
Massively expedited genome-wide heritability
analysis (MEGHA)
Tian Gea,b,c,1, Thomas E. Nicholsd, Phil H. Leeb,c, Avram J. Holmese, Joshua L. Roffmanf, Randy L. Bucknera,f,g,
Mert R. Sabuncua,h,2, and Jordan W. Smollerb,c,1,2

aAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129; bPsychiatric and
Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114; cStanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138; dDepartment of Statistics & Warwick Manufacturing Group, The University of Warwick,
Coventry CV4 7AL, United Kingdom; eDepartment of Psychology, Yale University, New Haven, CT 06520; fDepartment of Psychiatry, Massachusetts General
Hospital/Harvard Medical School, Boston, MA 02114; gDepartment of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138;
and hComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by C. Thomas Caskey, Baylor College of Medicine, Houston, TX, and approved January 15, 2015 (received for review August 12, 2014)

The discovery and prioritization of heritable phenotypes is a com-
putational challenge in a variety of settings, including neuro-
imaging genetics and analyses of the vast phenotypic repositories
in electronic health record systems and population-based bio-
banks. Classical estimates of heritability require twin or pedigree
data, which can be costly and difficult to acquire. Genome-wide
complex trait analysis is an alternative tool to compute heritability
estimates from unrelated individuals, using genome-wide data
that are increasingly ubiquitous, but is computationally de-
manding and becomes difficult to apply in evaluating very large
numbers of phenotypes. Here we present a fast and accurate
statistical method for high-dimensional heritability analysis using
genome-wide SNP data from unrelated individuals, termed massively
expedited genome-wide heritability analysis (MEGHA) and accom-
panying nonparametric sampling techniques that enable flexible
inferences for arbitrary statistics of interest. MEGHA produces esti-
mates and significance measures of heritability with several orders
of magnitude less computational time than existing methods, mak-
ing heritability-based prioritization of millions of phenotypes based
on data from unrelated individuals tractable for the first time to our
knowledge. As a demonstration of application, we conducted heri-
tability analyses on global and local morphometric measurements
derived from brain structural MRI scans, using genome-wide SNP
data from 1,320 unrelated young healthy adults of non-Hispanic
European ancestry. We also computed surface maps of heritability
for cortical thickness measures and empirically localized cortical
regions where thickness measures were significantly heritable. Our
analyses demonstrate the unique capability of MEGHA for large-
scale heritability-based screening and high-dimensional heritability
profile construction.
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In quantitative genetics, the variance of a phenotype is com-
monly attributed to genetic components, environmental fac-

tors, and their interactions (1). The proportion of phenotypic
variance captured by total additive (allelic) genetic effects is
conceptualized as narrow-sense heritability. With the rapid ex-
pansion of comprehensive phenotypic data, practical tools to
estimate heritability are invaluable as they can be used to pri-
oritize high-dimensional phenotypes for genetic studies.
Classical estimates of narrow-sense heritability require twin or

pedigree data (2–4), which can be costly and difficult to acquire.
As genome-wide data became widely available, genome-wide
complex trait analysis (GCTA) (5, 6) was developed, which
assesses aggregate effects of common SNPs spanning the ge-
nome on phenotypes and thus provides an SNP-based heritabil-
ity estimate, a lower bound for narrow-sense heritability. This
method has been successfully applied to the heritability analyses
of several complex traits and mental disorders (5, 7, 8) and has been
used to investigate the puzzle of “missing heritability” (5, 9, 10).

However, GCTA is a computationally expensive procedure. The
use of a time-consuming iterative optimization procedure in the
fitting of variance component models makes it prohibitive to use for
evaluating very large numbers of phenotypes or with nonparametric
sampling techniques, such as permutation tests. More practical and
computationally efficient methods are needed to facilitate the
identification of phenotypes that are most appropriate for genetic
studies especially in instances where the complexity of the pheno-
type provides thousands or even millions of options.
Here we present a fast and accurate statistical method for

heritability analysis using genome-wide SNP data from unrelated
individuals, which we call massively expedited genome-wide
heritability analysis (MEGHA). MEGHA largely falls in the
kernel machines framework (11), which subsumes the GCTA
model as a special case and uses a variance component score test
(12), known as sequence kernel association test (SKAT) (13–15),
for efficient statistical inferences. MEGHA provides both mag-
nitude estimates and significance measures of heritability with
orders of magnitude less computational effort relative to GCTA,
making it possible to analyze millions of phenotypes and de-
velop sampling techniques that produce accurate inferences for
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Practical tools for high-dimensional heritability-based screen-
ing are invaluable for prioritizing phenotypes for genetic
studies with the dramatic expansion of available phenotypic
data. Classical estimates of heritability require twin or pedigree
data, which can be costly and difficult to acquire. Alternative
methods based on whole-genome data from unrelated indi-
viduals exist but are computationally expensive. Here we pres-
ent a novel, fast, and accurate statistical method for massively
expedited genome-wide heritability analysis, making heritabil-
ity-based prioritization of millions of phenotypes based on data
from unrelated individuals tractable for the first time to our
knowledge. We apply our method to large-scale heritability
analyses of brain imaging measurements and demonstrate its
potential for facilitating phenome-wide analyses and character-
izing the genetic architecture of complex traits.
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arbitrary statistics of interest and accommodate complex corre-
lation structures within phenotypic data.
As a demonstration of application, MEGHA was applied to brain

structural MRI and genome-wide SNP data from 1,320 unrelated
subjects, as part of the Harvard/Massachusetts General Hospital
(MGH) Brain Genomics Superstruct Project (GSP) (16). Brain
imaging data are a prototype case where a vast array of poten-
tially relevant phenotypes are routinely collected and phenotypic
complexity has grown exponentially as new tools to analyze high-
resolution structure and point-to-point connectivity have emerged.
A wide range of volume-, surface-, and connection-based mea-
sures are of potential interest in analyzing the relationship between
genetic and brain data in the context of clinical conditions (17–
21). Although, in principle, any measure computable from dif-
ferent brain imaging modalities can be used as phenotypes in
genetic studies, ideal candidate imaging traits should be heritable
intermediate (or endo-) phenotypes (22–24), to uncover the
genetic underpinnings of various neuropsychiatric disorders or
biological processes of interest (25). However, due to the com-
putational complexity and inordinate options of brain imaging
measurements, few tools exist to enable efficient heritability-based
screening of these phenotypes (26, 27), and the exploration of their
genetic basis has been limited to a small subset of the search space.
All high-dimensional (whole-brain, voxel-/vertex-wise) heritability
maps computed to date have relied on twin or pedigree data (28–
32). MEGHA may thus offer a powerful method for large-scale
heritability screening and high-resolution heritability profile con-
struction in imaging genetics.

Results
Table 1 shows the SNP-based heritability estimates of a number
of global morphometric measurements, including intracranial
volume (ICV; i.e., head size), total brain volume, left/right
hemispheric cortical gray matter (GM) volume, total cortical
GM volume, total subcortical GM volume, total GM volume,
left/right hemispheric white matter (WM) volume, total WM
volume, left/right hemispheric mean cortical thickness, overall
mean cortical thickness, left/right hemispheric total surface area,
and total surface area. The test–retest reliability of these mea-
surements measured by correlation coefficient was computed

using 42 individuals that had repeated brain MRI scans on
separate days. All measurements show high test–retest reliability.
ICV, total brain volume, and mean cortical thickness measures
are highly heritable, with familywise error corrected (FWEc)
significant P values computed by the proposed permutation
procedure (Materials and Methods). Cortical GM volumes are
also heritable, with uncorrected significant P values. Subcortical
GM volume, WM volumes, and surface area measures show mod-
erate heritability. The proposed permutation procedure implicitly
accounts for the correlation structure among measurements and
provides more accurate FWEc P values (based on one million per-
mutations) than Bonferroni-corrected GCTA P values. MEGHA
estimates of heritability magnitude are tightly correlated with GCTA
results (Fig. 1).
We next applied both MEGHA and GCTA to the heritability

analyses of average cortical thickness measures in 68 regions of
interest (ROIs; 34 ROIs per hemisphere) defined by the Desikan–
Killiany atlas (33), producing SNP-based heritability estimates and
significance measures (Table S1). The MEGHA heritability esti-
mates, P values, and permutation P values (based on one million
permutations) show excellent concordance with the GCTA results
(Fig. 2 and Fig. S1). Four brain regions—the bilateral superior
parietal cortex, the left precuneus cortex, and the left rostral an-
terior cingulate cortex—are significantly heritable after multiple
testing corrections over all of the ROIs. The right precuneus
cortex and the right supramarginal gyrus are marginally significant
with FWEc (P < 0.10).
As shown in Table 2, an analysis that involves 50 or 100

phenotypes would be easily handled by both MEGHA and
GCTA, although MEGHA is hundreds of times faster (cases 1
and 2). For example, it took ∼400 s for GCTA to compute the
P values for all of the 68 ROIs, whereas MEGHA required less
than 1 s with a MATLAB implementation on a MacBook Pro
with 8 GB of memory and a 2.4-GHz Intel Core i7 processor.
The dramatic improvement of MEGHA in computational effi-
ciency makes it possible for high-dimensional heritability screen-
ing and mapping (case 3), for inferences on arbitrary statistics of
interest based on thousands of permutations (case 4), and
even for a combination of both (case 5). Using GCTA in any
of these analyses would require months, years, or even decades

Table 1. Analysis of global morphometric measurements

Measurement
Test–retest
reliability

GCTA MEGHA

ĥ
2

SE P value
FWEc P value

(Bonf) ĥ
2

P value Perm P value
FWEc P value

(Perm)

Intracranial volume (ICV) 0.995 0.849 0.275 6.95E-4 0.011 0.804 3.91E-4 4.16E-4 4.21E-3
Total brain volume 0.997 0.981 0.273 1.07E-4 1.71E-3 0.929 5.24E-5 7.00E-5 6.32E-4
Left hemispheric cortical GM volume 0.992 0.521 0.279 0.033 0.529 0.432 0.036 0.036 0.265
Right hemispheric cortical GM volume 0.991 0.492 0.279 0.041 0.652 0.411 0.043 0.043 0.307
Total cortical GM volume 0.994 0.515 0.279 0.034 0.550 0.429 0.037 0.037 0.270
Total subcortical GM volume 0.968 0.357 0.279 0.104 1.000 0.298 0.107 0.107 0.587
Total GM volume 0.995 0.475 0.279 0.050 0.796 0.382 0.055 0.055 0.374
Left hemispheric WM volume 0.996 0.416 0.279 0.071 1.000 0.344 0.075 0.076 0.467
Right hemispheric WM volume 0.996 0.302 0.279 0.140 1.000 0.257 0.141 0.142 0.691
Total WM volume 0.996 0.369 0.279 0.095 1.000 0.310 0.098 0.098 0.556
Left hemispheric mean cortical thickness 0.899 0.688 0.277 5.60E-3 0.090 0.625 4.54E-3 4.83E-3 0.043
Right hemispheric mean cortical thickness 0.885 0.732 0.277 3.48E-3 0.056 0.662 2.84E-3 2.99E-3 0.027
Overall mean cortical thickness 0.935 0.734 0.277 3.41E-3 0.055 0.665 2.73E-3 2.93E-3 0.027
Left hemispheric total surface area 0.999 0.298 0.279 0.137 1.000 0.270 0.130 0.129 0.658
Right hemispheric total surface area 0.997 0.288 0.279 0.139 1.000 0.274 0.127 0.126 0.650
Total surface area 0.998 0.305 0.279 0.128 1.000 0.283 0.118 0.118 0.625

Test–retest reliability of the measurements measured by correlation coefficient is computed using 42 individuals with repeated brain structural MRI scans
on separate days. The heritability estimate ĥ

2
with the corresponding SE and P value obtained by GCTA, the familywise error corrected (FWEc) GCTA P value

using Bonferroni correction, the heritability estimate ĥ
2
and P value computed by MEGHA, and the uncorrected and corrected P values obtained by the

proposed permutation procedure based on one million permutations are provided. FWEc significant P values (<0:05) are shown in italic.
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of computational time, and could be prohibitively slow even if
parallel computation is used.
As a demonstration of the usefulness and flexibility of MEGHA

in high-dimensional heritability analyses, we conducted vertex-wise
MEGHA of cortical thickness measures to produce high-resolution
surface maps for SNP-based heritability estimates (Fig. S2) and
significance (Fig. 3). (Also see Fig. S2 for spatial heritability maps
of sulcal depth, curvature, and cortical surface area measures.) We
then performed surface-based clustering on the significance map,
using P = 0.01 as a cluster-forming threshold, to localize heritable
regions of cortical thickness. These empirically identified clusters
are typically not aligned with sulcal/gyral patterns or predefined
anatomical/functional ROIs. Cluster inferences (18, 34, 35) using
the proposed permutation procedure identified five clusters (white
outlined and annotated in Fig. 3) with FWEc significance over the
entire cortical surface based on 1,000 permutations. Cluster 1, the
largest cluster identified comprising 6,518 vertices with a FWEc
P < 0.001, spans the left superior parietal cortex, cuneus, pre-
cuneus, and the left posterior cingulate cortex. Cluster 2 (FWEc,
P = 0.003) and cluster 3 (FWEc, P = 0.015) largely overlap with the
left precentral/postcentral cortex and the left superior temporal
cortex, respectively. Clusters 4 and 5 are located on the right
hemisphere. Specifically, cluster 4 (FWEc, P = 0.004) spans the
right supramarginal cortex and the lateral part of the precentral/
postcentral cortex. Last, cluster 5, which comprises 4,523 vertices
with a FWEc P < 0.001, extends from the right superior parietal
cortex to the right cuneus and precuneus.

Discussion
In this paper, we present MEGHA, a fast and accurate statistical
method for heritability analysis using genome-wide SNP data
from unrelated individuals. Our method has excellent concor-
dance with GCTA, but is thousands of times faster. This compu-
tational efficiency allows for examination of complex phenotypes
that have millions of combinations, and the development of non-
parametric sampling techniques such as permutation tests and
Jackknife resampling that can produce accurate and flexible
inferences for arbitrary statistics of interest. As a case study of its
application, MEGHA was used to prioritize brain structural MRI
phenotypes based on heritability. We conducted global, regional,
and vertex-wise heritability analyses of cortical thickness measures,

which empirically identified significantly heritable regions in su-
perior parietal, precuneus, precentral/postcentral, superior tem-
poral, and visual cortex. Prior studies have also published
heritability maps of brain image derived phenotypes, where corti-
cal thickness measures are under substantial genetic influences
(28–31). These studies have relied on twin or pedigree samples, each
spanning a different age range. In particular, twin-modeling results
reported in ref. 30 are themost pertinent to our analyses, as the study
sample consisted of young adults with an age span similar to our
sample. The heritability maps of thickness presented in ref. 30 are
similar to the results observed here based on genotypic data. Several
differences do emerge such as the present results emphasizing sig-
nificantly heritable clusters in bilateral association regions of the
parietal cortex extending into precuneus. One explanation for these
differences might be that MEGHA only captures SNP-based heri-
tability due to common variation, whereas twin or pedigree based
analyses can capture components of heritability due to rare variation.

Methodological Assessment. Although MEGHA provides esti-
mates of heritability magnitude, the values need to be inter-
preted with caution. The reason is that when searching over
a large number of phenotypes, the heritability estimates ranked
at the top are highly likely to be inflated by noise. Reporting
heritability magnitude extracted from significantly heritable brain
regions is also invalid, representing a general problem of double
dipping (36, 37). For this reason, although we demonstrate the
usefulness of MEGHA to screen heritability of large numbers of
phenotypes, we recommend deriving unbiased estimates of the
magnitude of heritability in independent, replicate datasets.
We also note that heritability estimates and significant mea-

sures can be affected by the reliability of extracted measurements.
Caution is thus needed when comparing heritability estimates
across different measurements that are computed using different
techniques. Although it appears from Fig. S2 that cortical thick-
ness measures are more heritable than other morphometric features,
this may be partly due to the fact that cortical surface area measures
have much lower vertex-wise test–retest reliability than cortical
thickness and sulcal depth measures in this particular data set.
A completely empirical permutation procedure to assess her-

itability significance would have to break the association between
phenotypes and genotypes while retaining the observed pheno-
typic correlation structure. To the best of our knowledge, no
strategy exists to achieve this requirement. The permutation
procedure designed in this paper relies on the assumption that
the linear mixed effects model is a good description of the data,
making the score test valid and accurate. For example, the per-
mutation inference is only valid when the model residuals under
the null hypothesis (no additive genetic effects) can be ap-
proximately treated as independent and identically Gaussian

Fig. 1. MEGHA SNP-based heritability estimates for global morphometric
measurements are plotted against GCTA results.

Fig. 2. Evaluation of MEGHA using average cortical thickness measures in
68 regions of interest (ROIs). MEGHA SNP-based heritability estimates (Left)
and P values (Right) are plotted against GCTA results for each ROI. There is
an excellent concordance between MEGHA and GCTA.
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distributed. Therefore, the assumptions underlying classical
GCTA analyses (e.g., common environmental effects are ignorable
across individuals) remain important to our permutation procedure.

Potential Applications and Extensions. Although we demonstrate
the capability of MEGHA using brain imaging data, it can be
potentially applied to many types of high-dimensional phenotypes.
In recent years, the study of complex diseases is shifting from the
investigation of an isolated outcome variable to a complete and
systematic characterization of the “phenome” (38, 39)—the full
set of phenotypes of an individual—to unveil disease etiology and
accommodate heterogeneity across individuals. The availability of
high-dimensional phenotypic resources contained in electronic
health records and population-based biobanks has spurred interest
in phenome-wide association studies (PheWAS) (40, 41). The
ability to identify or prioritize heritable traits in such large-scale
repositories could facilitate important biomedical discoveries.
In addition to the capability of handling extremely high-dimen-

sional phenotypic data, the flexibility of the kernel machines
framework, which MEGHA is built on, offers multiple choices
on kernel functions and SNP grouping strategies. This opens
opportunities to examine different sources of genetic contributions
(e.g., additive vs. epistatic effects) and dissect the genetic archi-
tecture of complex traits (42). Specifically, as shown in Materials
and Methods, using a linear kernel function to combine all SNPs
spanning the genome essentially produces an equivalent model to
GCTA and assesses total additive genetic effects from common
variants on phenotypic variables. Other kernels, such as a poly-
nomial kernel or the identity-by-state (IBS) kernel (13, 43, 44), may
capture complex genetic interactions (epistasis) and facilitate the
analysis of broader-sense heritability. Alternatively, grouping SNPs

based on genes, pathways, findings of previous genome-wide as-
sociation studies (GWASs) or other biologically informative in-
formation, and using different weighting strategies when combining
SNPs, enable the investigation of genetic contributions from spe-
cific collections of SNPs.

Materials and Methods
MEGHA. MEGHA makes use of the semiparametric kernel machines model

yi = x⊤
i β+hðGiÞ+ ei , i= 1,2, . . .N, [1]

where N is the total number of subjects, yi is a quantitative phenotype for
subject i, xi is a p× 1 vector of nuisance variables for subject i (e.g., age, sex, and
top principal components to adjust for population stratification), β is a p× 1
vector of fixed effects, Gi = ½Gi,1,⋯,Gi,L�⊤ denotes the genotypes of L SNP
markers for subject i, hð · Þ is a nonparametric function located in a reproducing
kernel Hilbert space (RKHS) H, defined by an empirical, nonnegative-definite
genetic relationship matrix (GRM) K that can be estimated from SNP data, and ei
is a Gaussian distributed random error with zero-mean and homogeneous var-
iance σ2e . It has been shown that the semiparametric kernel machines model (1)
can be converted into a linear mixed effects model (11)

y =Xβ+g+ e, var½y�=V = σ2gK + σ2e I, [2]

where y = ½y1,⋯,yN �⊤, X = ½x1,⋯,xN �⊤, g is an N× 1 vector of the aggregate
genetic effects of the individuals with g∼Nð0,σ2gKÞ, e= ½e1,⋯,eN �⊤, σ2g is the
variance explained by all of the L SNPs combined, and I is an identity matrix.
Using a linear kernel function to combine all of the SNPs spanning the genome
assesses the total additive genetic effects from common variants on phenotypes
and essentially creates a linear mixed effects model equivalent to the one used
in GCTA, which is useful for narrow-sense heritability analyses. The flexibility
of the modeling framework allows for the use of other kernel functions (e.g.,
the quadratic kernel and the IBS kernel) and various SNP grouping strategies
(e.g., based on genes, pathways, and previous GWAS findings), making it

Table 2. Comparison of the computational time of MEGHA and GCTA when applied to different types of analyses

Case Type of analysis Effective no. of phenotypes GCTA MEGHA

1 Analysis of global morphometric measurements 16 120 s 0.65 s
2 ROI analysis 68 400 s 0.75 s
3 Vertex-wise heritability mapping 299,881 39.01 d 90 s
4 ROI analysis with permutation inference

(one million permutations)
68,000,000 24.24 y* 3.5 h

5 Vertex-wise analysis with cluster inference
(one thousand permutations)

299,881,000 106.88 y* 6.8 h

*Estimated computational time, using the average computational time, ∼11.24 s, for each phenotype in case 3.
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Fig. 3. Superior (S), inferior (I), lateral (L), anterior (A), posterior (P), and medial (M) views of the vertex-wise surface maps for SNP-based heritability sig-
nificance of cortical thickness measures constructed by MEGHA. All clusters identified with a cluster-forming threshold P = 0.01 are shown. Five clusters that
are familywise error corrected (FWEc) significant in size (FWEc, P < 0.05) based on 1,000 permutations are white outlined and annotated.
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possible to model different sources of genetic contributions (e.g., additive vs.
epistatic effects) from a specific collection of SNPs to phenotypes.

GCTA uses the iterative restricted maximum likelihood (ReML) algorithm
to estimate the variance components σ2g and σ2e in the model (2) and gives an
estimate of heritability by ĥ

2
= σ̂2g=σ̂

2
p, where σ̂2p is the estimated phenotypic

variance. In contrast, MEGHA relies on a noniterative score test. It can be
seen, from the linear mixed effects model (2), that testing for significant
genetic effects is equivalent to testing the variance componentH0 : σ2g = 0. A
score test has been proposed in the kernel machines literature (11, 12)

S�σ20�= 1
2σ20

y⊤P0KP0y =
1
2σ20

ê⊤0K ê0, [3]

where ê0 is the maximum likelihood estimate (MLE) of the residuals under
the null model y =Xβ0 + e0, σ20 is the variance of e0, and P0 = I −XðX⊤XÞ−1X⊤ is
the projection matrix. Sðσ20Þ is a quadratic function of y and follows a mix-
ture of χ2s under the null. We use the Satterthwaite method to approximate
the distribution of Sðσ20Þ by a scaled χ2 distribution κχ2ν , where κ is the scale
parameter and ν is the degrees of freedom that captures the effective
number of independent SNPs combined by the kernel function. The two
parameters are calculated by matching the first two moments, mean and
variance, of Sðσ20Þ with those of κχ2ν

8>><
>>:

δ= E
�S�σ20��= 1

2
trfP0Kg= E

�
κχ2ν

�
= κν,

ρ= var
�S�σ20��= 1

2
trfP0KP0Kg= var

�
κχ2ν

�
= 2κ2ν:

[4]

Solving the two equations gives κ= ρ=2δ and ν=2δ2=ρ. In practice, the
unknown model parameter σ20 is replaced by its ReML estimate, σ̂20, un-
der the null model. To account for this substitution, we replace ρ by
ρ̂≈ Îgg = Igg − IgeI−1

ee I⊤
ge, where Igg = trfP0KP0Kg=2, Ige = trfP0Kg=2, and

I ee = trfP0P0g=2 (11). With the adjusted parameters κ̂= ρ̂=2δ and ν̂= 2δ2=ρ̂,
the P value of an observed score statistic Sðσ̂20Þ is then computed using the
scaled χ2 distribution κ̂χν̂2. In high-dimensional heritability analyses, we note
that only a simple linear regression model under the null, yðvÞ =XβðvÞ0 + e

ðvÞ
0 ,

needs to be fit for each phenotype v. If all phenotypes share the same
covariate matrix X, the projection matrix P0 can be precomputed, and thus
the computation of the test statistics for all phenotypes can be very efficient.

To obtain a point estimate of the SNP-based heritability, we consider the
Wald test statistic for the null hypothesis H0 : σ2g = 0, which is distributed as

σ̂4g

var
h
σ̂2g

i∼ 1
2
χ20 +

1
2
χ21, [5]

a half-half mixture of the χ2 distribution χ20 with all probability mass at zero
and the χ2 distribution with 1 degrees of freedom χ21, as the null hypothesis
lies on the boundary of the parameter space (45). Because Wald tests are
asymptotically equivalent to score tests, we assume that the Wald test P
value is identical to the score test P value, which can be converted into
a Wald test statistic T using the mixture of χ2s in Eq. 5. Then, assuming that
the phenotypic variance σ2p is estimated with very high precision and notic-
ing the approximation std½ĥ2�≈ 316=N derived recently (46), we have

ĥ
2
= σ̂2g

.
σ̂2p ≈min

�
316
N

ffiffiffiffi
T

p
,1
�
: [6]

Permutation Procedure. The efficient computation of the test statistic allows
for the use of standard permutation procedures. However, with the presence
of covariates X, shuffling the rows and columns of the GRM K in Eq. 3
produces inaccurate inferences. Inspired by the ideas of the Huh–Jhun per-
mutation (47), we propose a permutation procedure that involves a trans-
formation that projects the data from N dimensional space onto an N−p
dimensional subspace and removes the effect of nuisance variables. Specif-
ically, because P0 is a symmetric and idempotent (i.e., P2

0 = P0) matrix of rank
N−p, it can be decomposed as P0 =UDU⊤, where U is an N×N matrix sat-
isfying U⊤U= IN×N , D is a diagonal matrix with N−p ones and p zeros on the
diagonal. Without loss of generality, we assume that the first N−p di-
agonal elements are one. Therefore, if we discard the last p columns of U
and denote the resulting N× ðN−pÞ matrix as ~U, we have P0 = ~U ~U

⊤
and

~U
⊤ ~U= IðN−pÞ  ×  ðN−pÞ. Now applying ~U

⊤
to both sides of the model (2), and

noticing the fact that X⊤ ~U ~U
⊤
X =X⊤P0X = 0, the transformed model is on an

N−p dimensional space

~yd~U
⊤
y = ~U

⊤
g+ ~U

⊤
ed~g+~e: [7]

Because ~g∼Nð0, σ2g ~U
⊤
K ~UÞ, the new GRM is ~K = ~U

⊤
K ~U. We note that the

transformed score test statistic is invariant

~S�σ̂20�= 1

2σ̂20
~y⊤ ~K~y =

1

2σ̂20
y⊤ ~U ~U

⊤
K ~U ~U

⊤
y =

1

2σ̂20
y⊤P0KP0y =S�σ̂20�: [8]

Shuffling the rows and columns of the transformed GRM ~K is now equivalent
to shuffling the transformed phenotype ~y, and importantly, we have
cov½~y�= σ20

~U
⊤ ~U= σ20I, and thus ~y ∼Nð0,σ20IÞ, which indicates that ~y*, a per-

muted sample of ~y, has the same distribution as ~y. Therefore, the proposed
permutation procedure ensures that all permutation samples of the score
test statistic follow the same null distribution.

Permutation allows us to consider arbitrary statistics of interest and offers
great flexibility in making inferences. For example, to obtain an FWEc P value
of heritability for each region in an ROI-based analysis, using a pre-
determined anatomical or functional atlas with a total of R regions, we
compute the permuted score test statistic S*

k ðrÞ for each ROI r, and record
the maximal statistic over the R ROIs, Mk =maxr=1;2,⋯,RS*

k ðrÞ, for each per-
mutation k= 1,⋯,Nperm. Then for an observed score test statistic SðrÞ for the
rth ROI, the FWEc P value can be computed as (48)

pFWEðrÞ= #fMk ≥SðrÞg
Nperm

, r = 1,⋯,R: [9]

This permutation procedure implicitly accounts for the correlation structure
among the ROIs and therefore produces more accurate FWEc P values than
Bonferroni-type corrections, which treats each measure as independent. As
a second example, we consider cluster inferences on voxel-/vertex-wise sig-
nificance maps of heritability, as commonly used in the neuroimaging lit-
erature (18, 34, 35). Clusters are defined by contiguous voxels/vertices with
test statistics above a predefined threshold (or equivalently, P values below
a threshold). For each permutation k= 1,⋯,Nperm, we compute the per-
muted score test statistic S*

k ðvÞ for each voxel/vertex v, threshold the sta-
tistical map, and record the maximal cluster size Mk . Then for an observed
cluster C with size c, the FWEc P value is (48)

pFWEðCÞ= #fMk ≥ cg
Nperm

: [10]

Inferences on other statistics, e.g., a weighted voxel-/vertex-wise average of
test statistics to summarize heritability into a single number and provide an
overall significance, can be easily made following similar procedures.

The Brain GSP. The Harvard/MGH Brain GSP is a neuroimaging and genetics
study of brain and behavioral phenotypes. More than 3,500 native English-
speaking adults with normal or corrected-to-normal vision were recruited
from Harvard University, MGH, and the surrounding Boston communities. To
avoid spurious effects resulting from population stratification, we restricted
our analyses to 1,320 young adults (18–35 y old) of non-Hispanic European
ancestry with no history of psychiatric illnesses or major health problems
(age, 21.54 ± 3.19 y old; female, 53.18%; right-handedness, 91.74%). All
participants provided written informed consent in accordance with guide-
lines set by the Partners Health Care Institutional Review Board or the
Harvard University Committee on the Use of Human Subjects in Research.
For further details about the recruitment process and participants, and im-
aging data acquisition, we refer the reader to ref. 16.

Imaging Data Processing. We used FreeSurfer (freesurfer.net) (49), version
4.5.0, a freely available, widely used, and extensively validated brain MRI
analysis software package, to process the structural brain MRI scans and
compute global and regional morphological measurements. For vertex-
wise heritability analyses of cortical thickness, sulcal depth, curvature,
and cortical surface area, we resampled subject-specific measures on-
to FreeSurfer’s fsaverage representation, which consists of more than
300,000 vertices across the two hemispheres with an intervertex distance
of ∼1 mm, and smoothed the coregistered surface maps using a Gaussian
kernel with full width at half maximum (FWHM) 20 mm. We also defined
a neighborhood structure on the surface mesh for surface-based clustering.

Genetic Analysis. We used PLINK (pngu.mgh.harvard.edu/purcell/plink/) (50),
version 1.07, to preprocess the GSP genome-wide SNP data. Major procedures
included sex discrepancy check, removing population outliers, spuriously re-
lated subjects, and subjects with low genotype call rate (<97%). Individual
markers that contained an ambiguous strand assignment or that did not
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satisfy the following quality criteria were excluded from the analyses: geno-
type call rate ≥95%, minor allele frequency (MAF) ≥1%, and Hardy-Weinberg
equilibrium of P ≥ 1 × 10−6; 580,479 SNPs remained for analysis after quality
control. We performed a complete linkage clustering of individuals and a mul-
tidimensional scaling (MDS) analysis (Fig. S3), based on autosomal genome-
wide SNP data in PLINK, to ensure that no clear population stratification and
outliers exist in the sample. We used the GCTA toolbox (6), version 1.24.4 (www.
complextraitgenomics.com/software/gcta/download.html), to estimate the GRM
used in the heritability analyses from all genotyped autosomal SNPs.

Heritability Analyses of Brain Imaging Measurements. For all MEGHA and GCTA
analyses of global, regional, and vertex-wise brain imaging measurements, we
included age, sex, handedness, scanner group, console group, and coil type as
covariates. To account for population substratification, the top five principal
components (PCs) of the GRM were also included in the model as nuisance
variables. We adjusted for ICV in all of the analyses of cortical/subcortical gray/
white matter volume measures, and sulcal depth, curvature, and cortical surface
areameasures, but not in the cortical thickness analyses because cortical thickness
is not correlated with ICV.

Availability. AMATLAB implementation of MEGHA is available for download
at www.massgeneral.org/psychiatry/research/pngu_software.aspx.
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