A SHORT PROOF OF A RIGIDITY RESULT FOR
CELLULAR AUTOMATA

ITALO CIPRIANO

ABSTRACT. It is known that for p a prime number, the Haar mea-
sure on (Z/pZ)N is the unique ergodic shift invariant measure,
which is also invariant and with positive entropy for F : (Z/pZ)~ —
(Z/pZ)" defined by F(z); = az; + bz;y1 + c for all i € N, where
a,b € Z/pZ — {0} and ¢ € Z/pZ. We propose a proof using only
the decomposition of a measure in its Fourier coefficients and the
Birkhoff Ergodic Theorem.

1. INTRODUCTION

Let p be a prime number and Z/pZ be the set of integers modulo p
with the sum and multiplication modulo p.
Denote by X = (Z/pZ)N the set of all sequences of scalars

(Tn)nen, Tn € Z/DZ.
This is a vector space for

def
(l'n)nEN + (yn)nEN = (xn + yn)nEN

and .
d
a(xn)neN = (al‘n)nGN‘

The set X is also metric space with the metric defined by
d((xn)neNa (yn)n€N> - 2_inf{i€N|mﬁéyi}‘

In dynamical systems, the most studied continuous map from X to
itself is the shift, denoted by o and defined by o(x); = x;41 for all
1 € N. A cellular automaton is a continuous map from X to itself
that commutes with 0. A very special class, in which we know the
set of preimages of any element in x € X, corresponds to those maps
F : X — X defined by F(z); = ax; + bx;yq + ¢ for all i € N, where
a,b € Z/pZ — {0} and ¢ € Z/pZ. They are commonly called linear
cellular automata and we will always denote them by F'. Clearly any
cellular automaton in this family is p-to-1. Notice also that the shift is
the cellular automaton corresponding to taking a = 0,0 = 1,¢ = 0 in
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the definition of F| so it is not in the family of linear cellular automata.

A measure p on X is uniquely determined by its values on the cylin-
der sets
def _
2]k = (Z/pL)" " > {1} x {wa} x - x {z} x X,
in which n,k € N, x = (21, 29,...,2,) € (Z/pZ)"* and Z/pZ appears
k — 1 times on the left side of {z;}. For example, on X, any vector
(1—¢, q) such that 0 < g < 1 defines a measure by setting 4 4([x]x) =
(1_q)+1q712, in which n; is the number of 0’s in x and ny the numbers of
1’s. This example illustrates the importance of the condition a # 0 in
the definition of F. The Haar measure H on X is defined by

H([x]k) = ﬁ7

in which n,k € N and = = (1, 29,...,2,) € (Z/pZ)".

Given a measure p on X and a transformation G : X — X, we de-
fine the induced measure G, u(A) = u(G71(A)). We will say that yu is
invariant for G if G, = p. For example, o.pt1_q4 = f1—qq, 0=H = H
and F,H = H, where the last identity comes from the fact that F' is
p-to-1.

In [HMMO3], using a “probabilistic approach”, it was proved that

Theorem 1.1 ([HMMO03], Host, Maass and Martinez). Let be F' : X —
X a linear cellular automata, let be ju a probability measure on X such
that Fup = g and o0 = p. Assume that h,(F) > 0 and p is ergodic
for . Then p is the Haar measure.

Let us now change the setup and state an analogous theorem. Define
T to be the set of real numbers modulo 1. For d € {2,3} define the
maps f;: T — T, x — dxr modulo 1 and given a measure p on T define
the induced measure by fg by fa,u(A) = u(f;'A).

Theorem 1.2 (Weak version of Rudolph’ s theorem). Let p be a mea-
sure on T such that fo, = p and fs, 0 = p Assume that h,(f2) > 0
and p 1s ergodic for fs. Then u 1s the Lebesgue measure.

We will prove Theorem 1.1 by imitating a proof by A. Avila of Theo-
rem 1.2 that appears in Matheus Weblog on the webpage Disquisitiones
Mathematicae (see [Mat09]). Our goal is therefore to translate the fol-
lowing procedure. The assumption h,(f2) > 0 implies that there exists
amap T : T — T such that T" # id, T? = id and T, = p. Here
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it is trivial to see that T : x +— x + % modulo 1. This is enough to
prove Theorem 1.2, because using the Fourier coefficients i of u, we
can prove that for m a strictly positive integer and n, s any pair of non
zero integers numbers,

Tiw=p=p2n+1)=T,u2n+1) =e"u2n + 1)
and

Jour = p = 1i(2"s) = p(s).

The two conditions together imply that zi(k) = 0 for all k € Z — {0},
and therefore p is the Lebesgue measure.

Imitating this, to prove the Theorem 1.1, we will use the assumption
h.(F) > 0 to construct a transformation 7" : T — T such that T* # id
for k € {1,2,...,p— 1}, T? = id and T,y = p. This is the first time
in which we use the fact that our cellular automaton is linear, basi-
cally because we need to understand how to permute the p elements
in the preimages of each point. After this, using T, = p (for which
is important that p is prime), we will prove that (§) = 0 on some ¢’s
(analogous to the previous odd number case), again we will require the
linearity of the cellular automaton. The remaining part of the proof
consists of proving that in fact 12(§) = 0 on all £ # 0, this problem is
reduced to proving that ji([z1];) = 0 for all z; € Z/pZ — {0}, and we
will prove it using that F,u = p (analogue to the reduction of the even

case from the odd when using fy, 0 = p), in this part is when we will
use more strongly the linearity of the cellular automaton.

Up to date, as far as I know, the Theorem 1.1 has been generalised
to any cellular automaton F: A — Ain which A is a finite group
and F' is defined by F(z); = a12; + as®ip1 + ... + apTizn_1 + ¢ for
all ¢ € N, in which n € N is fixed and {a;}, C A. By imposing
some extra conditions is still being possible to obtain unicity of the
invariant measure (see [Sab07]). However, no progress has been done
when lacking of linearity (in this more general setting) of the cellular
automaton F.

2. MAIN RESULT

The maps F' and ¢ induce a very “rigid structure” on X, and this is
the main reason of measure rigidity.

Lemma 2.1 (Structural Rigidity). The map F is p-to-1 and there
exists a transformation T : X — X that permutes the p preimages by
F of each element x € X. Moreover, T' commutes with o and it has the
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explicit formula T : x — x + d with d € X, a constant that depend on
a and b in the definition of F.

Proof. To prove the result we are going to find T inductively. First
choose any = € X. Find F~'z = {2'}*~] such that 2!~' = i for any
i € {0,1,...,p — 1}. By induction on the coordinates number, it is
straightforward to prove that for i € {0,1,...,p — 1}, k € N, we have
that ;™" = 2 + (—b~ta)*. By choosing d € X such that for k € N,
d, = (=b~ta)k=1 it is well defined T : z + 2z +d if z € F~'z. We
can repeat the same for any 2’ € X and define T in the same way in
F~12' Tt is clear that the transformation 7" in such a way constructed
commutes with the shift and it is defined by x € X — 2 +d e X. [0

The next Lemma is true when we are working on Z/pZ with p prime.
The reason is that we have the following remark.

Remark 2.2. If we have a permutation © of a set P of cardinality p
for p a prime number, then for any x # y € P, there exists n < p such
that 1 = 7™ s a permutation of P such that 7z = y.

Lemma 2.3. If ju is an ergodic shift invariant measure and h,,(F) > 0,
then Ty = p, where T =T* for some k € {1,2,...,p— 1}.

Proof. We have that h,(F) > 0 implies that the transformation F is
p-a.s. not 1-to-1. By the pigeonhole principle there must to be at least
two disjoint sets A;, A; with 7 < j < p and strictly positive —measures
such that 777 : A; — A; is 1-to-1 and onto. Define T' = T7~*. Remark
2.2 allows to see that T behaves like T, indeed T : & +— z + (j — i)d.
The supports of 1 and T, p are not disjoint, because if A is a Borelian
set such that pu(A) = 1, then Tou(A) > Tup(A;) = u(A;) > 0. Also o is
T p-ergodic, because if A i 1s a Borelian set such that 0714 = A, then
Tlo'A=T""Aand T'o~'A = 6T ' A, therefore by p-ergodicity
of o we have that T,z(A) = 0 or 1. By a corollary of Birkhoff ergodic
theorem we conclude that T,p = p. U

Remember that the Fourier coefficients of a measure p on X are

defined for each s € N and ¢ € (Z/pZ)"* with n € N as

e = > alle))ut™, where w= e’

z€(Z/pZ)™
Lemma 2.4. If p is an ergodic shift invariant measure, h,(F) > 0
and & € (Z/pZ)" —{0™} (n € N) such that £'dp ) # 0 modulo p, then
1i([ls) = 0 for any s € N.
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Proof. We know that fi([¢],) = T.u([€],), but

L) = Y- wllel)wt ™ = A([E])wt< o,

ze(Z/pZ)"
then 71([¢]s) = 0. O

Lemma 2.5. Let p be an invariant for F and o. If € € (Z/pZ)™—{0"}
(n € N) satisfies {'dpy ) = 0 modulo p, then [([€]s) = 0 for any s € N.

Proof. Notice that if £ € Z/pZ, then &'dp 1) = & so &'dpq) = 0 if and
only if & = 0. This proves that for any £ € Z/pZ — {0} we are in the
case of Lemma 2.4, and therefore fi([¢]s) = 0.

There are p non trivial solutions in § of &'dp,,y = 0, where by
trivial we main any & of the form (0, ... ,0,£,0,... ,0), (é, 0,...,0) or
(0,...,0,&) with & € (Z/pZ)™ for m < n. This is enough, because
p-invariance of o implies that for any £ of one of these forms ji([¢]s) =
fi([€]y) for s € N, then recursively we must to arrive to some 7i([¢'] )
in which &’ is not trivial. We are going to find all non trivial solutions.
When n = 2, the solution in £ € (Z/pZ)* of £'dj 9 = 0 is given by
§ = (a,b&1) with & € Z,. Because, {'dy o = a&y + b&(—ab™t) = 0.
Inductively, it is easy to prove that the solution of 'd} 4 is given by
€= (&21,8 29, .. .,82,) where & € Z/pZ and z; is the [-th summand

in Yy, ( Z: } ) a*= 1k = (a + b)" L. If we fix an £ € Z/pZ, then

Fulle) = 32 nFalyus™ = 37 u(le]Ju ™,

T€ZL/pZ €22

where Fx = F(x1,25) = (azy + bxs + ¢), then &'Fx = o + &(c, c),
where € = (a€,b€). By induction on n € N, & € (Z/pZ)" and & =
(&1,&1,...,61) € (Z)pZ)", then £'Fx = £la+ & c,c, ..., ¢) = Ela + £'C,
where étd[mﬂ] =0 and ¢ € (Z/pZ)". In particular

Fu(es) = Y wF'agw = Y pllala)w ¢ = (€ )wse.

ze(Z/pL)" x€(Z/p) !

If we assume that I is p-invariant, then fi([¢]s) = m([ﬁjs) for any
&, but by the previous paragraph if n € N, ¢ € (Z/pZ)™ and £'dp ) = 0,

then 7i([¢]s) = p([¢]s)w” for some & € Z/pZ,r € {0,1,...,p — 1}, and
therefore 7i([£],) = 0. O

All the Lemmas together prove the Theorem 1.1.
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