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Abstract— This paper presents a system for autonomously
delivering a quantum of fluid to individual plants in a vegetable
crop field, using a fine spray nozzle attached to a manipulator
arm on a mobile robot. This can reduce input cost and
environmental impact, while increasing productivity, wherever
blanket spraying can be replaced with targeted spray, in
applications including thinning, micro-nutrient provision and
weeding. The Ladybird platform is introduced and a pipeline
from image-based seedling detection, geometry and transforma-
tion including camera-arm calibration, inverse-kinematics and
target sequence optimisation.

I. INTRODUCTION

Robotics for vegetable farming has many potential bene-
fits, from digitising the farm by acquiring timely, accurate
and ubiquitous information about every plant, to closing
feedback loops to micro-manage their specific requirements
[L]. A promising area is the targeted application of fluids
to the crop, where blanket spraying has been the only eco-
nomically viable alternative. Applications include thinning,
site-specific micro-nutrition and weed control [1]. Targeted
spray for weeding is an important area for robotics, due
to the cost of herbicide, the development of resistant weed
strains and environmental impact [2], as it has been shown
that microsprayers may reduce herbicide use to as little as
0.01% compared to blanket spraying [3]].

In this paper, we present a software pipeline for automated
micro-spray delivery using the Ladybird, which is a flexible
robotic research platform for the vegetable industry, designed
and built at The University of Sydney.

II. BACKGROUND

The desire for selective spraying pre-dates the availability
of technology to implement it. A prescient paper by Thomp-
son et al. in 1991 [4] outlines the motivation for selective
weed control in terms of non-uniformity in both spatial
density and competitiveness; weeds are generally not evenly
distributed and certain species compete more strongly with
crop plants (thus decreasing yield) than others. Although
not technically feasible at the time, Thompson identified the
relevant system components: on-board weed detection and
localisation and controllable spray nozzles.

A good survey of modern methods to 2008 is by Slaughter
et al. [, including a review of weed detection algorithms
using visible range and multi-spectral imagery. Our system
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uses monocular vision for detection and stereo vision to
locate plants relative to the robot in 3D.

Much of the work in selective spraying focuses on micro-
drift suppression through physical fluid properties, the effect
of surfactants on micro-drift and nozzle design [2]]. Nozzles
are typically platform-fixed, in an array to increase the
sprayable area [6]. Such systems have been proposed for
seed-line weeds [7] and thermal (hot oil) control in organic
crops [8]. Commercial systems that integrate detection with
spray control are available [9].

Nozzle arrays are generally not steerable and are typically
designed for area coverage. Precise targeting is possible
using tiny nozzles, as demonstrated using an inkjet printer
head [3]]. The limitation of tiny fixed nozzles is that their
workspace is also small. There is initial work in targeting
individual plants with a manipulator arm, but at a slow rate
(10-13 s per weed) [10]. We instead propose a fast, steerable
nozzle for precision spraying. The use of a simple steering
controller avoids the computational complexity to plan for
multi-link manipulators [[11, [12]. Steerability dramatically
increases the sprayable area of a single nozzle. Although in
this work we demonstrate the simple case where we target
all plants, our system is designed for extension to selectively
target individual species.

Chemical thinning is another common application of tar-
geted spray systems that has a long history [13] and is
now realised commercially [[14]. We focus on less structured
scenarios where the spatial density of targets is non-uniform.

III. LADYBIRD

The Ladybird robot (Fig. was designed and built in
2014 at the Australian Centre for Field Robotics (ACFR)
at The University of Sydney as a flexible tool to support
research and development of robotics applications for the
vegetable industry. The system was designed for flexibility
and modularity. For efficient research, we require one system
to cater for a wide variety of applications, however, mod-
ularity enables decomposition, to rapidly design lower cost
bespoke systems for individual commercial applications. The
following is a list of key features:

e Drive mechanism: features four identical, modular,
electric drive units. Each has two mechanically decou-
pled axes, to rotate the wheel orientation and to drive
the wheel. Decoupling minimises soil shear and power
consumption.

o Power system: a bank of Lithium Iron Phosphate
(LiFePO4) batteries store and provide power. The sys-
tem is charged from the mains and topped up by solar
power in the field. Solar provides enough energy to



run the system at low speed on flat terrain, with a net
power drain at top speed over rough terrain. Longevity
is determined by the weather and the driving duty cycle
and mains charging has not been required for typical
week-long field-trials.

o Computation: is provided by a single Nuvo-3005E-
I7QC computer, with an Intel Core i7-3610QE CPU
and 16GB RAM, running Ubuntu Linux. We use a light-
weight, open-source software architecture [[15]] based on
simple data streams, which facilitates multi-language
support with C++ for core elements, Python at the
higher level and Bash scripting at the top.

o Sensing: a multi-modal sensor suite provides informa-
tion for autonomy and crop perception (see Fig. [L(D)})
Forward and rear facing lidar and a spherical camera
support obstacle avoidance and crop row detection,
while RTK GPS/INS allows for map-based farm traver-
sal. Crop sensing is provided by hyperspectral line-
scanning, stereo vision (with strobe) and thermal infra-
red cameras.

o Manipulation: is provided by a six degree-of-freedom
Universal Robotics URS5 arm. Their proprietary ur-
script language is used to interface to the arm. The
arm can be configured for direct manipulation (such as
tilling) and Ladybird also carries a spray unit with a
nozzle end-effector, for targeted spray. The configura-

tion is shown in Fig.

IV. REAL-TIME DETECTION AND SPRAY

The real-time target detection and spray application is
performed for a batch of targets while the Ladybird is
stationary. The stereo camera is used for target detection
and locating, then the coordinates are transformed to the
arm frame and the inverse kinematics are solved to point the
spray nozzle at each target. The sequence is optimised and
the targets are sprayed. Ladybird moves to the next patclﬂ
and the sequence repeats.

A. Detection

Target detection is performed using monocular colour
image processing with the right camera of the stereo pair.
Although stereo 3D geometry is used subsequently for aim-
ing, this separation allows any pure image based detection
or classification algorithm to be adopted. For simplicity, we
apply vegetation detection with no crop classification, but
image based weed classifiers can be used interchangeably in
the pipeline.

We adapt the “Excess Green minus Excess Red” (£,_;)
method as it outperforms other competing algorithms for
vegetation detection in visual images [16]. The original
formulation is expressed as:

!For the experiments in this paper, Ladybird was manually driven to each
test patch and the system was engaged by a button on the remote control.

E, = 2G-R-B
E. = 14R-G
Eg—r = Eg — FE, (1

where vegetation is detected with E;_, > 0. An advan-
tages is claimed to be the “fixed, built-in zero threshold”
that does not require tuning [16], however, the constants
(2 and 1.4) are tunable and may be optimised for a given
application. We further subtract excess blue (£, = 1.4B —
() as we found empirically that blue plastic features on
our robot (sometimes visible as in Fig. could cause
misclassification. The result is “Excess Green minus Excess
Red minus Excess Blue E,_, — b, which is better expressed
as green dominance:

G>k(R+B) 2)

with tunable k. The zero crossing threshold Ey_,_; > 0
corresponds to £ = 0.6, which is equivalent to the original
Excess Green formulation [[17]]. A canonical condition exists
for this equation (and also F,_,.) when pixel noise dominates
due to under exposure (shadows), thus we also specify a
minimum intensity for classification:

(R+B)>t 3)

When both inequalities in Equations [2] and [3] are met, a
pixel is considered to be vegetation. Vegetation pixels are
then filtered with erosion (by e pixels) to remove small noisy
clusters and dilation (by d pixels) to combine multiple leaves
to represent individual plants. The centroids of these regions
provide the precise locations of the targets. The stages of the
detection pipeline are illustrated in Fig. 2(a)-(d).

The pipeline is parametrised by © = {k,t,e,d}, which
were learnt from the data. A total of 676 seedlings were
hand-labelled and divided in half to form an optimisation
and test batch. Exhaustive search over © maximised the f1-
score against the labels with © = {0.65, 20, 2,10} for f1 =
O.QOOEI Imperfections were typically caused by adjacent
plants being falsely combined into one and by human error
in labelling, both of which are apparent in Fig. Finally,
the depths of all centroids are calculated from stereo, using
semi-global block matching [18] to provide the Cartesian
location in the camera sensor frame.

B. Reference frames and calibration

Before a point detected by the camera can be targeted by
the robotic arm, the transformation from the camera to the
arm’s base must be found. A calibration process for a similar
system [19] was modified for this purpose.

A chess board was attached to the arm’s end-effector and
moved through 40 different poses (see Fig. [[(d)). At each
location, the arm pose is recorded and the corresponding

2The optimal value for k& was found to be similar to the Eg_,_; > 0
condition, but this is not bound to be true for different sensors, fields, crops
and weather conditions.



Fig. 1.

Ladybird: (a) scanning a field, (b) sensor configuration, (c) spot spraying in the field, (d) one of 40 images for camera-arm calibration

(a) raw image

(b) green dominance

Fig. 2.

corners of the chessboard are identified within the images.
The two sources of information are related by the following
transformation:

cam rpbase pend
Pcam = K Tbase end Tchess Pchess (4)

where

Pchess 18 @ corner point on the chess board

T(f are the transformation matrices from frame a to b,
linking the chess board, arm end-effector, arm base
and camera.

K is the camera projection matrix

is the pixel position of the corner point in the

camera’s image

pcam

This equation contains two unknown transformations
Tf,?ecis and T2, which we find using interior point op-
timization, minimizing the difference between the above
projection and the location of the corners detected in the
camera image. To increase the robustness of our method
we use the trimmed mean, rejecting the worst 20% of
points as outliers. The calibration variance is estimated by
bootstrapping the corner point locations and rerunning the
method 100 times.

C. Targeting

The spray nozzle is mounted to point along the positive y-
axis of the arm’s end-effector frame. With sufficient pressure,
the flow of liquid travels in an approximately straight line,
therefore the aim is to align the y-axis to point directly at
the target. The arm has six joints, all of which are used to
move the spray nozzle to a configurable “home” position,

(c) erosion and dilation

(d) image and centroids (e) row detection

The vegetation detection pipeline from left to right. The coloured dots in (d) show detected centroids, red=algorithm, blue=hand-labels.

from which only two of the joints are required to point at
any target within the workspace.

The following equation describes the transformation of
a point in the arm base frame to the end-effector frame,
including the full chain of six joints [20], where each joint
transformation is parametrised by a single movable joint
angle T2, = £(0,):

Tbe,?si DPbase
T2end T32 Tﬁf {Z—‘54 T65 Tbsase Poase (5)

Pend =

The y-axis alignment condition is expressed by the fol-
lowing squared error objective cost function:

cost = pgnd,w + pgnd,z (6)

Targets are identified by the camera, transformed to the
arm base frame using Equation [4] and to the end-effector
frame with Equation [5] resulting in an alignment cost from
Equation [f] that is a function of the two joint angles we wish
to move. Combined, they give an optimisation problem:

argmin cost | Pend,y > 0 @)
01,03

The additional constraint selects the solution with the
nozzle pointing towards the target rather than away. The
constrained optimisation problem is solved using the Nelder
Mead simplex algorithm [21, [22], adopting the barrier
method with a step function as the barrier, though the initial
conditions (nozzle pointing straight down) are sufficiently

close to not rely upon the barrier.



TABLE I
SPRAY SEQUENCE TIMING

spray total(s)  per image (s)  per hectare (h)
back-to-front no 323.8 32.4 44.7
greedy no 221.2 22.1 30.5
row-raster no 224.8 22.5 31.0
back-to-front yes 453.3 453 62.6
greedy yes 351.9 35.2 48.5
row-raster yes 348.9 34.9 48.2

D. Sequence Optimisation

A single image produces a list of targets (roughly 68
seedlings per image in our field tests). The joint angles are
calculated as above for all targets prior to spraying any,
allowing the sequence to be optimised for the shortest total
time. We tested three methods: back-to-front, where targets
are ordered from the rear to the front of the vehicle, greedy,
where the next nearest target (in joint space) is scheduled
repeatedly and row-raster, where the seed rows are detected
using k-means (in the left/right image axis, independently
for each image) and targets are sprayed in a raster scan, up
and back each row (see Fig. 2(e)). The time taken to spray
the 676 seedlings in the labelled set (comprising 10 images)
is reported in Table [I, both with and without the spray,
because the arm pauses at each target proportional to the
spary volume, which is application dependent). The reported
times include all pipeline computation, which is negligible
compared to the motion and spray. The times do not include
the motion of the Ladybird between patches, which took
approximately two to four seconds between each scan.

The results show that the greedy sort and raster methods
are substantially faster than back-to-front scheduling, taking
only 68% to 77% of the time, resulting in an average of
35 seconds to spray the 68 seedlings in each image. There
was no significant difference between the greedy and raster
methods. Further optimisation may be possible using state-
of-the-art solutions to the travelling salesman problem, but
it is likely that the additional computation time will exceed
the savings.

V. CONCLUSIONS

This paper described a system for autonomously delivering
a quantum of fluid to individual seedlings in a vegetable
crop field. The pipeline performs detection, transformation
(via calibration), inverse kinematics and optimisation for
targeted spray delivery. Any image-based detection methods
can be used, to allow specific applications such as targeted
weeding or thinning. The time to spray every seedling in a
hectare was estimated to be upwards of 30.5 hours, however,
typical weeding and thinning applications require only a
small fraction of the plants to be sprayed, reducing the total
time proportionally. Furthermore, the time can be decreased
by using multiple spray nozzles and multiple platforms for
parallelisation and the optimal configuration is likely to
depend on the specifics of the application and the crop.
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