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Abstract 

The ability to map clay minerals on vertical geological surfaces is important from perspectives of strati-

graphical mapping of geological units and safety. Clay minerals represent lines of stratigraphical weak-

ness along which landslides can occur. To map clay minerals on complex geological surfaces we use a 

combination of hyperspectral and LiDAR data. These data are automatically registered to provide a map 

of the distribution of clay minerals and their abundances at different spatial scales. 
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1.  Introduction 

There have been many studies which have used 

hyperspectral imagery acquired from aircraft to 

map clays minerals (e.g. CRÓSTA et al., 1998; 

LAGACHERIE et al., 2008). Recently, there has 

been an increasing use of hyperspectral data ac-

quired from field based platforms to map minerals 

as they are distributed on vertical outcrops of ge-

ology (KURZ et al., 2013; MURPHY et al., 2012). 

Various sensor and environmental effects make 

the calibration and analysis of these data more 

challenging (reviewed by KURZ et al., 2013). 

Methods used to extract information from hyper-

spectral data must be resistant to these effects.  

The ability to recognise clays in outcrops of verti-

cal geology is important for geological mapping 

and safety perspectives. Thin bands of shale are 

sometimes used as marker horizons to distinguish 

different geological units. Shales also represent 

lines of stratigraphical weakness along which 

landslides can occur (CORNFORTH, 2005; HAN-

COX, 2008; HUTCHINSON, 1961). Smectite group 

clays in particular can undergo large changes in 

volume though swelling which can cause local-

ised instability and ground heave (GILL et al., 

1996; GOETZ et al., 2001). Many techniques have 

been developed to classify min-erals on the basis 

of their entire spectral curve in the Shortwave 

Infra-red (SWIR) where diagnostic absorption 

features of many minerals are located. However, 

several parameters of absorption fea-tures such as 

their wavelength position and depth can yield 

important information about aspects of the physi-

cal-chemical composition of minerals (BISHOP et 

al., 2008; MARTÍNEZ-ALONSO et al., 2002). We 

therefore use wavelength position as a way of  

 

 

 

detecting and mapping diagnostic absorp-tion 

features of clay minerals in the SWIR, at different 

spatial scales in an open-pit mine in Western Aus-

tralia. To identify areas of thicker deposits of clay 

which have the potential to be-come unstable, we 

map the distribution of clays over the surface of 

one side of the entire mine pit (large-scale map-

ping). To identify thin shale bands as marker ho-

rizons to separate different geological units of 

similar spectral characteristics we use imagery of 

an individual mine face (small-scale mapping).  

Automated feature extraction (AFE) was used to 

detect and parameterise absorption features. Hy-

perspectral imagery was automatically registered 

to LiDAR data of the same mine wall to generate 

2.5D maps of absorption by clay minerals (TAY-

LOR et al., 2013). 

2.  Materials and methods 

2.1 Hyperspectral imagery 

Imagery was acquired from a single mine face 

and from a vertical section of the entire pit. Hy-

perspectral imagery (970 – 2500 nm) was ac-

quired using an AISA HAWK hyperspectral im-

ager (Specim, Finland). High temperatures (> 55º 

C) in the mine pit required that the sensor was 

enclosed in an insulated box and kept cool by 

passing cooled desiccated air over it. Calibration 

panels with different reflectance (80 % Teflon, 15 

%, 30 %, 60 % and 99 % Spectralon) were placed 

in the field of view of the sensor.  

Data were acquired under clear-sky conditions 

with the sun directly illuminating the mine wall.
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2.2 LiDAR data 

LiDAR scans of the mine pit were acquired to 

generate 3D point clouds of the scene. The laser 

scanner (Riegl LMS-Z620) was placed in close 

proximity to the hyperspectral sensor. A Trimble 

global position system (GPS) device was used to 

acquire GPS coordinates of the locations of the 

two sensors (i.e. the hyperspectral sensor and the 

laser scanner). 

2.3 Calibration of hyperspectral imagery 

Imagery was calibrated using a flat field calibra-

tion and, separately, the empirical line method 

(ROBERTS et al., 1986). The longest sensor-

target distance was > 130m, thus path radiance 

may have had a small impact on spectra. Flat field 

calibration was done using 80 % Teflon calibra-

tion panel. Each pixel in each band was divided 

by the average of the pixels over the calibration 

panel for that band. The values were corrected to 

absolute reflectance using the reflectance factors 

of the calibration panel. Data were calibrated by 

the empirical line method using data from the 

80 % Teflon and 15 % Spectralon panels. 

2.4 Automated feature extraction (AFE) 

The image was filtered using a polynomial 

smoothing filter with a width of 8-bands (SA-

VITZKY and GOLAY, 1964). Automated feature 

extraction was then used to identify the strongest 

(i.e. deepest) absorption feature between 2041 and 

2380 nm and parameterise it in terms of its wave-

length position, depth and width. Two thresholds 

were used. First, a feature is ‘found’ only if the 

hull-quotient value of the absorption feature min-

imum is less than 0.95. Preliminary work deter-

mined that this removed spurious absorption fea-

tures from consideration. Second, a brightness 

threshold was set to remove from consideration 

all spectra which had an average brightness of 

less than 0.08. Spectra with a brightness of less 

than this threshold had a very low signal-to-noise 

ratio resulting in AFE ‘finding’ spurious absorp-

tion features. Wavelength position and depth for 

each pixel spectrum were described in separate 

grey-scale images. 

2.5 Registration with LiDAR data 

The hyperspectral imagery was automatically 

registered to the point cloud derived from the 

LiDAR using the method of TAYLOR et al. (2013). 

This method automatically determines the loca-

tion and orientation of the camera relative to the 

LiDAR, as well as the cameras focal length. It 

achieves this by creating a camera model that 

projects the LiDAR data onto the hyperspectral 

image. The quality of the alignment between the 

LiDAR and the hyperspectral image is evaluated 

by using a gradient orientation measure that com-

pares the relative alignment of gradients. The 

unknown parameters of the camera model, in this 

case the location, orientation and focal length are 

found using particle swarm optimisation, which 

maximises this gradient measure. 

3.  Results 

3.1 Reflectance calibration 

Calibration to reflectance using the flat field ap-

proach and the empirical line method gave similar 

results. The curve shapes of spectra of selected 

minerals calibrated by each method were similar. 

Reflectance was, however, greater in spectra cali-

brated by the empirical line method were consist-

ently greater than those calibrated by flat field 

correction. 

3.2 Clay minerals - large -scale mapping 

Separate images quantifying the wavelength posi-

tion of the deepest absorption feature and its 

depth were generated using AFE. On the basis of 

wavelength position, six minerals were identified 

(figure 1). The illite-smectites were identified by 

their main absorption at 2202 nm in combination 

with a weak absorption at 2235 nm. Ferruginous 

(Fe) smectite was identified by absorptions at 

2288 nm and 2220 nm related to both Fe and Al 

in octahedral sites.  

 

 

Fig. 1 : Single pixel spectra of minerals identi-

fied from the wavelength parameter image. 
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Nontronite was identified by a single feature at 

2288 nm caused by Fe-OH and Kaolinite by the 

characteristic Al-OH absorp-tion doublet at 2196 

nm. Images of wavelength position, depth and 

width are shown in figure 2. The wavelength pa-

rameter image shows distinct, narrow layers are 

formed by several clay minerals including kaolin-

ite but also much thicker (10s m) layers of 

nontronite were evident (figure 2a). Oth-er miner-

als, e.g. chlorite, were present in discrete areas of 

the mine wall. Large spatial variations in the 

abundance of clay minerals, indicated by the 

depth parameter image, were found across the 

mine wall (figure 2b). The strongest absorptions 

were found for the minerals Talc, Nontronite and 

Kaolinite and the weakest for Illite-smectite and 

Fe-smectite. The width of absorption features 

varied from about 35 nm for illite-smectite and 

nontronite to 135 nm for chlorite (figure 2c). 

3.3 Clay minerals – small-scale mapping 

Clay layers were mapped in the field (figure 3a). 

These layers are used by geologists as marker 

horizons to separate different but spectrally indis-

tinguishable geological units. Four distinct geo-

logical units were identified in the field and from 

X-ray diffraction analysis (figure 3a). These in- 

cluded un-mineralised Banded Iron Formation 

(BIF; Unit 1), low-grade ore (Unit 2), and high-

grade ore (Units 3 & 4). AFE identified the 3 clay 

layers that were mapped in the field (S1, S2 & 

S3). The wavelength parameter image shows that  

the majority of absorption features were located at 

2196 and 2202, associated with kaolinite and il-

lite-smectite (Figure 3b). A few scattered pixels 

had absorption features at 2208, also indicative of 

illite-smectite. S1 was of different composition to 

S2 and S3. S1 was comprised of a mixture of pix-

els representing illite-smectite and kaolinite 

whereas 2 & 3 were composed mainly of kaolin-

ite. Two narrower clay layers, not mapped in the 

field, were identified by AFE at the extreme left 

of the image. The clay absorptions mapped by 

AFE did not form contiguous linear features on 

the mine face. S1 & S2, in particular, had ‘gaps’ 

in clay absorption along their length. This was 

consistent with field observations. The gaps in the 

clay layers indicate that the abundance of clays in 

these areas was small and that the absorptions 

were too weak to be included in the depth thresh-

old used by AFE to identify coherent absorption. 

The depth parameter image showed that S1 & S2 

had deeper absorptions than did S1 (figure 3c). 

Absorption feature width did not, however, pro-

vide any useful information. 

 

Fig. 2 : Absorption feature parameters wavelength position, depth and width for the large-scale 

mapping of the mine wall. 
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3.4 Maps of minerals in 2.5 D space 

Using the parameters from the projection of the 

hyperspectral image from the large-scale mapping 

onto the LiDAR data, 2.5D maps of mineral dis-

tribution were created from the wavelength pa-

rameter image (figure 4). From the 2D images 

(figure 2) it is extremely difficult to determine 

perspective in relation to the mine pit. The 2.5 D 

maps clearly show that the greatest variation in 

the types of clay minerals occurs towards the base 

of the mine pit in a region of complex synclinal 

folding.  

4.  Discussion and conclusions 

AFE has been used in this study to identify and 

map clay absorptions from hyperspectral imagery 

at small and large scales. The advantage of AFE  

 

is that no prior knowledge is required and it can 

be used without a spectral library. AFE success- 

 

 

 

 

fully identified clay layers on a mine wall, allow-

ing separation of geological units which would 

have otherwise been indistinguishable using opti-

cal means. At the larger spatial scale clay miner-

als were mapped for the entire mine pit. This has 

significant potential for predicting which areas of 

the mine pit are susceptible to failure. The ability 

to combine, automatically, products derived from 

hyperspectral imagery with LiDAR data greatly 

improves the scope of applications for its use. For 

example, combining information on clay minerals 

with information on aspects of geometry (e.g. 

slope, aspect) enables pertinent, spatially refer-

enced information to be incorporated into models 

of slope stability. Work is currently underway to 

determine the best ways in which information 

from the various absorption feature parameters 

can be combined into meaningful thematic maps.   
 

The development of field-based hyperspectral 

systems has opened up new possibilities for its 

use in the identification and mapping of minerals 

on natural and artificial vertical geological surfac-

es.  

 

Fig. 3: Small-scale mapping of clay layers on a mine face: a) Greyscale image with superimposed clay 

layers mapped from field observations (S1, S2 & S3). These layers are used as marker horizons to dis-

tinguish geological units of different composition but with similar spectral characteristics (Units 1, 2, 

3 & 4); b) Wavelength parameter image; c) depth parameter image. 
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