The implementation of particle swarm
used was developed by S Chen [8]. In our experiments
we used a particle swarm optimiser with 500 particles.

IV. EXPERIMENTAL RESULTS
A. Metrics Evaluated

In this section, a series of metrics are evaluated on
three different datasets. The metrics evaluated are as
follows:

e MI - mutual information, the metric used by Pandey
et al. [4] in their experiments on the Ford dataset [9].

e NMI - normalised mutual information, a metric
we had used in our previous work on multi-modal
calibration [10].

o The Levinson method [3].

e GOM - the gradient orientation measure developed
in this paper.

e SIFT - scale invariant feature transform, a mono-
modal registration technique included to highlight
some of the challenges of multi-modal registration
and calibration.

B. Parameter Optimisation

To initialise the optimisation we use either the ground
truth (when available) or a manually calibrated solution.
We then added a random offset to it. The random offset
is uniformly distributed, with the maximum value used
given in the details of each experiment. This random off-
set is introduced to ensure that the results obtained from
multiple runs of the optimisation are a fair representation
of the method’s ability to converge to a solution reliably.
When particle swarm optimisation is used, the search
space of the optimiser is set to be twice the size of the
maximum offset.

On datasets where no ground truth was available the
search space was always constructed so that the space
was much greater than twice the estimated error of the
manual calibration to ensure that it would always be
possible for a run to converge to the correct solution.
All experiments were run 10 times with the mean and
standard deviation from these runs reported for each
dataset.

C. Dataset I

A Specim hyper-spectral camera and Riegl VZ1000
lidar scanner were mounted on top of a Toyota Hilux
and used to take a series of four scans of our building,
the Australian Centre for Field Robotics from the grass
courtyard next to it. The focal length of the hyper-
spectral camera was adjusted between each scan. This
was done due to the different lighting conditions and to
simulate the actual data collection process in the field.

This dataset required the estimation of an intrinsic
parameter of the camera, its focal length in addition
to its extrinsic calibration. To test the robustness and
convergence of the methods, each scan was first roughly
manually aligned. The search space was then constructed
assuming the roll, pitch and yaw of the camera were each
within 5 degrees of the lasers. The camera’s principal
distance was within 40 pixels of correct (for this camera
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ACCURACY COMPARISON OF DIFFERENT METHODS ON ACFR
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principal distance ~~ 780) and the X, Y and Z coordinates
were within 1 metre of correct.

1) Results: No accurate ground truth is available for
this dataset. To overcome this issue and allow an eval-
uation of the accuracy of the method, 20 points in each
scan-image pair were matched by hand. An evaluation of
the accuracy of the method was made by measuring the
distance in pixels between these points on the generated
images. The results are shown in Table I.

For this dataset GOM significantly improved upon the
initial guess for all four of the tested scans. Scans 1 and 2
were however more accurately registered then scans 3 and
4. These last two scans were taken near sunset, and the
long shadows and poorer light may have played a part
in the reduced accuracy of the registration. NMI gave
mixed results on this dataset, misregistering scan 1 by
a large margin and giving results far worse than GOM’s
for scans 2 and 4. It did however outperform all other
methods on Scan 3. MI gave a slightly worse, but similar,
performance. Levinson’s method could not be evaluated
on this dataset as it requires multiple images to operate.

D. Dataset 11

To test each method’s ability to register different
modality camera images such as IR-RGB camera align-
ment, two scenes were scanned with a hyper-spectral
camera. Bands near the upper and lower limits of the
camera’s spectral-sensitivity were selected so that the
modality of the images compared would be as different
as possible, providing a challenging dataset on which
to perform the alignment. The bands selected were at
420 nm (violet light) and 950 nm (near IR). The camera
was used to take a series of three images of the ACFR
building and three images of cliffs at a mine site. An
example of the images taken is shown in Figure 3.

The search space for the particle swarm optimiser was
setup assuming the X and Y translation were within
20 pixels of the actual image, the rotation was within
10 degrees of the actual image, the X and Y scale were
within 10 % of the actual image and the x and y shear
were within 10 % of the actual image.

Fig. 3. Images captured by hyper-spectral camera. The top image
was taken at 420nm and the bottom at 950nm

1) Results: In addition to the GOM, MI and NMI
methods that have been applied to all of the datasets,
SIFT features were also used. SIFT was used in com-
bination with RANSAC to give the final transform. To
measure how accurate the registration was, the average
difference in position between each pixel’s transformed
position and its correct location was obtained. The re-
sults of this registration are shown in Table II. The
images taken at the ACFR were 320 by 2010 pixels in
size. The width of the images taken at the mine varied
slightly, but were generally around 320 by 2500 pixels in
size.

SIFT performed rather poorly on the ACFR dataset
and reasonably on the mining dataset. The reason for
this difference was most likely due to the very different
appearance vegetation has at each of the frequencies
tested. This difference in appearance breaks the assump-
tion SIFT makes of only linear intensity changes between
images, and therefore the grass and trees at the ACFR
generate large numbers of incorrect SIFT matches. In
the mine sites that are devoid of vegetation, most of the
scene appears very similar, allowing the SIFT method to
operate and give more accurate results.

Looking at the mean values for each run MI, NMI
and GOM gave similar performance on these datasets,
all achieving sub-pixel accuracy in all cases. There was
little variation in the results obtained using the multi-
modal metrics, with all three methods always giving
errors between 0.2 and 0.8 pixels.

E. Dataset 111

The Ford campus vision and lidar dataset has been
published by G. Pandey et al. [9]. The test rig was a Ford
F-250 pick-up truck which had a Ladybug panospheric
camera and Velodyne lidar mounted on top. The dataset
contains scans obtained by driving around downtown
Dearborn, Michigan USA. An example of the data is
shown in Figure 4. The methods were tested on a subset
of 20 scans. These scans were chosen as they were the
same scans used in the results presented by Pandey
et al. Similarly, the initial parameters used were those
provided with the dataset. As all of the scan-image pairs
on this dataset shared the same calibration parameters,
aggregation of the scans could be used to improve the
accuracy of the metrics. Because of this, each experiment
was performed three times, aggregating 2, 5 and 10 scans.
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Fig. 4. Overlapping region of camera image (top) and lidar scan
(bottom) for a typical scan-image pair in the Ford Dataset. The
lidar image is coloured by intensity of laser return

1) Results: The Ford dataset does not have a ground
truth. However, a measure of the calibration accuracy
can still be obtained through the use of the Ladybug
camera. The Ladybug consists of five different cameras
all pointing in different directions (excluding the camera
pointed directly upwards). The extrinsic location and
orientation of each of these cameras is known very accu-
rately with respect to one another. This means that if the
calibration is performed for each camera independently,
the error in their relative location and orientation will
give a strong indication as to the method’s accuracy.

Fig. 5. Camera and velodyne scan being registered. Left, the
velodyne scan. Centre, the Ladybug’s centre camera image. Right
the two sensor outputs overlaid.

All five cameras of the Ladybug were calibrated in-
dependently. An example of the process of registering
one of the camera’s outputs is shown in Figure 5. This
calibration was performed 10 times for each camera using
randomly selected scans each time. The error in each
camera’s relative position to each other camera in all
trials was found and the average error shown in Table
I11.

In these tests GOM, NMI and MI gave similar re-

sults. GOM tended to give the most accurate rotation
estimates while MI gave the most accurate position
estimates. For all three of these metrics, scan aggregation
slightly improved the accuracy of angles and position.
Levinson’s presented the largest improvement in accu-
racy when more scans were aggregated, resulting in the
largest error with 2 and 5 scans and giving similar results
to the other methods with 10 scans.

In this experiment, any strong conclusion about which
metric performed the best is difficult to draw as the
difference between any two metrics for 10 aggregated
scans is significantly less than the variance in their values.
In almost all of the tests, the estimate of the cameras
7 position was significantly worse than the X and Y
estimates. This was expected as the metric can only be
evaluated in the overlapping regions of the sensors fields
of view. The Velodyne used has an extremely limited
vertical resolution (64 points, one for each laser). Thus
making the parallax error that indicates an error in the
7 position difficult to observe. The narrow beam width
of the Velodyne is also why the yaw shows the lowest
error, as there are more overlapping points that can be
used to evaluate this movement.

The actual error of a Ladybug-Velodyne system cali-
brated using all five cameras simultaneously would give a
far more accurate solution than the results obtained here.
There are several reasons for this. Individually the single
camera systems have a narrow field of view. Therefore,
a forward or backward translation of the camera is only
shown through subtle parallax error in the position of
objects in the scene. This issue is significantly reduced
in the full system due to the cameras that give a perpen-
dicular view that clearly shows this movement. In the
single camera problem, movement parallel to the scene
is difficult to distinguish from a rotation. This is also
solved by the full system due to the very different effect
a rotation and translation have on cameras facing in
significantly different directions. Finally the full system
also benefits from the increase in the amount of overlap
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between the sensors’ fields of view.

V. CONCLUSION

We have presented a detailed evaluation of our gradient
orientation measure (GOM). The measure can be used
to align the output of two multi-modal sensors, and has
been demonstrated on a variety of datasets and sensors.
Three other existing methods were also implemented
and their accuracy tested on the same datasets. On the
datasets tested GOM successfully registered all datasets
to a high degree of accuracy, showing the robustness of
the method, for a large range of environments and sensor
configurations. We also examined the level of accuracy
required for an initial guess for a system’s calibration to
be optimised to the correct solution.

ACKNOWLEDGMENT

This work has been supported by the Rio Tinto Centre
for Mine Automation and the Australian Centre for Field
Robotics, University of Sydney.

REFERENCES

1] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever,
“Mutual-information-based registration of medical images: a
survey,” Medical Imaging, IEEE, vol. 22, no. 8, pp. 986-1004,
2003.

(4]

[5]

[6]

A. Mastin, J. Kepner, and J. Fisher III, “Automatic
registration of LIDAR and optical images of urban scenes,”
Computer Vision and Pattern Recognition, pp. 2639—2646,
2009.

J. Levinson and S. Thrun, “Automatic Calibration of Cameras
and Lasers in Arbitrary Scenes,” in International Symposium
on Ezxperimental Robotics, 2012.

G. Pandey, J. R. Mcbride, S. Savarese, and R. M. Eustice,
“Automatic Targetless Extrinsic Calibration of a 3D Lidar
and Camera by Maximizing Mutual Information,” Twenty-
Sixth AAAI Conference on Artificial Intelligence, vol. 26, pp.
2053-2059, 2012.

R. Wang, F. P. Ferrie, and J. Macfarlane, “Automatic
registration of mobile LIDAR and spherical panoramas,” 2012
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pp. 33—40, Jun. 2012.

Z. Taylor, J. Nieto, and D. Johnson, “Automatic calibration
of multi-modal sensor systems using a gradient orientation
measure,” 2018 [EEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1293—-1300, Nov. 2013.

J. Nelder and R. Mead, “A simplex method for function
minimization,” The computer journal, 1965.

S. Chen, “Another Particle Swarm Toolbox,” 2009.

G. Pandey, J. McBride, and R. Eustice, “Ford campus vision
and lidar data set,” in The International Journal of Robotics
Research, 2011, pp. 1543-1552.

Z. Taylor and J. Nieto, “A Mutual Information Approach
to Automatic Calibration of Camera and Lidar in Natural
Environments,” in the Australian Conference on Robotics and
Automation (ACRA), 2012, pp. 3-5.



