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ABSTRACT
Motivation: Inferring the genetic interaction mechanism using
Bayesian networks has recently drawn increasing attention due to
its well-established theoretical foundation and statistical robustness.
However, the relative insufficiency of experiments with respect to the
number of genes leads to many false positive inferences.
Results: We propose a novel method to infer genetic networks
by alleviating the shortage of available mRNA expression data with
prior knowledge. We call the proposed method ‘modularized network
learning’ (MONET). Firstly, the proposed method divides a whole
gene set to overlapped modules considering biological annotations
and expression data together. Secondly, it infers a Bayesian net-
work for each module, and integrates the learned subnetworks to
a global network. An algorithm that measures a similarity between
genes based on hierarchy, specificity and multiplicity of biological
annotations is presented. The proposed method draws a global picture
of inter-module relationships as well as a detailed look of intra-
module interactions. We applied the proposed method to analyze
Saccharomyces cerevisiae stress data, and found several hypotheses
to suggest putative functions of unclassified genes. We also com-
pared the proposed method with a whole-set-based approach and
two expression-based clustering approaches.
Availability: JAVA programs for the MONET framework are available
from the corresponding author upon request. Web supplementary data
is accessible at http://biosoft.kaist.ac.kr/∼dhlee/monet/index.html
Contact: doheon@kaist.ac.kr

1 INTRODUCTION
Recently, learning genetic interaction networks from mRNA expres-
sion data has successfully shown its potential to uncover cellular
mechanisms in a cell (Liang et al., 1998; Friedman et al., 2000;
Akutsu et al., 2000; Tamada et al., 2003; Segal et al., 2003c). Among
several computational formalisms, such as Boolean networks and
qualitative networks, Bayesian networks (Neapolitan, 2004) have
drawn increasing attention due to their well-established theoretical
foundation and statistical robustness (Friedman et al., 2000; Peer
et al., 2001; Yoo et al., 2002; Hartemink et al., 2002; Tamada et al.,
2003).

Learning Bayesian networks can be regarded as an inference of
relationships between nodes (i.e. genes) from observational mRNA
expression data. It is known that sufficiently large amounts of expres-
sion profiles are required to infer statistically reliable relationships
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among nodes (Neapolitan, 2004). However, it is hard or nearly
impossible to secure such sufficient amounts of expression profiles
when hundreds or thousands of genes are considered. This shortage
of observation data leads to many false positive edges; a signific-
ant portion of inferred relationships is not consistent with known
biological knowledge. To alleviate this problem, several techniques
incorporating statistical biases and prior biological knowledge have
been proposed.

Friedman et al. (2000) have introduced two statistical techniques,
sparse candidates (Friedman et al., 1999) and model averaging. The
former restricts the maximum number of affecting genes for each
target gene so that the search space is reduced. The latter gener-
ates multiple networks from different initial conditions, and extracts
commonly inferred edges. Other groups have incorporated prior bio-
logical knowledge to refine network structures. Hartemink et al.
(2002) have applied the chromatin immuno-precipitation (CHIP)
assay and Tamada et al. (2003) incorporated promoter sequence
motif information as prior knowledge. They both assumed that rela-
tionships between transcription factor genes and their target genes
should be supported by other biological clues. Recently, modulariz-
ation approaches have been introduced by several groups (Fashing
et al., 2002; Segal et al., 2003a,b). They used clustering methods to
divide a gene set into smaller groups, and applied network learning
over each module.

In this paper, we propose a new method for inferring modularized
gene networks by utilizing two complementary sources of informa-
tion: biological annotations and gene expression. First, seed genes,
which respond very distinctively in a specific experimental condi-
tion, are identified. Secondly, the closely related genes with the
seed genes based on biological annotations and expression data are
grouped into overlapped modules. After the identification of mod-
ules, the proposed method infers a Bayesian network for each module
and integrates them through common intermediary genes. The out-
line of the proposed method is depicted in Figure 1. Our method is
based on the assumption that a cellular system is composed of loc-
ally interacting biological modules; most of the genes are likely to
be related to the genes in the same biological modules rather than
the genes in different modules (Calabretta et al., 1998; Hallinan,
2004). Therefore, a divide-and-conquer approach not only enables
independent construction of subnetworks, but also improves learning
due to the increased ratio of the number of experiments to the number
of genes. The proposed method also assumes that many genetic rela-
tionships will share the same biological annotations or show related
mRNA expression patterns. Recently, Tong et al. (2004) reported
that genetic relationships frequently coincide with known functional
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Fig. 1. Overview of modularized network learning. The procedure is
composed of two main parts: (1) The module identification part decom-
poses a whole gene set into overlapped modules of genes. (2) The interaction
inference part infers relationships between genes using a Bayesian network
algorithm, and integrates the learned networks.

relationships between gene pairs; over 12% of genetic interactions
are comprised of genes with an identical GO (GO Consortium, 2001)
annotation (12 times more than expected by chance), and over 27%
of genetic interactions are between genes with similar or identical
GO annotations in a very conservative estimate.

Basically, the proposed method concurs with other modularization
approaches (Segal et al., 2003a,b; Fashing et al., 2002) in that expli-
cit modularization would reduce the incorrect dependencies caused
by the high dimensionality of data. However, our method has sev-
eral unique aspects. First, we adopt overlapped modularization rather
than partitioning since there are genes which participate in multiple
cellular processes, or function as an inter-connector between differ-
ent processes. These overlapped genes are called intermediary genes,
and they function as integrators for combining separately learned
subnetworks from each module into global networks. Secondly, by
identifying related modules via intermediary genes, the proposed
method presents genome-wide inter-module relationships as well
as detailed intra-module relationships. Thirdly, it complements the
limitation of expression data by incorporating biological annotations,
which are less noisy and more reliable than high-throughput data.
Nevertheless, biological annotations are only used for identifica-
tion of modules but not for inference of interactions in a network.
Therefore, their use reduces the chance of fallacious inferences but
does not interfere in the learning process itself. Lastly, the pro-
posed method identifies modules using two independent sources of
information (i.e. biological annotations and expression data) in a
union-set way. Even though established knowledge does not sup-
port the relationship between genes, they can be grouped together
if patterns of gene expression strongly indicate it, and vice versa.
This union-set way rather than a joint-set way complements the
limitation of either information by the other, and opens the chance
to discover yet-unknown but highly plausible hypotheses for further
research.

We applied the proposed method to analyze Saccharomyces
cerevisiae stress data (Gash et al., 2000). It has been shown that
our method not only infers interactions in accordance to established
biological knowledge, but also presents interesting new hypotheses
about the function of currently unclassified genes. In addition, we
compared our method with a whole-set-based approach (i.e. infer-
ence of Bayesian networks over a set of genes as a whole) and two
expression-based clustering approaches to evaluate the advantage of
the proposed method.

2 METHODS AND ALGORITHM

2.1 Module identification
The first part of the proposed method is module identification; it identi-
fies overlapped gene modules consistent with localized cellular processes.
Beginning with active seed genes, related genes based on two independent
sources of information, biological annotations and mRNA expression data
are grouped together.

2.1.1 Extraction of seed genes Since expression data measures the
changed pattern of mRNA abundance responding to experimental condi-
tions, cellular activities closely related to a given external stimulus tend to
show a wide sphere of action. Here, we concentrate on reconstructing those
active biological processes during the given experimental conditions. First,
we define seed genes as a set of genes which show significantly higher or
lower expression levels in one condition than in all the others. For example,
S.cerevisiae stress data from Gash et al. (2000) consist of 173 experiments
consecutively measured in 16 different stress conditions; every stress condi-
tion consists of several experiments (refer Fig. 4 for details). Distinctiveness D
of a gene i in one condition c is based on Sharmir’s measure (Shamir, 2002)
and defined as follows:

D(genei , conditionc) = |µci − µ¬ci |
σci + σ¬ci

µci is the mean expression value of gene i during experiments belonging to
the same condition c, while µ¬ci is the mean expression value of gene i dur-
ing experiments not belonging to a condition c. σci and σ¬ci are the standard
deviations corresponding to the former and the latter cases, respectively. Intu-
itively, a large difference between µci and µ¬ci indicates that gene i shows
a distinctive expression pattern in a condition c compared to all the other
conditions. The smaller σci and σ¬ci are, the more consistent the expression
pattern of a gene i in both cases. Those genes whose Distinctiveness D is
greater than a threshold are extracted as seed genes. Here, we use the relative
threshold value based on the distribution of Distinctiveness D of all genes in
a dataset: µD + 3 ∗ σD . This was empirically chosen to restrict the number
of seed genes to ∼5% of the total genes considered.

2.1.2 Utilization of functional annotations To identify genes
involved in the same cellular processes as seed genes, we utilize biological
annotations such as MIPS (Mewes et al., 1997) or GO (GO Consortium,
2001). This prior knowledge provides us with reliable explanations about the
biological roles of genes, but they have unique characteristics which should be
reflected properly. First, biological annotations have a hierarchical structure.
Even though two annotations are different, they can be closely related via
common ancestors. Secondly, multiple annotations are allowed for a single
gene. Therefore, we have to consider not only whether two genes share the
same annotation, but also how many annotations they share. Lastly, biolo-
gical annotations have different specificities. For example, while a GO term,
GO0006414 (translational elongation), annotates 309 yeast genes, another
GO term, GO0006448 (regulation of translational elongation), annotates only
three yeast genes. Therefore, in the context of biological annotations, the
degree of gene similarities not only depends on the number of shared annota-
tions, but also depends on the specificity of them. Lord et al. (2003) showed
that a semantic tree can enable us to calculate the similarity of two biological
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Fig. 2. A semantic tree is built from the annotation terms in MIPS (Mewes et al., 1997). Each node in a tree represents an annotation term in MIPS, and the
P value in it indicates the Information Content of the annotation, which calculates how many genes each node, or any of its children, annotate as a percentage.
To measure the semantic similarity between two annotation terms, the Resnik similarity measure is used. As an example, calculation of the semantic similarity
of two terms, RNA modification and rRNA synthesis, which are designated with a dotted line with a gray color is shown in the figure. The Information Content
of the closest common parent of two terms, Transcription, which is marked with a solid line with a gray color is used in the equation.

annotations based on their hierarchy and specificity. We adopt this concept
to identify the similarity of two genes.

The Annotation Information (AI) score of two genes is defined as a sim-
ilarity measure of them in the context of biological annotations1. First, we
build a semantic tree K from biological annotations (Lord et al., 2003). Each
node in a semantic tree corresponds to an annotation term in source biological
annotations, and it contains an Information Content value P , which indicates
how many genes each node, or any of its children, annotates as a percentage.
The Similarity score S of two annotation terms fi and fj in a semantic tree
K is calculated by Resnik Measure (Resnik, 1999) as follows:

S(fi , fj ) = − log(Information ContentP of the closest parent of
fi and fj in a semantic tree K)

Figure 2 describes an example of the Similarity score calculation, and its
detailed algorithm can be found in (Lord et al., 2003). The AI score of two
genes gi and gj is defined based on the Similarity score S of their annotation
terms:

AI(gi , gj )

=
∑

fk∈(AT (gi )
⋂

AT (gj ))

S(fk , fk)

+ max
(fi∈(AT (gi )

⋂
AT c(gj )))

⋂
(fj ∈(AT c(gi )

⋂
AT (gj )))

S(fi , fj )

AT(gi ) : a set of annotation terms for a gene i

AT(gj ) : a set of annotation terms for a gene j

Annotation terms in AT (gi) and AT (gj ) can be divided into two categories:
terms present in both sets or not. If two genes share the same annotation
terms, the Similarity score of those terms are accumulated. This is based
on the assumption that if two genes share multiple annotations, they are
considered more similar than a pair of genes which share a smaller part of
those annotations. For the annotation terms belonging to only one set, the
maximum Similarity S of all combination of annotation pairs is added to the
AI score. This is to prevent the AI score from being increased due to a large
number of annotation terms some genes have, not due to their real similarity.

1We used MIPS (Mewes et al., 1997) as source biological annotations for
module identification, and used GO (GO Consortium, 2001) to validate the
consistency of the final networks.

Current AI scores based on the MIPS (Mewes et al., 1997) semantic tree have
a maximum value of 31.55 and minimum value of 4.9e−324.

2.1.3 Utilization of the mRNA expression data To find genes that
participate in the same cellular activities as seed genes but not annotated yet,
we use Mutual Information (Kohane et al., 2003). (MI) of mRNA expres-
sion data. Mutual information indicates how much information one random
variable tells about another. Therefore, the MI score of two expression pro-
files represents the degree of dependency between two genes based on their
mRNA expression patterns. In the extreme case, if expression patterns of two
genes are completely independent, their MI score will be zero. An MI score
of two genes, gi and gj is defined as follows.

MI(gi , gj ) =
∑

xi

∑

xj

p(xi , xj ) log
p(xi , xj )

p(xi)p(xj )

xi : a discretized expression value of a gene gi

xj : a discretized expression value of a gene gj

2.1.4 Expansion of seed genes into modules Selected seed genes
are expanded into modules by including closely associated genes based on
AI and MI scores. Basically, one seed gene is an initiating point to grow
into a single module. However, if more than one seed gene are close enough
to each other based on the AI and MI threshold values, they are merged
into a single module to avoid having multiple modules with almost the
same members in them. The AI and MI threshold values for picking up
closely associated genes were determined empirically: µAI + xAI · σAI and
µMI + xMI · σMI . (µAI is the mean value of all AI scores of the yeast
gene pairs downloaded from SGD (Cherry et al., 1998) and σAI is the stand-
ard deviation of them. µMI is the mean value of all MI scores of the yeast
gene pairs in a dataset after preprocessing. σMI corresponds to the stand-
ard deviation of them.) Since each dataset has different target genes after
preprocessing, the distribution of total MI scores will depend on the gene
list in the dataset. For each possible value of xAI and xMI (here, integers
from 3 to 5), we examined the resulting modules based on three factors,
total number of modules, the average module size and coverage. Coverage
is defined as the total number of genes in all identified modules. We prefer
threshold values which lead to modules with high coverage and small average
module sizes.

Modularization score = Coverage

Average Module Size
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Table 1. Comparison of the Interaction Inference results from Modularization with different thresholds

Case
number

Threshold
(xMI , xAI )

Modularization
score

Gene
number

Edge
number

Overlapped/non-overlapped
edge number

Consistent/inconsistent
edge number

I (3,4) 21.21 1612 328 229 (69.8%)/99 (30.2%) 71 (21.6%)/257 (69.8%)
II (4,4) 18.31 879 338 240 (71.0%)/98 (29.0%) 82 (24.3%)/235 (75.7%)
III (5,5) 12.61 429 147 64 (43.5%)/83 (56.5%) 35 (23.8%)/103 (70.1%)
IV (5,3) 12.02 1290 480 90 (18.8%)/390 (81.2%) 81 (16.9%)/325 (67.7%)

For an S.cerevisiae stress dataset (Gash et al., 2000), threshold values, µAI +
4 · σAI and µMI + 3 · σMI were chosen to have the highest Modularization
score. Table 1 shows the effect of different AI and MI threshold values, and
the Results section discusses its implication. Detailed module information
including seed genes and module members can be found in the web supple-
mentary data.

2.2 Network learning
2.2.1 Learning of subnetworks for individual modules To learn
Bayesian networks for individual modules, we apply a Bayesian network
learning technique as in Friedman et al. (2000) and Hartemink et al. (2002),
which is based on hill climbing, sparse candidates (Friedman et al., 1999) and
model averaging. Beginning with randomly generated initial networks, a hill
climbing algorithm with random restart is used to search the best matching
network structures for a given data. We use the MDL (minimum description
length) (Lam and Bacchus, 1994) score as an evaluation function for a network
structure. With N (here 100) best candidate networks, a final network is built
by selecting confident edges based on a ratio of occurrences and a score of a
network. The Confidence score of an edge (edgei ) in N candidate networks
is defined as below:

Confidence (edgei ) =
∑

nk∈S ∧ edgei∈nk
Score(nk)

∑
nj ∈S Score(nj )

S = a set of N best networks

Edges whose confidence is >0.75 compose a base framework of the final
network and edges whose confidence is between 0.75 and 0.5 are appended to
it if either end of them is already residing in a base framework. Final networks
learned from each module are called subnetworks since they become parts of
global networks after being integrated with other subnetworks.

2.2.2 Integration of subnetworks via intermediaries Integration of
subnetworks is done by combining subnetworks which share common genes
between them. Recall that genes can belong to multiple modules (i.e. over-
lapped modularization) if they show acceptable AI and MI scores with respect
to the seed genes in different modules. We call those genes belonging to mul-
tiple modules as intermediary genes. These genes play a role of intermediaries
among subnetworks in the sense that they may intermediate different cellular
processes or suggest related modules. The integration algorithm is described
in Figure 3.

3 RESULTS

3.1 Data
The proposed method was applied to S.cerevisiae stress data
(Gash et al., 2000). In this dataset, a total of 173 expression val-
ues of each gene are measured on 16 different stress conditions in a
time-series manner. After preprocessing,2 4931 genes remain to be

2Imputing missing data using Norm2.02 (Schafer, 1997), 2-fold variation
filtering, and smoothing with adjusting window size as 3 (Kwon et al., 2003)
is done.

mark all edges in subnetworks as non-connected;
network_index=-1;

do {
org_edge = the first non-connected edge;
mark an org_edge as connected;
network_index++;
put an org_edge in a global_network[network_index];

do {
for( each subnetwork ) {

for( each non-connected edge ) {
if( edge is connected to edges

in a global_network[network_index]) {
mark it as connected;
put it in a global_network[network_index];

}
}

} while(no more edge is connected);

} while( no edge is non-connected );

Fig. 3. The integration algorithm of subnetworks via intermediary genes.

studied. Among 16 experimental conditions, we focus on 12 well-
studied stress conditions including heat shock stress, oxidative stress,
reductive stress, osmotic stress, starvation and diauxic shift.

3.2 Biological analysis
3.2.1 Extracted seed genes and expanded modules Since external
stress causes cellular perturbations, we expected that the identified
seed genes and their expanded modules would include the cellular
processes mainly related to protecting and maintaining the internal
balance of a cell under the corresponding stress condition. Charac-
teristics of seed genes and their corresponding stress conditions are
summarized in Figure 4. It is clear that many annotations of seed
genes imply the biological processes closely related to the corres-
ponding stress conditions. Annotations involving in C-compound,
transported routes and cell death appear in several places regardless
of the stress type. We assume that those cellular processes function
ubiquitously during various stress conditions.

The genes expanded from seed genes based on their MI score
give us clues about the function of unannotated genes. For example,
YLR217W was extracted as a seed gene during a heat shock con-
dition type-I. Its expanded genes include CPR6, HSP10, HSP60,
HSP82, HSC82 and STI1. All of them carry out very similar
biological functions, i.e. chaperone. Even though a seed gene,
YLR217W is a currently unannotated ORF; its related genes based
on mRNA expression patterns and its distinctive stress condition
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Fig. 4. Biological categories of the extracted seed genes. Biological annotations which coincide with the identified seed genes more than three times are
summarized. If a seed gene shows the reduced expression in the identified condition compared with all the other conditions, it is marked with a gray color. The
opposite case is marked with a black color. Each stress condition [heat shock stress1(experiments 1–9), heat shock stress2 (10–15), hydrogen peroxide stress
(36–45), superoxide generating drug menadione stress (46–54), diamide stress (70–77), dithiothreitol stress1(55–62), dithiothreitol stress2 (63–69), hyper-
osmotic stress (78–84), hypo-osmotic stress (78–90), amino acid starvation stress (91–95), nitrogen depletion stress (96–105) and diauxic shift (106–112)] are
numbered from 1 to 12 consecutively.

(i.e. heat shock) suggest that its function may be related to a
chaperone activity. We found additional evidence which supports
this hypothesis. In the experiment done by Travers et al. (2000),
YLR217W is constantly over-expressed during the unfolded protein
response, which implies its increased necessity for the unfolded
protein response. Moreover, among 14 genes which show similar
expression with YLR217W, about half of the genes with known
functions are related to ‘chaperone’ based on GO (GO Consortium,
2001) annotation: APJ1, STI1, TFS1. In addition, we have found
protein interaction data which shows YLR217W interacts indir-
ectly with co-chaperone activator (YOR349W) via a domain protein
YMR294W (http://biodata.mshri.on.ca/yeast_grid/).

Some expanded ORFs are revealed to be located next to the cor-
responding seed genes on the chromosome: CPR6(YLR216C) and

YLR217W, YOL150C and GRE2(YOL151W) and YOR225W and
ISU2(YOR226C). Since the expression profiles of two genes in
each pair are very similar to each other, we presume that they were
originally a single gene or constitute a protein complex.

3.2.2 Learned networks The Interaction Inference step resulted
in one big connected network and many small networks. Among
them, the largest connected network is depicted in Figure 5. Several
distinctive cellular activities are identified, and a few of them are
summarized below.

Networks directly protecting internal systems responding to
external stresses are mainly reconstructed. A representative case
is an oxidative stress. Genes related to the peroxisome organiza-
tion and biogenesis (OAF2, CAT3, CIT2, IDP3, AAT2), exporting
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Fig. 5. The largest connected network by integrating subnetworks via common intermediaries. Characteristic nodes are marked with the corresponding
biological annotations.

metabolites of the peroxisome (CAT2), a regulator of cell redox
homeostasis (cTPxII), glutathione transferase (GTT2), superxoide
dismutase copper chaperone (CCS) and sulfite reductase (ECM17)
are found in this part. Another representative example is a heat shock
stress. Subnetworks of protein folding and degradation include:
chaperone genes (STI1, EGD1, EGD2, STT10, BIP, CPR7, ATX1),
chaperone regulator (HSP40), chaperone activator(AHA1), pro-
tein folding and stabilization genes (HSP30, ABP1, ACT2, WHI4,
SAP30, PPH3, EXG2, SSA2, BMH2, CLC1, LPI6, CTH1, BYC2,
SWH48, CMP1, APR6, CMK1, YGL190C, TPM1), protein fate
genes (CLS8, CCS), and ubiquitin protein complexes and their target-
ing genes (UBC4, DOA3, DOA4, DOA5, SCD2, CBF3D, CDC53,
MDP1, RAD18).

Networks common in various stress conditions are also found. The
typical examples include C-compound and carbohydrate utilization,
respiration, transport and cell wall organization. Energy sources such
as glycogen and trehalose are well known to play a critical role in
response to various stress conditions (Francois et al., 2001; Hohmann
and Mager, 2003). Since stress defense mechanisms consume a signi-
ficant amount of ATPs, respiration components(ATP5, AEP2, IMG1)
and aerobic respiration genes(SMP2, COX11, YDR115W) are also
induced in various stresses. In stressful conditions, many genes
should be transcribed and moved to the cytosol to respond to rapidly
changing external conditions. Therefore, subnetworks involved in
RNA transcription, splicing, import and export are found in many
places as well. Also, stressful conditions demand the cell wall and
cytoskeleton structures in a cell to reorganize in order to adapt in a
changed environment.

By examining edges in final networks, new hypotheses or com-
plementary evidences about the functions of currently unclassified
genes were presented. YBL010C is a currently un-annotated ORF,

but its connected pairs in a network, ECM10, PIM1, PUP1 suggest
that it may be involved in protein stabilization or degradation under a
heat shock stress. We have found two other evidences to support this
hypothesis. First, Middendorf et al. (2004) presented the decision
rule learning to predict gene regulatory responses using motifs and
expression levels. Under USV1 knockout (heat shock and osmolarity
stress), YBL010C is selected as a state-changing target gene, which
implies its involvement in the given stress condition. Secondly, the
protein product of YBL010C is known to interact with SPP382p, a
suppressor of the temperature-sensitive growth defect (Hazbun et al.,
2003).

YBL055C is also an un-annotated ORF. Its inferred pair, NUP157,
is involved in nuclear transporter activity. YBL055C has a physical
interaction with a nucleotide exchange factor, PRP20 (Bader et al.,
2003). These suggest YBL055C also has a function in transporter
activity. Another un-annotated ORF, YHR207C, is assumed to be
involved in drug responses based on its inferred pair, FLR1, a multi-
drug transporter. Physical interaction data of YHR207C with RIO2,
a nucleocytoplasmic transporter, indirectly supports this hypothesis
(http://contact14.ics.uci.edu/pgo/). In other research (Mendizabal
et al., 1998), RIO2 is identified as one of the halo tolerance genes and
it contains two C2H2 zinc finger motifs. Based on the other transcrip-
tion factors with same zinc finger motifs, the authors suggested the
function of RIO2 as a transcriptional controller of genes responsive
to a drug stress. YKL061W is also currently un-annotated. Its pair,
NTC20, in the learned network performs nuclear mRNA splicing. It
is also known to physically interact with NUP57, NUP82, NUP1 and
NUP116, which constitute a nuclear pore complex. It also interacts
with UTP5, which performs snoRNA binding. This suggests that
YKL061W has functions of binding or transporting activity in the
nucleus. Another example is YPL251W. Its learned pair, BUD31, is
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Fig. 6. Modularization results based on three factors, the total number of modules, the average module size and coverage.

involved in bud-site selection, and we have found that it is known to
interact with BUD9, another protein involved in bud-site selection.

There are cases which confirm highly plausible, but currently
unsettled, functional activities of genes. The representative example
is YML131W. YML131W is known to be involved in the process of
lipid, fatty acid and isoprenoid biosynthesis (Mewes et al., 1997), but
its explicit biological role has not been clarified yet (GO Consortium,
2001). In our experiment, YML131W was selected as a seed gene
during an oxidative stress. It turned out that YML131W and the only
other member in a same module, YNL134C share a zinc-containing
alcohol dehydrogenase superfamily domain (IPR002085). The func-
tion of YML131W as an oxidoreductase, based on its domain
information, is strongly supported by its inferred interaction and
the identified stress condition using the proposed method. This pro-
cedure shows a typical in silico process of how learned edges can be
used for generating or substantiating the biological hypotheses.

3.2.3 Computational analysis Firstly, we examined how robust
the proposed method is to the change of the AI and MI threshold
values. The characteristics of the resulting modules are compared
based on three factors: the total number of modules, the average
module size and coverage (i.e. the total number of genes in identi-
fied modules). The results are illustrated in Figure 6. As thresholds
increase, the total number of modules, the average module size and
coverage decrease. The average module size and coverage seem to
be affected more by the AI threshold value than by the MI threshold.
We counted how many edges in final global networks from different
threshold settings coincide, in other words, overlapped, with each
other. As representative cases, we compared the results from four
different modularization: modules with the two highest Modulariza-
tion Scores and modules with the two lowest Modularization Scores.
The Results are summarized in Table 1 and the rows in the table
are ordered by their Modularization Scores. Even though the total
number of genes among four cases is quite different, the ratio of
overlapped edges among them is relatively high. Additionally, we
counted how many edges (i.e. pairs of genes) in the final global net-
works share the same annotation in GO (GO Consortium, 2001). If
two nodes of an edge share the same process or functional GO term,
we counted it as a consistent edge with established biological know-
ledge. Otherwise, it was counted as an inconsistent one except the
cases including unclassified ORFs. Component terms in GO were

not used since they tend to distort the consistency rate due to the low
specificity of terms such as ‘cytosol’. Since only identical terms are
counted, the measured estimate is a rather conservative one. Gener-
ally, modularization results with higher Modularization scores are
more reliable than those with lower ones based on their overlapping
and consistency ratio.

Secondly, we compared the proposed method with two dif-
ferent alternatives: a whole-set-based approach (i.e. inference of
Bayesian networks over a set of genes as a whole) and expression-
based clustering approaches (i.e. inference of Bayesian networks
over each gene cluster based on only mRNA expression data).
For expression-based clustering, two common clustering algorithms
were used to avoid an algorithm-specific bias: SOM toolbox
for MATLAB (http://www.cis.hut.fi/projects/somtoolbox/) and K-
means clustering. The number of clusters was automatically decided
by the SOM toolbox software and this was also used for K-means
clustering. Two extreme cases, Case I and Case IV in Table 1, were
tested, and the result3 is summarized in Table 2.

The whole-set-based approach performs worst for Case IV. Note
that we did not apply any extra screening information such as
transcription factors or gene perturbation to the whole-set-based
approach in order to examine the pure effect of modularization. It
is interesting that the proposed method comes up with not only a
significantly higher ratio of consistent edges but also much abund-
ant inferred edges than the whole-set-based one. However, the
average number of edges in candidate networks from the whole-set-
based approach was much greater than that of the proposed method.
This suggests that the networks from the whole-set-based learning
contain a much smaller ratio of consistent edges than that of the
proposed method. Two expression-based clustering algorithms per-
form better than the whole-set-based approach, but worse than the
proposed method. The performance gain of the proposed method
is from 32 to 116%. Also, it is worth noting that the absolute
number of consistent edges from our method far exceeds that from
the expression-based methods. Detailed information about inferred
networks such as directions and confidence scores of edges can be
found in supplementary material.

3The whole-set-based learning result of Case I is not available due to the
limited capacity of our software.
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Table 2. Comparison of the proposed method with a whole-set approach and two expression-based clustering approaches

Method Module number Final edge number Consistent edge number Inconsistent edge number

Case I (1612 genes)
The proposed method 76 328 71 (21.6%) 257 (69.8%)
Whole-set-based learning 1 N/A N/A N/A
SOM-cluster-based learning 60 94 10 (10.6%) 73 (77.7%)
K-means-cluster-based learning 60 113 10 (10.0%) 87 (77.0%)

Case IV (1290 genes)
The proposed method 61 480 81 (16.9%) 325 (67.7%)
Whole-set-based learning 1 92 2 (2.2%) 77 (83.7%)
SOM-cluster-based learning 60 180 23 (12.8%) 128 (71.1%)
K-means-cluster-based learning 60 148 19 (12.8%) 107 (72.3%)
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Fig. 7. (a) Scale-free characteristics of learned networks. When the degree, k, of the nodes of a scale-free network is plotted against the probability of occurrence
of that degree, P(k), on a log–log scale, the data form a straight line, the slope of which is γ = −2.2256 in this graph (Hallinan, 2004). (b) Dependency
between the degree of a gene and the number of modules it belongs to.

Recent researches (Jeong et al., 2001; Hallinan, 2004) have shown
that cellular networks show the characteristic of scale-free networks
common in many natural networks. Here, we examined the scale-
free characteristic of the final networks. Figure 7a shows that the
probability P(k) of finding a node with degree k in final networks
follows a power law: P(k) ∝ k−γ (here, γ = −2.2256). To confirm
that this scale-free characteristic of final networks does not come
from the overlapped intermediary genes in multiple modules, we
examined the correlation between the number of modules each gene
belongs to and the number of degrees each gene has (Fig. 7b). We
use the Spearman’s rank correlation coefficient and the result verifies
that two factors show very low dependency: R = 0.4347, N = 1290,
p ≤ 6.777e−55 (Z = 15.6079).

4 CONCLUDING REMARKS
To infer genetic interaction mechanisms in a cell, we have proposed a
new method called MONET, which stands for modularized network
learning using biological annotations and mRNA expression data.
The proposed method presents a global picture of actively responding
biological processes as well as a detailed look of relationships among

genes. The whole procedure is composed of two main parts: Module
Identification and Interaction Inference. In the Module Identification
step, it identifies seed genes that show distinctive expression pat-
terns in a specific experimental condition. Beginning with those seed
genes, functionally related genes are grouped into different modules
based on prior biological knowledge and expression data in terms
of the Annotation Information (AI) and Mutual Information (MI)
scores. In the Interaction Inference step, an existing Bayesian net-
work learning algorithm is applied to each module to infer detailed
interactions among genes. These separately inferred subnetworks
over each module are integrated into final global networks through
common intermediary genes.

The proposed method has several advantages over previous
approaches. Firstly, since identified modules contain those genes
whose biological annotations or mRNA expression patterns are
tightly related, we expect that they would be more consistent with
localized cellular processes than clustering-based modules, which
are based on only expression patterns. Even though mRNA expres-
sion patterns can show close relationships between genes, there are
many cases which conventional clustering methods cannot detect
(Fashing et al., 2002). Moreover, overlapped modularization of genes
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rather than partitioning of them reflects the multiple activities of
genes in a cell more realistically. Secondly, the proposed method can
reduce false positive inferences among genes. Since Bayesian net-
work learning is applied to a smaller number of genes given the same
number of expression profiles, we can achieve a better ratio between
the number of variables and observations for a learning procedure.
Thirdly, common genes in multiple modules play intermediaries
among modules so that our method can also infer inter-relationships
of modules. This provides us an overall picture of cellular processes
as well as detailed relationships between genes. Lastly, it can utilize
the existing sophisticated learning techniques incorporating designed
gene perturbation or transcription factor binding information, since
those enhancements can be applied to the learning of intra-module
networks.

We have analyzed the expression profiles of yeast stress data (Gash
et al., 2000) using the proposed method. The result was well in
accordance with established biological knowledge besides suggest-
ing some putative hypotheses and complementary evidences about
the functions of currently unclassified genes. Currently, we are going
to incorporate recent improvements of network learning proced-
ures, such as utilization of gene perturbation and transcription factor
binding information, into our framework.
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