
AAS 06-096

TRINITY, AN OMNIDIRECTIONAL ROBOTIC DEMONSTRATOR

FOR RECONFIGURABLE COMPUTING

Samuel A. Miller,
*
 Arthur T. Bradley,

*

Nathanael A. Miller,
*
 Robert F. Hodson

*

In this paper, we present the results of an unmanned ground vehicle robot

development effort completed at NASA LaRC’s Robotics and Intelligent

Machines Laboratory. The robot is capable of conducting both tele-operation

and autonomous activities. Novel omnidirectional mobility is achieved using

three Mecanum wheels operating in a configuration not previously seen by this

team. The robot is equipped with a suite of sensors, including a stereoscopic

camera, FLIR, omnidirectional camera, ultrasonic range finders, 3-degree-of-

freedom gyroscope, experimental acoustic eye, and ex-ray/visible spectrum

fluoroscopes. The robot’s architecture is designed to support reconfigurable

scalable computing resources that can be dynamically adapted to changing

mission requirements. This effort was funded as part of NASA’s Office of

Exploration Systems and is meant to demonstrate the utility of reconfigurable

modular electronics.

INTRODUCTION

NASA’s Exploration Systems Architecture Study (ESAS) has identified

reconfigurable computing as a required technology to meet processing requirements for

future missions to the Moon and Mars. Reconfigurable computing uses Field

Programmable Gate Arrays (FPGAs) as the primary computing element to implement

electronic functionality. Reconfigurable computing has been shown to both increase

performance and reduce power consumption of embedded applications.

In addition to performance and power benefits, reconfigurable computing offers

cost savings, as the hardware elements of a reconfigurable computer can be modified

without re-qualification for space. There is a broad range of applications that can be

accommodated without redesign, thus eliminating engineering costs in future missions. A

reduction in spare-parts inventory is also a cost-saving byproduct of the common

hardware approach.

The Reconfigurable Scalable Computing (RSC) project is working toward

building the first space-qualified reconfigurable computer. As part of that effort, a

demonstration system is needed to establish the real-world benefits of a reconfigurable

architecture. The team has therefore developed a 3-wheel omnidirectional robot, called

Trinity, to demonstrate the applicability of reconfigurable computing for real-time control

and data processing. A multi-sensor robotics demonstration application was chosen

because it provides a challenging real-time environment and has practical application to

NASA’s future exploration missions. This development leveraged previous robotics work

*
 NASA Langley Research Center’s Electronic Systems Branch, 5 North Dryden Street, Hampton,

VA 23681. E-mail: arthur.t.bradley@nasa.gov. Phone: (757) 864-7343. Fax: (757) 864-7944.

 2

at NASA Langley’s Robotics and Intelligent Machines Laboratory in which a 4-wheeled

omnidirectional system was constructed [1]. Trinity further advances our investigation

into novel robotic platforms for control-algorithm development and multi-sensor data

processing.

This paper provides an overview of the Trinity robot and the RSC system. It

describes the current electronics architecture, sensor suite, the system kinematics, and the

control algorithm. The paper also discusses the future mapping of the control and data-

processing functions onto the RSC system and describes the benefits of a reconfigurable

approach for real-time control of robotics applications.

ROBOT CONCEPT

Trinity’s primary purpose is to provide a mobile platform for demonstrating

computing devices, instruments, and algorithms. It is a rolling product showcase – a

device suitable for robotics research, algorithm development, sensor technology

demonstrations, outreach events, and computer capability testing.

As with many robots, high-level functionality is the driving motivation for its

creation. This robot is designed to support three high-level goals:

I. Provide a mobile platform to demonstrate a functional implementation of

Langley’s Reconfigurable Scalable Computing (RSC) architecture;

II. Facilitate mobile demonstrations of scientific/research instruments; and

III. Provide sensors, computational resources, and a full-featured development

environment for implementing and testing autonomous robotic algorithms.

a) Concept b) Physical System

Figure 1 Trinity, a 3-wheeled omnidirectional robot

 3

The goals are far-reaching, but we are confident that the combination of high-

performance space-ready RSC modules, scientific instrumentation, and omnidirectional

mobility represents a unique technology tool for overcoming challenges associated with

NASA’s vision of creating a sustained space-exploration program.

Trinity has a three-wheeled omnidirectional mobile chassis. As shown in Figure 1,

its holonomic mobility comes from the novel orientation of its Mecanum wheels.

Although there are many methods to achieve holonomic motion [2-8], the three

Mecanum wheels serve as an original method of locomotion, both functional and

previously unseen in robotics literature.

Although the robot serves primarily as a computer-system/algorithm test-bed, it

was also used to explore non-traditional paths to mechanical implementation. The

hardware design is a frame constructed of water-cut aluminum plates, with ancillary

components attached with adaptors “grown” in a continuous-fused-deposition machine.

The protective panels forming the robots skin are “grown” using a similar

process. Water-cutting and RPM (rapid prototyping and manufacturing) are two rapid

manufacturing processes that significantly reduce the amount of time required to build

high-precision complex geometries. Creating the robot’s structure in this way resonates

with the high-level purpose of demonstrating a flexible architecture for complex

computing tasks.

Currently, space-exploration efforts are severely hampered by the lack of high-

performance computing systems. The RSC architecture proposes to remedy the situation

by providing a system that:

1. Uses reconfigurable logic resources that can be optimized for specific

applications without re-qualifying the hardware;

2. Is modular and can be scaled to meet the processing requirements of the user

application;

3. Uses components that offer higher performance-growth rates than current

space processors, thus providing a sustainable long-term path for future space-

computing needs; and

4. Has smaller volume, less mass, and requires less power, than current systems.

Pending the arrival of the full RSC system (illustrated in Figure 2), the robot’s

computational needs are met with standard stackable computers. Currently there are two

such computers on the robot, both running general-purpose Linux operating systems. One

computer is devoted to low-latency processing and handles real-time motion control and

operator feedback. The computer (a 700 MHz PIII) runs the RTLinux operating system,

which is well-suited to feedback-loop control problems.

With a 2.0 GHz P4M processor and a gigabyte of RAM, the second computer is

also quite capable. This processor handles computationally intensive data-manipulation

operations, including processing the video data from the robot’s multiple cameras.

 4

Figure 2 The RSC system

KINEMATICS

 The kinematics of the three-wheeled omnidirectional robot are described in this

section. Simple trigonometry and geometry combined with a few simplifying

assumptions lead to a very intuitive and easy-to-use control solution.

The relation between joystick position and angular wheel velocity for the three-

wheeled robot is determined by first studying the conditions required for the vehicle to be

free of rotation. This separation of rotation from translation is a fundamental assumption

to achieving a simple kinematic solution. From Figure 3, we see that for the system to

move only in translation, the rotational forces caused by tangential components of the

wheel velocity vectors must sum to zero.

Figure 3 Tangential velocity vector components.

 5

Assuming a rigid body, and ignoring constants (i.e., robot radius and cos(45°)) we see

that there exists a simple condition for rotation-free translational movement – namely,

0321 =++ www . (1)

We use the following relation to convert from wheel-translation velocities to angular

wheel velocities:

ii Rw ω⋅= , (2)

where wi denotes the wheel-translation velocity (m/s), ωi denotes the angular wheel

velocity in rad/sec, and R denotes the wheel radius in meters. The wheel-translation

velocities (wi’s) can also be thought of as components of the net translational velocity

vector, all of which combined to determine the robot’s translational motion.

To include rotational movement, we set the term in (1) proportional to the joystick z-

axis term, zj. Note also that this solution is independent of any rotation in axes (something

we will take advantage of later).

()
jR zK =++ 321 ωωω (3)

Note that all the constants have been combined into KR, a user-defined rotational

sensitivity constant.

When considering the conditions required for translation, it is convenient to use a

coordinate system rotated by 45°. If we assume the robot acts as a rigid body, we can

arrive at the free body diagram given in Figure 4.

Writing the robot’s total velocity vector, simple trigonometry yields

() ()
















+−+−= yxKv T

ˆ
2

1
 ˆ

2

3
32132 ωωωωω

r
. (4)

If we define the robot’s forward direction to be along the y-axis, we can directly

extract the relationship between joystick movement and angular wheel velocity.

v
r

Figure 4 Convenient coordinate system

 6

()

()

[]321

321

32

2

1

2

3

ωωω

ωωω

ωω

++=









+−=

−=

Rj

Tj

Tj

Kz

Ky

Kx

 (5)

where KT is another user-defined translational sensitivity constant.

Solving the set of linear equations for angular wheel velocities, we arrive at the

relation between individual wheel speeds and the desired translation and rotational

movement provided by the joystick.

































−−

−=

















j

j

j

KKK

KKK

KK

z

y

x

RTT

RTT

RT

3
1

3
1

3

3

3
1

3
1

3

3

3
1

3
2

3

2

1
0

ω

ω

ω

 (6)

SYSTEM ARCHITECTURE

Electrical Hardware

The central elements of Trinity’s electrical-hardware architecture (shown in

Figure 5) are the two high-performance embedded computers. Functionally, these two

computers facilitate all three goals of the project. First, their PC/104-PLUS stackable

form-factor allows the addition of individual Reconfigurable Processor Modules (RPMs)

from the RSC architecture. As will be discussed later, adding RPMs facilitates replacing

some low-level microcontrollers and some software-bound computing tasks – currently

implemented in the high-level processors – to their own dedicated hardware components.

Such future hardware additions would convert some of Figure 6’s software-process

blocks into much higher-performance hardware modules that encapsulate the same

functionality.

The electrical hardware architecture supports the project’s second goal (mobile

demonstration platform for science/research instruments) by facilitating advanced data

processing on the vehicle. This onboard processing reduces bandwidth dependence for

processing scientific data, and allows the robot’s higher-level functions access to

advanced data products on which it can base navigation decisions. Finally, the

architecture, with its wide array of sensors, microcontrollers, computers, and software

development environments provides a self-contained unit ideally suited to autonomous-

algorithm development.

Computers/Microcontrollers

The fastest computer on Trinity is the 2GHz Pentium M, Lippert, GmbH.

CoolRoadRunner IV, dubbed Oculus. Its primary purpose is processing real-time video

streams from the three cameras described in the sensors section below. Currently there

are two PC/104-PLUS cards attached to Oculus: an Advanced Micro Peripherals, Ltd.

FireSpeed 2000 IEEE-1394 (FireWire) controller, and a WinSystems, Inc. PPM-CardBus

adaptor. The FireWire controller transfers raw data from the three cameras directly to the

 7

processor using a direct memory interface, and the CardBus adapter is the attachment

point for a NETGEAR, Inc. WG511 IEEE-802.11b wireless card.

The second computer’s primary role is low-latency data processing for the less

bandwidth-hungry sensors and indicators. The computer itself (Lapsus) is a 700MHz

Pentium III, Diamond Systems, Inc. Hercules. The only PC/104-PLUS card currently

attached is the same PPM-CardBus as on Oculus, but mounts a D-Link, Corp. DWL-

G650 IEEE-802.11b/g wireless card.

The other devices attached to Lapsus’ RS-232 ports are a Matrix Orbital, Corp.

LCD display, a MicroStrain, Inc. 3DM orientation sensor, and an Acroname, Inc.

Brainstem GP microcontroller. The sensors and PC/104-PLUS card indicated in Figure 5

with dashed lines are future additions.

IR Omni

Oculus

2GHz Pentium M

PC104+ Computer

Cardbus Adaptor

IEEE-1394 Firewire Card

PCI

802.11b

WiFi Card)

Lapsus

700MHz PIII

PC104+ Computer

802.11b/g

WiFi Card)

Stereo

Acoustic

Array

GyroLCD

X-Ray

Fluoroscope

Visible

Spectrum

Fluoroscope

RS-232

Brainstem

GP I2C

1
5
x

M

Motor

Gearing

Mecanum

Wheel

Brainstem

Moto

Motor

Driver

PWM

Encoder

M

Motor

Gearing

Mecanum

Wheel

Brainstem

Moto

Motor

Driver

PWM

Encoder

M

Motor

Gearing

Mecanum

Wheel

Brainstem

Moto

Motor

Driver

PWM

Encoder

I2C

I2C

I2C
Sonars

RSC RPM

PCI

Cardbus Adaptor

RS-232 Card

Future Components

Figure 5 Electrical-hardware architecture

 8

The Brainstem GP microcontroller acts as a router to send and receive low-level

motion data from Brainstem Moto modules. The GP also coordinates data-capture and

data-relay from 15 Devantech, Ltd. SRF08 sonar range-finders. (Although their main

function is acquiring range information, each SRF08 also collects light-level data from its

built-in light sensors.) The GP communicates with the Motos and SRF08s using a high-

speed I
2
C serial communications network. In its current configuration the I

2
C alternates

between 400kbs, when talking to the sonars, and 1Mbs, when communicating with the

Motos.

Based on velocity set-point commands routed to it through the GP, each Moto

generates a pulse-width-modulated (PWM) signal for its respective Devantech, Ltd.

MD03 motor driver. Each motor driver controls a Maxon, AG. RE 30 motor with a paired

HEDL 55 300-count, two-channel, optical encoder. Each Moto’s internal PD control loop

maintains the current velocity set-point based on this two-channel encoder feedback.

The hardware architecture is distributed in nature – designed so the high-level

processors are minimally involved with the low-level operations. The Moto modules

handle motor velocity feedback control, the sonars each handle their own time-of-flight

monitoring for distance calculation, and the GP handles overall sonar timing and general

data routing. Thus, Lapsus’ software has no critical timing issues related to regulating the

minute details of motor and sonar operation.

Sensors

Trinity boasts a diverse sensor suite. The following are currently implemented

sensors. ▪ A VidereDesign stereoscopic camera: resolutions from 640x480 at 30 fps to

1280x1024 at 7.5 fps ▪ A FLIR Systems infrared camera: 160x120 at 30 fps ▪ An Eizoh omnidirectional camera: captures 640x480 360° pictures at 30 fps ▪ 15 Acroname SRF08 ultrasonic sonar modules ▪ A Microstrain 3-DOF inertial gyroscope

The following instruments await integration. ▪ An experimental “acoustic eye” from the Air Force Research Lab ▪ An x-ray fluoroscope and data-processing module ▪ A visible-spectrum fluoroscope and data-recording module

For the scope of this project, the sensor suite is classified into three primary

groups: high-resolution environment sensors, low-resolution/limited-scope environment

sensors, and scientific instruments.

The first group, high-resolution environment sensors, includes the stereo, infrared,

and omnidirectional cameras. These sensors have general application to high-level

autonomy functions (e.g., target acquisition, localization, and navigation).

The second group – the ultrasonic sonars, acoustic eye, and inertial gyroscope –

are more closely related to low-level autonomy functions, such as obstacle avoidance

(sonars), camera retargeting (acoustic eye), and motion stability (gyroscope).

Finally, as their group name suggests, the scientific instruments fill the classical

role of obtaining detailed measurements of particular phenomena. In this setting, the x-

 9

ray fluoroscope characterizes the elemental composition of ground surfaces, and the

visible-spectrum fluoroscope performs an analogous function for the environment

surrounding the robot.

Algorithms

For input to a mobile algorithm platform, the sensor suite described above

provides a diverse and rich data set. Although there are many directions we could take

our algorithm-development efforts, our initial objective is to focus on three areas:

1. Vision algorithms for navigation and localization,

2. Control algorithms for vehicle-stabilization/obstacle-avoidance, and

3. Algorithms for scientific data processing.

In each of these areas it is important to note that we do not intend to develop, for

instance, vision algorithms like a university might. Instead, we see our role as

synthesizing algorithms others have already formulated and perfected. Our interest is in

the functionality of the system, rather than the perfection of the parts. We have therefore

chosen algorithmic objectives that tie back to the three motivating goals of the project.

The initial objective for the vision system is to combine the diverse capabilities of

the various cameras to provide the robot with room navigation and localization

capabilities. The base-line localization system will use the omnidirectional camera for

location identification. Developed by researchers at Carnegie Mellon [14], the system

identifies locations (e.g., rooms, hallways, or outdoor spaces) by the histogram profiles of

the omnidirectional images. For location-to-location navigation, we will implement an

algorithm that correlates edges detected from a single image of the stereo camera with

high-spatial-frequency changes in the depth readings from the stereo camera. Armed with

these two baseline capabilities (finding doors and ascertaining its own location), the robot

is poised for many high-level robotic tasks – such as “night watchman,” “errand boy,” or

“find science target.” Another algorithmic challenge we intend to pursue is fusing

imagery from the visible spectrum cameras with the IR images from the FLIR camera.

The combined images hold promise as a diverse data product useful for many low-light

scenarios, and could also greatly benefit tracking warm people in typically cluttered

indoor spaces.

The high-level vision system requirements correlate nicely with the overall

project goal of providing a mobile demonstration platform for the RSC architecture.

Initially the algorithms will run on the high-performance stackable computer mentioned

earlier, but when the requisite hardware becomes available, portions of the high-level

vision-processing will run on a dedicated RSC hardware module configured for high-

bandwidth/computationally expensive operations.

Our focus for the second algorithmic objective (vehicle stabilization/control and

low-level obstacle avoidance) stems from roots in standard control theory, and the more

relaxed ideas of behavior-based autonomy. We plan on developing an autonomous

stabilization algorithm that uses a standard set-point feedback loop to maintain a desired

speed and heading: the algorithm will use vehicle-direction inputs from either a joystick

or an autonomous guidance system, encoder counts from the wheels, and heading

information from the gyroscope. This method will provide the foundation for high-

 10

performance “drive-by-wire” control for human-guided operation, as well as a

dynamically stable motion foundation for autonomous operations.

The other side of our low-level control challenge is obstacle avoidance. The first-

order sensors for obstacle avoidance are the sonar arrays. From an algorithmic standpoint,

behavior-based control ideas are a promising approach to base-line obstacle avoidance

using the sonar modules. Additionally, for nearly any desired functionality, knowledge

about navigation goals must pass between the high-level vision system and the obstacle-

avoidance algorithms; the behavior-based approach easily facilitates loose data

interactions between the high-level goals and the low-level data products, furthermore it

accommodates data-source additions later in the robot’s development cycle. Our first-

order objectives in this realm are behavioral algorithms allowing Trinity to autonomously

navigate typical indoor spaces, avoiding people and objects using low-level animal-like

instincts and behaviors.

The robot’s final algorithmic objective is scientific-data processing. Our approach

is to analyze the data using algorithms supplied by the instrument designers. Initially, the

robot will have no autonomous functionality for acquiring science targets, but will rather

rely on human intervention for specific data-acquisition instructions. Obviously, a future

goal of the project is to implement autonomous algorithms for science-target discovery.

Algorithm Implementation

Integrating the algorithms mentioned above is a key challenge for this robotic

system. Particularly, the tight interconnection that must exist among the high-level vision

algorithms and the low-level navigation/obstacle avoidance behaviors requires a system-

integration tool that is easily reconfigurable.

Further motivating this need for configuration flexibility is the nature of the

algorithms themselves. Because their inspiration and origins stem from studies of

human/animal cognition, tuning the algorithms will require the trial-and-error method

found in natural learning-systems.

From our observations of algorithm implementation tools, the methodology most

amenable to trial-and-error reconfiguration is that employed in the icon-based, data-flow

graphical toolkits such as National Instrument’s LabVIEW and MathWorks Simulink.

Our overarching approach to algorithm integration is thus to “wrap” the various sensor

algorithms (for vision, obstacle avoidance, etc.) into one of these toolkits, where we can

easily change the macro-scale inter-algorithm data-passing options and their

interconnection topologies. Our work on this goal thus far has produced sets of objects

that act as “glue” between core software functions in C/C++ and LabVIEW’s graphical

programming language. The libraries currently being integrated are Intel’s OpenCV

image processing library [13] and the real-time hardware interface code outlined in the

next section.

Particularly in LabVIEW’s case, the object-oriented nature of the graphical

coding blocks facilitates easy reconfiguration of the algorithm options. This graphical,

object-oriented reconfiguration capability promises great labor-saving dividends at all

levels – from the low-level algorithms to the high-level system interconnections. With the

eventual integration of the RSC modules, Starbridge Systems, Inc. VIVA programming

language can easily extend the object-oriented graphical approach to FPGA algorithm

implementations.

 11

Software

The previous two sections outline Trinity’s hardware architecture and algorithmic

methodology. Figure 6 graphically represents its software topology and current state of

realization. The software spans multiple coding languages and the full spectrum of

hardware implemented.

Data Handler

(rtl_brainstem)

[C]

Shared Memory

Interface

(shared_mem)

[LabVIEW]

Coordinate Sonar

Ranging

(GPsrf08_2)

[TEA]

Operator Control

Client

(mbu_server)

[C]

Operator

Control Unit

(ocu)

[C]

Stereo-Image

Extraction

(smallv)

[C]

Omni-Image

Acquisition/Display

(coriander)

[C]

IR-Image Acquisition/

Display

(coriander)

[C]

LCD Control

(lcd)

[C]

Gyro Feedback

(gyro)

[C]

Image-Derived

Navigation Goals

(nav_from_cam)

[LabVIEW]

Image-Based

Localization

(localize)

[LabVIEW]

Subsumption-

Based Navigation

(sub_nav)

[LabVIEW]

Acoustic Eye

X-Ray

Fluorscope

Visible Light

Fluoroscope

Navigation From Sound

(nav_sound)

[LabVIEW]

Collect Sonar/

Light Data

[embedded]

15x Data Viewer

(shared_mem)

[LabVIEW]

Image Fusion

(fuse)

[LabVIEW/C++]

PD Velocity

Controllers

[embedded]

Data Viewer

(sci_data)

[LabVIEW]

Data Logging/Processing

(data_log)

[LabVIEW]

Stereo-Image

Depth Extraction

(smallv)

[C]

Future Component

On Lapsus

On Oculus

Figure 6 Software architecture

 12

Each grey box in Figure 6 represents a hardware device, or an interface to one.

Some devices, such as the sonars and PD velocity controllers, are equipped with

embedded software-interfaces (the sonars calculate distance values internally, and the

velocity controllers’ embedded code maintain wheel-speed set-points). The other

hardware interfaces currently implemented are the LCD and gyro, and the three image-

extraction blocks. While the LCD and gyro software modules provide access to the

hardware, the camera-interface blocks not only capture camera data, but also provide

display functionality. The remaining hardware interfaces – both fluoroscopes and the

acoustic eye – await integration.

Central to the upper half of the software interaction diagram is the “Data Handler”

– a real-time Linux application that coordinates the acquisition of data from the sonar and

gyro interfaces, sends and receives commands from the motor controllers and user

commands from the operator control client, and posts the system status to the LCD

module. All these programs communicate and share their data values though a shared-

memory data structure on Lapsus.

The operator-control client, also resident on Lapsus, receives user commands

from the operator control unit (usually on a remote computer) through TCP and UDP

sockets. Critical data such as emergency-stop and heartbeat signals are handled over the

connection-oriented TCP link, while less critical higher-frequency commands, such as

joystick values, are transmitted through the open-ended UDP link. These values are

stored in the shared-memory data structure upon arrival.

All the software discussed thus far is written in C or an embedded microcontroller

language. Transitioning the information collected by these various programs (which are

functionally hardware drivers) to the high-level, graphical algorithm framework

discussed in the previous section is handled by the LabVIEW block labeled “Shared

Memory Interface.” This interface reads the C shared-memory data-structure and makes

that information available – for reading and writing – within the LabVIEW programming

environment.

With the exception of the operator control unit (OCU) located on a remote

computer, all the software interfaces discussed thus far reside on Lapsus. In Trinity’s

architecture, the LabVIEW “Shared Memory Interface” is the critical component that

links the low-bandwidth data and control software with the much higher-bandwidth

vision components. As Figure 6 indicates, the “Subsumption-Based Navigation” block

receives the processed images from the robot’s vision systems and generates high-level

navigation goals that it sends to the shared-memory interface.

Already implemented are the hardware interfaces to the various cameras, enabling

video acquisition and display, as well as the core functionality for visual distance

extraction from the stereo camera. Future tasks include developing the core features of

Trinity’s high-level intelligence: the image-fusion and doorway-extraction algorithms for

recognizing paths between rooms, the algorithms that will enable image-based

localization, and the visible-IR image fusion. While the latter two have been

experimentally verified in other systems [14,16], the doorway-extraction algorithm must

be developed for Trinity.

Further down the development path is the integration of the acoustic eye and the

fluoroscopes. The first will play a role in Trinity’s navigation analogous to one way our

 13

hearing affects our interactions with the world: by redirecting attention to potentially

interesting situations. The fluoroscopes on the other hand are currently planned to act

independently of Trinity’s autonomy system because the frequency and nature of their

data products do not readily lend themselves to dynamic navigation tasks.

As mentioned earlier, a future autonomous algorithm could attempt to locate

potentially interesting sites to explore with the instruments. In this case, the data from the

instruments would provide feedback on the veracity of the autonomous science-target

identifications.

With the implementation of the full RSC system, some components of this

software architecture, along with various aspects of the hardware implementation, will be

reconfigured. Specifically, some image-processing functions will become a dedicated

hardware module, and the majority of the low-level motor-control hardware/software

system will transition to the RSC architecture.

RECONFIGURABLE COMPUTING

The availability of reconfigurable radiation-tolerant FPGAs for space applications

creates an opportunity to explore and potentially exploit new processing paradigms for

increased computing performance. Studies have shown that custom FPGA-based

implementations, or soft-core processors, coupled with custom co-processors, can greatly

improve the performance of some applications. Imaging applications have been shown to

achieve speedups of eight to 800 times over an 800 MHz Pentium III processor [9]. Real-

time feature extraction can run at up to 100 frames per second on reconfigurable logic

[10]. Other embedded benchmarking programs have shown an average performance

speedup of 5.8 when soft-core processors are combined with custom co-processors.

Reduced power consumption (on average 57%) has also been demonstrated [11].

Capitalizing on the availability of radiation-tolerant FPGAs, soft-core processors

(that run in the FPGA’s fabric), operating systems, and networking protocols create an

opportunity to develop a new class of space-avionics that is modular and reconfigurable.

If properly designed to survive the space environment, such processors would find broad

use in the space industry.

RSC Architecture

The high-level architecture of the RSC system is shown in Figure 7. The three

primary architectural features of the system are 1) soft-core processors that can support

an operating system, (2) custom logic (cores) that are user-definable, and (3) a scalable

network.

 14

Figure 7 High-level RSC architecture

To implement this functionality, the RSC defines four basic modules that may be

organized into processing stacks. The modules are:

1) Reconfigurable Processor Module (RPM)

The RPM provides the reconfigurable resources for application developers.

This module is where the soft-core processor(s) and custom cores for a

specific application will reside.

2) Command and Control Module (CCM)

The CCM provides the command interface for a RSC stack. It also manages

the system boot process and system state-of-health reporting

3) Network Module (NM)

The NM provides a mechanism to scale to multi-stack RSC systems. The

routing and data-link layer functionality exists in the NM.

4) Power Module (PM)

The PM down-converts the system input voltage to appropriate lower voltage

levels.

The stack uses a PC/104-PLUS compatible form factor that has been enhanced for

conduction cooling, launch-load survivability and radiation shielding. A typical stack is

shown in Figure 8.

In addition to the hardware architecture, RSC supports a robust software

environment. The soft-core processor(s) support the uCLinux operating system and the

GNU toolchain for development support. The network architecture supports the Internet

Protocol and high-level messaging via MPI when used in a multi-processor configuration.

Traditional hardware description languages may be used for custom core development, as

well as other commercially available high-level tools. More details on the RSC’s

architecture may be found in [12].

 15

Modules

Figure 8 Exploded view of RSC stack

RSC for Robot Control and Data Processing

The computing architecture of the Trinity robot is depicted in Figure 5. The

architecture’s initial implementation was done with commercial-of-the-self (COTS)

electronics. As the development of the RSC system matures however, several COTS

subsystems will be replaced, demonstrating the viability of the space-qualified RSC

system in challenging real-time applications. Specifically, the two areas of focus are the

real-time motor control and the data-intensive image processing.

The motor-control hardware, described earlier, is implemented with Brainstem

modules. The Brainstem modules each have a 40 MHz RISC processor with on-board

memory (EEPROM) and IO support. Both analog and digital IO are supported, along

with several standard interfaces, including RS-232 and I
2
C. The three Brainstem Moto

modules function as PD controllers for the robot’s wheel drive motors. The Brainstem GP

module’s primary function is to interface with the PC/104-PLUS based Lapsus computer,

and route commands via the I
2
C bus to the motor controllers.

For demonstrating real-time motor-control functionality with reconfigurable logic,

the three Brainstem Moto modules will be replaced with RPMs: each RPM having a soft-

core processor to implement the low-level PD control function. The RPMs will plug

directly into the PC/104-PLUS stack, with Lapsus serving as the host controller for the

bus. The routing function previously performed by the Brainstem GP module will be

moved to Lapsus, and the PCI bus will communicate velocity set-point information to the

RPMs.

The second RSC capability to be demonstrated is real-time data-intensive image

processing. Trinity’s camera systems are tied into Oculus’ PC/104-PLUS stack via a

FireWire interface card. In the COTS implementation, all the image processing must be

performed in software on Oculus. The addition of an RPM to this processing stack

facilitates replacement of those functions already in software, or allows additional image-

processing functions to be implemented in the RPM’s reconfigurable logic. The FireWire

card will transfer image data from the visible and IR cameras to the RPM’s memory;

image enhancement, registration, and fusion will then be performed using reconfigurable

 16

logic. The resulting processed images will then be transferred to Oculus for relay back to

the operator’s console or undergo further processing for autonomous functionality.

As other modules of the RSC system are developed and tested, additional

functions of Trinity’s computing architecture can be replaced with reconfigurable logic.

Candidate functions include stereo image processing, omni-cam imagery transformation,

data compression, and command/control functions.

CONCLUSION

To date the result of this project is a unique omnidirectional robotic system poised

for a large spectrum of interesting tasks. The unique hardware structure readily lends

itself to indoor motion and navigation, and the diverse sensor suit provides requisite

variety for exploring a large swath of navigation-based autonomous motion challenges.

Additionally, the science instruments provide an interesting resource for future

explorations in autonomous science-target identification/acquisition algorithms.

From the start, Trinity’s electrical-hardware architecture was designed for the

addition of reconfigurable computing components, and the algorithmic goals of the

project partition well for the useful integration of more advanced space-ready computing

hardware. The algorithm frameworks being developed also support this transition in that

they are designed modularly, with loose data interactions between mostly independent

blocks, rather than a tightly integrated monolithic system. Additionally, the fast

computers mounted directly on the robot allow local algorithm development and

execution, thus greatly simplifying implementation efforts.

Key results learned through the course of our research include the benefits of

hardware modularity, the benefits of partitioning robotic systems – both software and

hardware – into easily separable modules, and the intuitive nature of omni-directional

mobility for tele-operation and autonomous control.

The primary thrust of our future efforts includes the completion of the algorithm

development frameworks, the implementation of the autonomous algorithms for sonar-

and image-based navigation, image-histogram-based localization, and the integration of

the full RSC system.

The initial hardware design of RSC’s reconfigurable processing module is

complete and printed circuit boards have been fabricated and are now being populated.

Additionally, VHDL core development is underway to implement the required

functionality for supporting soft-core processors with operating system support. Initial

applications are planned for third quarter ’06, with integration into Trinity’s computing

system planned for fourth quarter ’06.

ACKNOWLEDGMENT

This effort was funded in part by NASA’s Office of Exploration. We would also

like to thank Omnix Technology Systems, Inc. for the omnidirectional wheels and their

encouragement in support of this development.

 17

REFERENCES

1. A. Bradley, S. Miller, et al., “Mobius, An Omnidirectional Robot Utilizing Mecanum

Wheels and Fuzzy Logic Control, Proc. of the 28
th
 Annual AAS Rocky Mountain

Guidance & Control Conference, Feb. 2005, pp. 251-266.

2. M. West and H. Asada, “Design of Ball Wheel Mechanisms for Omnidirectional

Vehicles with Full Mobility and Invariant Kinematics,” Journal of Mechanical

Design, Vol. 119, 1997, pp. 153-161.

3. H. Yu, M. Spenko, and S. Dubowsky, “Omnidirectional Mobility Using Active Split

Offset Castors,” Journal of Mechanical Design, Vol. 126, No. 5, Sept. 2004, pp. 822-

829.

4. J. Blumrich, “Omnidirectional Vehicle,” U.S. Patent 3,789,947, 1974.

5. B. Ilon, “Wheels for a Course Stable Self-Propelling Vehicle Movable in Any

Desired Direction on the Ground or Some Other Base,” U.S. Patent 3,876,255, 1975.

6. J. Song and K. Byun, “Design and Control of Four-Wheeled Omnidirectional Mobile

Robot with Steerable Omnidirectional Wheels,” Journal of Robotic Systems, Vol. 21,

No. 4, Wiley Interscience, Dec. 2004, pp. 193-208.

7. L. Ferriere, B. Raucent, and J. Samin, “Rollmobs, A New Omnimobile Robot,” Proc.

of International Conference on Intelligent Robots and Systems (IROS), Vol. 2, Sept.

1997, pp. 913-918.

8. K. Buyn and J. Song, “Design and Construction of Continuous Alternate Wheels for

an Omnidirectional Mobile Robot,” Journal of Robotic Systems, Vol. 20, No. 9,

Wiley Interscience, Aug. 2003.

9. B. Draper, R. Beveridge, W. Böhm, C. Ross, and M. Chawathe, “Accelerated Image

Processing on FPGAs,” IEEE Transactions on Image Processing, Vol. 12, No. 12,

Dec. 2003, pp. 1543-1551

10. P. Giacon, S. Saggin, G. Tommasi, and M. Busti, “Implementing DSP Algorithms

using Spartan-3 FPGAs,” Xcell Journal, No. 53, 2005.

11. R. Lysecky, and F. Vahid, “A Study of the Speedups and Competitiveness of FPGA

Soft Processor Cores Using Dynamic Hardware/Software Partitioning,” Design

Automation and Test in Europe (DATE), March 2005.

12. R. Hodson, K. Somervill, J. Williams, N. Bergman, and R. Jones, “An Architecture

for Reconfigurable Computing in Space,” 8th Military & Aerospace Programmable

Logic Device International Conference, Washington, D.C., Sept. 2005.

13. Intel Open Source Computer Vision Library, Feb 1, 2006, Available:

http://www.intel.com/technology/computing/opencv/index.htm

14. I. Ulrich, and I. Nourbakhsh, “Appearance-Based Place Recognition for Topological

Localization,” Proceedings of IEEE International Conference on Robotics and

Automation, April 2000, pp. 1023-1029.

15. A. Bradley, S. Miller, and G. Creary, “Omnidirectional Robots for Off-Planet

Applications,” Robomech 2005, Tokyo, Japan, Dec. 2005.

16. L. Toa, H. Ngo, et al., “Multi-Sensor Image Fusion and Enhancement System for

Assisting Drivers in Poor Lighting Conditions,” IEEE International Workshop on

Applied Imagery and Pattern Recognition, AIPR – 2005, Washington, D.C., Oct

2005.

