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Coordinatively unsaturated transition-metal complexes are
expected to be inherently reactive and offer an opportunity to
study novel transformations such as homogeneous catalysis[1]

and the activation of inert substrates such as N2.
[2] However,

generating low-coordinate environments in these systems can
often result in degradation or rearrangement of the ancillary
ligand. Only in a few cases can reorganization of the ancillary
ligand be reversible, thus generating resting states that are
capable of behaving as “masked” low-coordinate fragments.
For example, Cummins and co-workers reported a reversible
b-hydride elimination pathway leading to a masked three-
coordinate MoIII fragment capable of reductively cleaving
atmospheric nitrogen.[3] A similar reversible b-hydride elim-
ination has also been documented for the complex [Fe-
(PMe3)5], which has been shown to equilibrate with the
corresponding iron(ii) isomer [Fe(H)(h2-CH2PMe2)(PMe3)3]
and free trimethylphosphine.[4] In other amphivalent systems,
Fink and co-workers[5] discovered that a dinuclear Pd0

complex containing bridging bidentate phosphine ligands
can equilibrate with its mononuclear scaffold. We report
herein an unprecedented ligand rearrangement of a pincer-
type framework PNP (PNP= [N{2-P(CHMe2)2-4-
MeC6H3}2]

�).[6,7] Reorganization of the PNP pincer ligand
from a terminal chelating mode to a bridging mode allows for
isolation of [{(m2-PNP)Co}2], a complex bearing a Co2N2

diamond-core resting state. [{(m2-PNP)Co}2] behaves as a
three-coordinate CoI synthon when treated with substrates
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such as N2 and CO. We also
report a rare example of a
dianionic dinitrogen[8] salt of
cobalt(�I), a product likely
resulting from overreduction
of the “[(PNP)Co]” core
under atmospheric nitrogen.

The square-planar com-
plex [(PNP)CoCl] (1)[7, 9] is a
precursor prepared readily
from [Li(PNP)][6] and CoCl2

in THF, and displays an irre-
versible one-electron reduc-
tion wave at �2.41 V under
N2.

[7] Chemical reduction of 1
with an excess of NaC10H8 in
an N2 atmosphere effected an
immediate color change from
dark green to black. Upon
work up and crystallization
from Et2O at �35 8C, dark
crystals of the dianionic
cobalt–dinitrogen complex
[{Na2(thf)3}2{(PNP)Co(N2)}2]
(2) were obtained.[7] How-
ever, solid samples of 2 were
marred with about 5–10%
content of another cobalt spe-
cies (assayed by 31P and
15N NMR spectroscopy, see
below). Complex 2 is diamag-
netic and displays an intense
absorption in the IR spec-
trum at ñNN = 1784 cm�1, a
value higher in energy than
that measured for the isoto-
pomer prepared from 15N2 (1732 cm�1). The 15N NMR spec-
trum of 2 exhibits two broad signals at d= 319 and 293 ppm,
for which no JNN coupling was resolved even upon cooling, an
attribute possibly arising from coupling to the 59Co nucleus
(I= 7/2, 100 % abundance). Complex 2 is exceedingly reac-
tive, and solid samples or solutions of 2 become oxidized over
several hours with transformation (albeit not cleanly) into
[{(PNP)Co}2(m2-N2)][7] (3), the same by-product observed in
the original synthesis of 2 from 1. Characterization data for 3
include a weak absorption in the IR spectrum at ñNN =

2024 cm�1, a value blue-shifted from that measured for the
15N2 isotopomer (1957 cm�1). In contrast to 2, the 15N2 unit in
complex 3 exhibits only one broad 15N NMR resonance at d=
306 ppm. Complex 3 can be prepared in greater yield from the
one-electron reduction of 1with tBuLi in an N2 atmosphere or
alternatively by addition of two equivalents of 1 to 2. The
latter reaction suggests that 2 is a powerful one-electron
reductant and that an unsaturated “[(PNP)Co]” intermediate
might play a role in the course of these reactions (Scheme 1).
Furthermore, the 15N2 isotopomer of 3 slowly exchanges with
14N2, as evidenced by a blue shift of the ñNN stretching
frequency in the IR spectrum as well as by the decay of the
15N NMR resonance.

Single-crystal solid-state structures for compounds 2 and 3
reveal that each system is composed of two cobalt centers
(Figure 1 (2) and Scheme 1 (3)).[7] The molecular structure of
2 exhibits a Na2Co2N4 core divided into two topologically
linear Co�N�N units which are related by an inversion center
(Figure 1). One of the Na+ centers bridges another
{(PNP)CoN2} unit through the adjacent b-N atom to close
the Na2Co2N4 ring in 2. If one ignores the Na+ ions, each
Co atom is confined in a highly distorted tetrahedral geom-
etry with the metal atom deviating from the PNP mean plane
by about 0.8328. The molecular structure of 2 unarguably
depicts a dianionic {(PNP)Co(N2)}2� unit, but the poor quality
of the X-ray data prevents us from discussing any specific
metrical parameters (Figure 1).[7]

We were able to reproduce the structural features in 2 by
using high-level density functional calculations at the B3LYP/
6-31G** level of theory.[10] To ascertain more information on
the nature of the Co�N bond in 2, we computed the bond
order directly from the molecular structure,[11] and obtained a
bond order of 0.898 for the Co�N linkage and a bond order of
2.322 for the N�N linkage. As a result, we tentatively assign a
single bond for the Co�N linkage and a triple bond for the N�
N linkage.[7] More importantly, when we computed the

Scheme 1. Synthesis of complexes 2–5 and the intermediate [(PNP)Co(CO)]. Molecular structures are
depicted with thermal ellipsoids set at 50% probability with H atoms, isopropyl methyl groups, and solvent
molecules omitted for clarity.
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molecular structure of the monomer [(PNP)Co(N2)]2�, the
energy of the system fell into a minimum for the analogous
geometry observed in the {(PNP)Co(N2)}2� unit of the crystal
structure of 2. As expected for a Co�I species, the five filled
orbitals highest in energy (HOMO through HOMO�4) are
all metal-based, and the LUMO is only ligand-based and
comprises the arylPNP p* orbital (Figure 2).[7] For all these
reasons, complex 2 is best described as a dianionic d10 cobalt–
dinitrogen complex. Compound 2 represents a rare example
of a dinitrogen-ligated[8] cobalt(�I) dianion.

In contrast to 2, the crystal structure of 3 displays a more
common Co�N2�Co linkage (Scheme 1),[8,12] with both cobalt
atoms residing in a square-planar geometry in which the two
{(mer-PNP)Co} units are essentially orthogonal to each other
(ca. 938). The Co�NPNP bond lengths (1.928(2) and
1.935(2) I) are much longer than the Co�NNN bond lengths
(1.763(2) and 1.768(2) I), and the N�N bond length is short
(1.144(3) I), hence consistent with the topologically linear
resonance structure [(PNP)Co�N=N�Co(PNP)].

Interestingly, in vacuum or in an argon atmosphere,
compound 3 expels N2 to afford a green product.[7] The 1H and

31P NMR spectra both indicate formation of a new diamag-
netic material, while the ñNN stretch originally present in 3
vanishes. The same product can be generated from the one-
electron reduction of 1 with tBuLi under argon, and when
green solutions of the latter material are exposed to N2,
formation of 3 slowly becomes observable (48 h) by NMR and
IR spectroscopies. Single-crystal X-ray diffraction analysis of
the green material clearly reveals a reorganization of the PNP
ligand to give [{(m2-PNP)Co}2] (4), in which a dimeric
structure with a Co2N2 diamond core results from the bridging
of the PNP ligand through the amide nitrogen atom. A close
Co�Co contact is observed in the Co2N2 core in 4. Unfortu-
nately, the diffraction data originating from single crystals of 4
were weak, hence making the metrical parameters somewhat
questionable.[7,13] The gross structural features of 4, however,
are unquestionable and resemble a dinuclear CuI system
recently reported by Harkins and Peters.[14]

The Co2N2 diamond core in 4 behaves as a highly reactive
three-coordinate CoI synthon as it reversibly binds N2 (in the
solid state and in solution) to afford 3 cleanly (see above).
Likewise, the p acid CO reacts smoothly with 4 to generate
[(PNP)Co(CO)2] (5), which has been characterized by NMR
spectroscopy, elemental analysis (CHN), and single-crystal X-
ray diffraction analysis.[7, 15] Independent synthesis of 5 can be
readily accomplished by reduction of 1 with NaC10H8 under
CO (Scheme 1). In the conversion of 4 into 5, an intermediate
can be observed by the growth and decay of a 31P NMR
resonance (d= 69 ppm) and an intense IR absorption (ñCO =

1901 cm�1). Concomitant with the disappearance of these
signals is the appearance of a new 31P NMR signal (d=
94 ppm) and two intense IR absorptions (ñCO = 1957 and
1893 cm�1) corresponding to 5. Under depleted CO (2 equiv
per 4), such a putative intermediate can be isolated and
characterized. We speculate the identity of this intermediate
to be the monocarbonyl complex [(PNP)Co(CO)],[16] based
on a combination of solution NMR (1H, 13C, and 31P) and IR
spectroscopies (Scheme 1).[7] As opposed to p-acid coordina-
tion, complex 4 can also be readily oxidized with ClCPh3 to
effect dimer cleavage and ligand reorganization to regenerate
1 along with GombergJs dimer (Scheme 1). Separation of 1

(67% yield) was achieved
by fractional crystallization
from cold Et2O.

In summary, we have
prepared a dianionic
cobalt(�I)–dinitrogen com-
plex as well as a dinuclear
CoI species. For the latter,
we have demonstrated the
system to be a masked form
of a three-coordinate CoI

complex. Most notably, the
Co2N2 diamond core is
highly reactive, which is
reflected by its reversible
binding of N2 to afford a
cobalt(i)–dinitrogen adduct.
Unlike typical Co=Co units
reported in the literature,

Figure 1. Molecular structure of 2. The [{Na2(thf)3}{(PNP)CoN2}]
unit (a) and [{Na2(thf)3CoN2}2] core (b) are shown with thermal
ellipsoids set at 50% probability. All H atoms in (a) are excluded for
clarity, and the disordered thf ligands are depicted with sticks. Only
the O atoms (red) of the thf ligands are displayed in (b).

Figure 2. LUMO (p*, ligand-based) and HOMO through HOMO�4 (all cobalt-based) for the full model of
the {(PNP)Co(N2)}

2� unit of complex 2.
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the dinuclear complex 4 is a masked form of a low-coordinate
CoI species which in the presence of N2, CO, and ClCPh3 can
regenerate the original three-coordinate pincer-type
“{(PNP)Co}” framework. We propose that such an unusual
ligand rearrangement in complex 4 might be driven by the
chelate-enforced nature of the tridentate pincer scaffold,
hence preventing the occurrence of metal or ligand dispro-
portionation reactions. The steric crowding imposed by the
diisopropyl phosphine substituents might also possibly be a
contributing factor to the fragile diamondlike-core resting
state in 4. The mechanism of formation of compounds such as
3, 5, and [(PNP)Co(CO)] from compounds possessing cores
such as in 4 is currently under scrutiny as ligand reorganiza-
tion of this kind may play a role in catalytic processes
involving pincer-type frameworks.
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