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Abstract-Recent developments in the field of space-division 
multiplexing (SDM) for fiber-optic communication systems sug­

gest that the spatial diversity offered by SDM can be used not only 
to increase system capacity, but also to achieve provable security 

against physical layer attacks. In this work, we outline some of the 
mathematical framework necessary to assess the security benefits 
of the SDM. We substantiate our conjecture that allocating the 

maximal allowable power to each mode is optimal in terms of 

physical layer security. Further more, we expand the scope of our 

security analyses to include distortion as a quantitative metric 
for secrecy and study how the rate of reliable communication 

between the legitimate transmitter-receiver pair can be chosen 
to maximize reconstruction (decoding) errors of the eavesdropper. 

1. INTRODUCTION 

Fiber-optic communication systems are inherently vulner­
able to various types of physical-level attacks [1]. The most 
common form of attack is fiber tapping, where an attacker 
with physical access to the fiber retrieves a portion of the 
propagating signals by bending the fiber and detecting the 
evanescent field at the bend. Moreover, by introducing a 
sufficiently small amount of bending loss (e.g., by tapping at 
a point of high optical signal power near an optical amplifier), 
a fiber-tapping eavesdropper can go unnoticed by the legiti­
mate transmitter and receiver. The wide availability of fiber 
tapping devices and the difficulty of detecting wire-tapping 
are physical-layer security concerns. Quantum key distribution 
(QKD) addresses both concerns via the exchange of a secure 
key between a transmitter and a receiver while at the same 
time providing for intrusion detection [2], both provably 
secure based on fundamental quantum mechanical principles. 
However, the provable secure benefits of QKD come with 
stringent limitations in terms of both the secure data rate and 
the transmission reach (e.g., 1 Mb/s over 100 km of fiber [3 ]). 
Moreover, severe problems arise from optical amplifier noise 
and from interactions between classical communications and 
QKD signals on a common optical networking infrastructure 
[4]. 

Given that space-division multiplexing (SDM) has recently 
been shown to sustainably overcome the nonlinear Shannon 
limit of optical fiber [5]-[10], physical-layer security consid­
erations of SDM have become important as well [11]. In fact, it 
has been shown that independent of the capacity scaling, SDM 
has the potential to ensure the physical-layer confidentiality of 
information transmission [11]. Coupling spatial information 
out of an SDM waveguide changes the spatial information 
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Fig. 1. System model: received signal by the legitimate receiver y and the 
eavesdropper ye 

content both for the eavesdropper and for the legitimate 
transmit-receiver pair. As a result, the eavesdropper's channel 
will generally be less favorably conditioned than that of the 
legitimate user. At the same time, a bend-induced mode­
dependent loss (MDL) recorded at the legitimate receiver will 
inherently reveal the presence of the eavesdropper. Expanding 
upon initial quantitative security results presented in [11], 
we present some mathematical foundations for evaluating 
the potential benefit of SDM in providing an information­
theoretically provably secure way for information transmission 
in this paper. We first use equivocation (conditional entropy) 
as a metric of secrecy and provide a more detailed analysis of 
secrecy capacity for MIMO-SDM systems. In particular, we 
study the optimal power allocation strategy under the realistic 
assumption that legitimate receiver and eavesdropper know 
only their respective channel realization and that receiver-to­
transmitter feedback is not possible. Based on both analytical 
and numerical results, we provide justification to our claim 
that allocating maximal allowable power to each mode is 
indeed optimal. In addition to equivocation, we also use 
distortion as the quantitative measure of secrecy to study 
how the possible rate of reliable communication between the 
legitimate transmitter-receiver pair can be chosen to incur 
maximal reconstruction (decoding) errors for the eavesdropper. 

The rest of the paper is organized as follows. In Section 
II, we provide the MIMO-SDM waveguide and fiber tapping 
model. In Section III, we formulate the secrecy capacity 
problem for the MIMO-SDM systems. We also study the op­
timal power allocation strategies. In Section IV, we introduce 
distortion as a measure for secrecy and analyze the trade­
off between transmission rate and distortion. We conclude the 
paper in Section V. 
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II. SDM WAVEGUIDE AND FIBER TAPPING MODEL 

The SDM waveguide and fiber tapping models are shown in 
Fig. l. The SDM waveguide supports a set of M orthogonal 
propagation modes that may be subject to coupling and 
differential gain or loss. Similar to the approach in [7], we 
ignore inter- and intra-modal fiber nonlinearities and model the 
SDM system as a linear matrix MIMO channel. In particular, 
the received signals of the legitimate receiver y and the 
eavesdropper ye are: 

$oVLHx+n, 
$ov£eHex + ne, 

(1) 

(2) 

where H and He are M x M (normalized) matrices for 
the legitimate and eavesdropping channels; I: �nd U rep­
resent normalization factors with L = tr{HHt} 1M and 
U = tr{fIefIet} 1M reflecting the mode-average loss of the 
respective channels fI and fIe [7]. We model the channel 
noise n and ne as symmetric complex Gaussian with per­
mode power spectral density No and No for the legitimate and 
eavesdropping receiver, respectively. In our model, we assume 
an uninformed transmitter. That is, the individual realization 
of H is known only to the legitimate receiver (e.g, through 
the use of training symbols) and unknown to the transmitter 
due to the long round trip delay in optical transmission 
systems. Similarly, the instances of He are known only to 
the eavesdropper and unknown to the transmitter. 

Since realistic spatially resolved models for evanescent 
coupling of SDM fibers at a bend are not yet available, we 
assume a phenomenological model: legitimate channel remains 
essentially unperturbed, which is motivated by the eavesdrop­
pers desire to coupe as little light out of the SDM fiber as 
possible in order to avoid being detected. The eavesdropper 
sees a mode-dependent loss (MDL) channel after evanescent 
coupling. While we show that the statistics of the MDL 
quantitatively affects the secrecy capacity, we believe that 
the exact nature of the channel model is not expected to 
qualitatively affect our results. Mathematically, we model H 
as a random unitary matrix. 

For He, we provide three different models as follows. 

• Uniform distributed MDL model: He = uevve, where 
ue is a random unitary matrix and vve is a diagonal 
matrix. The diagonal elements VVf:, which are on a 
linear scale and satisfy 2:::1 Vii = M, are randomly 
drawn from a uniform distribution: [min{ viJ, max{ Vii}]' 
The mode-dependent loss, expressed in dB, is defined as 
lOMDL/lO = max{ Vii} I min{ Vii}' 

• Log-uniform distributed MDL model: He = uevve. 
Here, the diagonal elements of vve, now expressed 
in dB, are randomly drawn from a uniform distribu­
tion [min{vii},max{viJ]. The diagonal elements are 
lOv:d2o, with 2:::1 lOv:;/lO = M. The mode-dependent 
loss is then defined as MDL = max{ vi;} -min{ vi;}. 

• Partial mode extraction model: we assume that the eaves­
dropper can perfectly extract only Mrx (out of M) modes, 
while experiencing significant MDL on the remaining 
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M - Mrx modes [7]. In particular, we model He as an 
M x M diagonal and deterministic matrix. Among the M 
diagonal elements, Mrx elements are of unit value and the 
remaining M - Mrx ones are of value of (10-M DL/20). 

III. SECRECY CAPACITY OF THE MIMO-SDM SYSTEMS 

A. Secrecy capacity 

We first study the information-theoretic security of the SDM 
system, since this is widely accepted as the strictest notion 
of security. An important performance metric that charac­
terizes the system is the secrecy capacity, which quantifies 
the maximum amount of information that can be transmitted 
from a legitimate transmitter to a legitimate receiver such 
that a wiretapping eavesdropper cannot receive any useful 
information [12]-[14]. Mathematically, this means that the 
equivocation (randomness) of the source, measured by the 
information entropy, is not reduced for the eavesdropper when 
observing the outputs from the wiretap channel. For given 
channel realizations of H and He, we use the well-established 
formalism to derive the secrecy capacity Cs of a MIMO­
SDM channel [14], with a modification of the assumptions 
that reflect the physical characteristics of an optical MIMO­
SDM systems: 

Cs = max[I(x, y) -I(x, ye)] 
Qx 

= max [10g2 det(I + SNRHQxHt) 
Qx (3 ) 

-10g2 det(I + SNReHeQxHet)] 
subject to E[x;] < Po. 

Here I(x, y) and I(x, ye) denote the mutual information 
between the transmitter and the legitimate receiver and the mu­
tual information between the transmitter and the eavesdropper, 
respectively. In addition, det and Qx are the determinant of 
the matrix and the covariance matrix of the transmitted signal 
x, respectively. Note that we constrain the maximum optical 
power Po on a per-mode basis (as opposed to the total average 
power [14]) following the fiber nonlinearity arguments in [7]. 

In regard to the optimal Qx that maximizes I(x, y) -
I(x, ye), we conjecture that Qx = Pol. That is, sending 
uncorrelated signals of equal power of Po on all the modes is 
the optimum power allocation strategy under our assumption 
of an uninformed transmitter. We will detail the substantiation 
of our conjecture in Section III.C. With Qx = Pol, the 
expression of the Cs can be simplified as: 

M 
Cs = 2:)1og2(1 + SNRAi) -10g2(1 + SNRe AD], (4) 

i=l 
where Ai and AT are the non-zero eigenvalues of HHt and 
HeHet, respectively, and SNR = LEol No and SNRe = 

U Eol No are the mode-averaged signal-to-noise ratios of the 
legitimate and wiretap channels. The capacity per mode of the 
legitimate channel Co is given by Co = 10g2 [1 + SNR], due 
to our unitary assumption of H. We further normalize Cs by 



IvI Co and arrive at 

This is the maximum rate, in the unit of the raw SDM chan­
nel capacity, that can be transmitted in perfect information­
theoretic secrecy over a particular MIMO-SDM channel in­
stantiation (characterized by SNR e and Ai ). We also note 
that if the capacity of the eavesdroP2er's channel is larger than 
that of the legitimate receiver (2:i�l log2 [(1 + SNRe An] > 
MCo), we set the secrecy capacity Cs/MCo to zero. 

B. Probability of interception and outage secrecy capacity 

For both uniformly and log-uniformly distributed MDL 
models, we assume that due to random mode coupling within 
the SDM fiber we cannot predict which of the transmit signals 
will be extracted stronger than others by the eavesdropper. 
As such, there exists a finite (low) probability that the in­
stantaneous secrecy capacity Cs is exceedingly small. This is 
illustrated in Fig. 2(a), which shows a statistical distribution 
of the secrecy capacity Cs based on 105 random channel 
realizations for the case of M = 8, SNR=SNRe=20 dB, and 
MDL=20 dB. We observe a sharp cutoff on the left side of 
the histogram. Transmission at a rate smaller than this cutoff 
capacity will be perfectly secure independent of the channel 
realization. However, if the legitimate channel users choose 
to communicate at a rate R higher than this cutoff, there 
is a finite probability that the eavesdropper can (at least in 
principle) learn something about the secret information. We 
call this probability the probability of interception Pint (R) = 

Prob[Cs < R]. Instead of lowering the transmission rate to 
such a value that perfect secrecy is always attained, we adopt 
a different strategy. Similar to the outage approach in commu­
nication systems, we let the transmitter send information at 
a rate such that there is a (small) probability of interception. 
We refer to the associate maximal secrecy rate as the outage 
secrecy capacity, which can be obtained via the statistical 
distribution (histogram) of the secrecy capacity Cs . We plot 
the probability of interception vs. the outage secrecy capacity 
in Fig. 2(b), which shows the trade-off between transmission 
rate and security. 

In [11], we show that even if an eavesdropper introduces 
only 5 dB of MDL, we can still have about 7%-20% of the 
aggregated per-mode fiber capacity in perfect secrecy 99.99% 
of the time. Using just a single wavelength channel modulated 
at 100 Gb/s per spatial mode already yields a secrecy capacity 
that is orders of magnitude higher way than what is achievable 
through QKD. 

C. The optimality of Qx = Pol 

In this section, we use both analyses and simulations to 
justify the conjecture that Qx = Pol is the optimum power 
allocation strategy under the assumption of an uninformed 
transmitter. We first show that we can greatly reduce the 
solution space of the optimization problem (3 ) by considering 

10-1 
Secrecy Capacity 

(Normalized to MCo) 

10-' L-.�c-----_--- J 
10-1 

(a) 

Outage Secrecy Capacity 
(Normalized to MCo) 

(b) 

Fig. 2. (a) Histogram of the secrecy capacity (normalized to Meo) based on 
105 random realizations; (b) Interception probability as a function of outage 
secrecy capacity. 

only diagonal covariance matrices. This follows from: 

I(x, y) - I(x, ye) 
log2 [det(I + SNRVQxVt)] 

-log2 [det(I + SNRevveVeQx vet vve)] 
log2 [det(I + SNRVWA Qwtvt)] 

-log2 [det(I + SNRevveveWA QWtVet vve)] 
log2 [det(I + SNR(VW)A Q (wtvt))] 

-log2 [det(I + SNR e vve (VeW) A Q (wt vet) vve) ] 
log2 [det(I + SNRU A Q Ut) ] 
-log2 [det(I + SNRevveue A QUet vve)] . (6) 

In the above equations, the first equality follows from the 
unitary and MDL channel models for legitimate receiver and 
eavesdropper. That is, H = V and He = Ve vve. The 
second equality follows from the singular value decomposition 
Qx = W A Qwt, where W is a unitary matrix and A Q 
is a diagonal matrix. The third and fourth equal�ies follow 
fro� that the product of two unitary matrices (V = VW 
or Ve = vew) is also unitary. Note that all the statistical 
characteristics of Qx are captured by A Q as the result of our 
channel models. Also, since V, ve, and W are independen�, 
the s�tistical characteristics of V and Ve are preserved in V 
and Ve, respectively. 

Next, we study the interception probability vs. outage se­
crecy capacity for different diagonal matrices A Q. In particu­
lar, we focus on the following search scenarios: 

• Exhaustive search with a quantized step size: the full 
power of Po is quantized to 1 levels with a step size 
of Poll. Power allocation on a spatial mode can only 
take values of kPo/l, with k = 1,2, . . .  , l. We ex­
haustively evaluate all the possible power levels kPo/l 
assigned to M modes. This is equivalent to testing all M­
combinations with repetitions from a set of L distinctive 
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Fig. 3. Interception probability vs. outage secrecy capacity for exhaustive 
search with a step size of 0.2Po, M = 8, MDL= 20 dB, SNR=20 dB, and 
SNR€=l0 dB. 

elements. The total number of cases tested for a given / 
and M is given by e+�-l) . 

• Random search: the values of the diagonal elements of 
A Q are randomly drawn for a uniform distribution [0, Pol. 

Fig. 3 shows the results of all the cases (in blue) from 
exhaustive searches with a step size of 0.2Po (/ = 5) for 
M = 8, MDL=20 dB, SNR=20 dB, and SNR€=10 dB. The 
plots show that allocating Po to every spatial mode is optimal 
in the sense that for the same interception probability the 
outage secrecy capacity achieved by this scheme is larger 
than that of any other scheme (as shown by the black dashed 
curve). We also note that allocating 0.2Po to every mode 
is the least favorable strategy - the secrecy capacity for a 
given interception probability is smaller than that of any other 
scheme (as shown by the red dotted curve). Fig. 4 shows 
the results (in blue) from 500 cases of random search, with 
M = 8, MDL=20 dB, SNR=3 dB, and SNR€=1 dB. It 
is obvious that allocating Po to every mode again has the 
best performance (as shown by the black dashed curve). We 
run extensive tests using the combinations of scenarios and 
different values of M, MDL, SNR, and SNR€. All the results 
obtained so far indeed support the claim that uncorrelated 
and equal power allocation of Po to all the modes is optimal 
in terms of interception probability performance. A rigorous 
proof will be reported in our future work. 

IV. RATE-DISTORTION ANALYSIS 

In addition to equivocation, we also consider distortion as 
a measure of secrecy. Our ultimate goal is to design coding 
or encryption schemes for MIMO-SDM systems so that the 
eavesdropper, even equipped with unlimited computing power, 
cannot make a close enough estimation of the source under 
a given distortion measure. As such, secrecy under distortion 
[15] provides an operational measure by comparing the dif­
ference between the information intended for the legitimate 
receiver and the eavesdroppers estimation. Here, we focus 
on the Hamming distortion (which is the same as the bit 
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Fig. 5. The joint source-channel model. 

error rate (BER) for a binary source) and formulate a joint 
source-channel problem. The system model is shown in Fig. 
5. The transmitter sends an i.i.d. source sequence Sk with 
the objective of keeping the average distortion between the 
eavesdropper's estimation Tk and the sequence Sk as high as 
possible. We evaluate the tradeoff between the transmission 
rate R (symbols/channel use) and the distortion D of the 
eavesdropper's estimation under the worst case scenario in 
which a very capable eavesdropper not only has the infor­
mation by wiretapping the channel but also knows the past 
realization of the source Sj-l at each time j to assist the 
estimation of the current symbol Sj. Mathematically, the 
Hamming distortion between the symbols Si and Si is given 
by: 

if Si = Si; 
otherwise. 

(7) 

In ad2ition, the Hamming distortion between the symbols Sk 
and Sk is given by: 

(8) 

Based on the results of [16], we obtain the distortion as 
a function of achievable rate for the transmission of i.i.d. 
Bernoulli sequences with p = 0.3 and p = 0.5, as shown 
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Fig. 6. Avg. distortion vs. achievable rate: the Bernoulli source with p = 0.3 
(a) and p = 0.5 (b). 

in Fig.6 (a) and (b), respectively. In particular, we consider 
a four-mode (M = 4) MIMO-SDM system with a uniform 
MDL model (MDL=20 dB, SNR=20 dB, SNRe=lO dB). In 
Fig. 6, the maximum distortion for each source sequence is 
shown in blue. The green and red vertical lines represent 
the maximum allowable rate for reliable transmission and the 
maximum allowable rate under perfect secrecy, respectively. 
The purple solid curve depicts the tradeoff between distortion 
and achievable rate. For a biased source such as the Bernoulli 
p = 0.3 sequences, the transmitter can operate at a higher 
rate than the maximal allowable rate under perfect secrecy, 
while ensuring the maximum amount of distortion for the 
eavesdropper (as shown in the shaded region of Fig. 6 (a». 
For an unbiased source (the Bernoulli p = 0.5 sequences), the 
transmitter can operate only as high as the maximal allowable 
rate under perfect secrecy to ensure maximal distortion for the 
eavesdropper. Nevertheless, relatively large distortion values 
(i.e., high eavesdropper BERs) can be achieved at significantly 
larger secret transmission rates. 

V. CONCLUSIONS 

In this work, we evaluated the security benefits of the 
SDM using both equivocation and distortion as measures of 
secrecy. We first focus on the optimal power allocation strategy 
under the assumption of uninformed transmitters. Based on 
analyses and extensive simulations, we substantiate our claim 
that allocating maximal allowable power to each mode is 
optimal. Motivated by our goal to ultimately design coding 
schemes that can maximize the eavesdropper's estimation 
error, we apply joint source-channel coding and quantify the 
rate-distortion tradeoff. 
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