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Abstract. It is known that for p a prime number, the Haar mea-
sure on (Z/pZ)N is the unique ergodic shift invariant measure,
which is also invariant and with positive entropy for F : (Z/pZ)N →
(Z/pZ)N defined by F (x)i = axi + bxi+1 + c for all i ∈ N, where
a, b ∈ Z/pZ − {0} and c ∈ Z/pZ. We propose a proof using only
the decomposition of a measure in its Fourier coefficients and the
Birkhoff Ergodic Theorem.

1. Introduction

Let p be a prime number and Z/pZ be the set of integers modulo p
with the sum and multiplication modulo p.

Denote by X
.
= (Z/pZ)N the set of all sequences of scalars

(xn)n∈N, xn ∈ Z/pZ.
This is a vector space for

(xn)n∈N + (yn)n∈N
def
= (xn + yn)n∈N

and
α(xn)n∈N

def
= (αxn)n∈N.

The set X is also metric space with the metric defined by

d((xn)n∈N, (yn)n∈N) = 2− inf{i∈N|xi 6=yi}.

In dynamical systems, the most studied continuous map from X to
itself is the shift, denoted by σ and defined by σ(x)i = xi+1 for all
i ∈ N. A cellular automaton is a continuous map from X to itself
that commutes with σ. A very special class, in which we know the
set of preimages of any element in x ∈ X, corresponds to those maps
F : X → X defined by F (x)i = axi + bxi+1 + c for all i ∈ N, where
a, b ∈ Z/pZ − {0} and c ∈ Z/pZ. They are commonly called linear
cellular automata and we will always denote them by F . Clearly any
cellular automaton in this family is p-to-1. Notice also that the shift is
the cellular automaton corresponding to taking a = 0, b = 1, c = 0 in
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the definition of F, so it is not in the family of linear cellular automata.

A measure µ on X is uniquely determined by its values on the cylin-
der sets

[x]k
def
= (Z/pZ)k−1 × {x1} × {x2} × · · · × {xn} ×X,

in which n, k ∈ N, x = (x1, x2, . . . , xn) ∈ (Z/pZ)n and Z/pZ appears
k − 1 times on the left side of {x1}. For example, on X, any vector
(1−q, q) such that 0 < q < 1 defines a measure by setting µ1−q,q([x]k) =

1
(1−q)n1qn2 , in which n1 is the number of 0’s in x and n2 the numbers of

1’s. This example illustrates the importance of the condition a 6= 0 in
the definition of F. The Haar measure H on X is defined by

H([x]k) =
1

pn
,

in which n, k ∈ N and x = (x1, x2, . . . , xn) ∈ (Z/pZ)n.

Given a measure µ on X and a transformation G : X → X, we de-
fine the induced measure G∗µ(A) = µ(G−1(A)). We will say that µ is
invariant for G if G∗µ = µ. For example, σ∗µ1−q,q = µ1−q,q, σ∗H = H
and F∗H = H, where the last identity comes from the fact that F is
p-to-1.

In [HMM03], using a “probabilistic approach”, it was proved that

Theorem 1.1 ([HMM03], Host, Maass and Mart́ınez). Let be F : X →
X a linear cellular automata, let be µ a probability measure on X such
that F∗µ = µ and σ∗µ = µ. Assume that hµ(F ) > 0 and µ is ergodic
for σ. Then µ is the Haar measure.

Let us now change the setup and state an analogous theorem. Define
T to be the set of real numbers modulo 1. For d ∈ {2, 3} define the
maps fd : T→ T, x 7→ dx modulo 1 and given a measure µ on T define
the induced measure by fd by fd∗µ(A)

.
= µ(f−1d A).

Theorem 1.2 (Weak version of Rudolph’ s theorem). Let µ be a mea-
sure on T such that f2∗µ = µ and f3∗µ = µ Assume that hµ(f2) > 0
and µ is ergodic for f3. Then µ is the Lebesgue measure.

We will prove Theorem 1.1 by imitating a proof by A. Avila of Theo-
rem 1.2 that appears in Matheus Weblog on the webpage Disquisitiones
Mathematicae (see [Mat09]). Our goal is therefore to translate the fol-
lowing procedure. The assumption hµ(f2) > 0 implies that there exists
a map T : T → T such that T 6= id, T 2 = id and T∗µ = µ. Here
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it is trivial to see that T : x 7→ x + 1
2

modulo 1. This is enough to
prove Theorem 1.2, because using the Fourier coefficients µ̂ of µ, we
can prove that for m a strictly positive integer and n, s any pair of non
zero integers numbers,

T∗µ = µ⇒ µ̂(2n+ 1) = T̂∗µ(2n+ 1) = einµ̂(2n+ 1)

and

f2∗µ = µ⇒ µ̂(2ms) = µ̂(s).

The two conditions together imply that µ̂(k) = 0 for all k ∈ Z − {0},
and therefore µ is the Lebesgue measure.

Imitating this, to prove the Theorem 1.1, we will use the assumption
hµ(F ) > 0 to construct a transformation T : T→ T such that T k 6= id
for k ∈ {1, 2, . . . , p − 1}, T p = id and T∗µ = µ. This is the first time
in which we use the fact that our cellular automaton is linear, basi-
cally because we need to understand how to permute the p elements
in the preimages of each point. After this, using T∗µ = µ (for which
is important that p is prime), we will prove that µ̂(ξ) = 0 on some ξ’s
(analogous to the previous odd number case), again we will require the
linearity of the cellular automaton. The remaining part of the proof
consists of proving that in fact µ̂(ξ) = 0 on all ξ 6= 0, this problem is
reduced to proving that µ̂([x1]1) = 0 for all x1 ∈ Z/pZ − {0}, and we
will prove it using that F∗µ = µ (analogue to the reduction of the even
case from the odd when using f2∗µ = µ), in this part is when we will
use more strongly the linearity of the cellular automaton.

Up to date, as far as I know, the Theorem 1.1 has been generalised
to any cellular automaton F̃ : A → A in which A is a finite group
and F̃ is defined by F̃ (x)i = a1xi + a2xi+1 + . . . + anxi+n−1 + c for
all i ∈ N, in which n ∈ N is fixed and {ai}ni=1 ⊂ A. By imposing
some extra conditions is still being possible to obtain unicity of the
invariant measure (see [Sab07]). However, no progress has been done
when lacking of linearity (in this more general setting) of the cellular
automaton F̃ .

2. Main Result

The maps F and σ induce a very “rigid structure” on X, and this is
the main reason of measure rigidity.

Lemma 2.1 (Structural Rigidity). The map F is p-to-1 and there
exists a transformation T : X → X that permutes the p preimages by
F of each element x ∈ X. Moreover, T commutes with σ and it has the
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explicit formula T : x 7→ x + d with d ∈ X, a constant that depend on
a and b in the definition of F.

Proof. To prove the result we are going to find T inductively. First
choose any x ∈ X. Find F−1x = {xi}p−1i=0 such that xi−1i = i for any
i ∈ {0, 1, . . . , p − 1}. By induction on the coordinates number, it is
straightforward to prove that for i ∈ {0, 1, . . . , p− 1}, k ∈ N, we have
that xi+1

k = xik + (−b−1a)k. By choosing d ∈ X such that for k ∈ N,
dk = (−b−1a)k−1, it is well defined T : z 7→ z + d if z ∈ F−1x. We
can repeat the same for any x′ ∈ X and define T in the same way in
F−1x′. It is clear that the transformation T in such a way constructed
commutes with the shift and it is defined by x ∈ X 7→ x+ d ∈ X. �

The next Lemma is true when we are working on Z/pZ with p prime.
The reason is that we have the following remark.

Remark 2.2. If we have a permutation π of a set P of cardinality p
for p a prime number, then for any x 6= y ∈ P, there exists n < p such
that π̃

.
= πn is a permutation of P such that π̃x = y.

Lemma 2.3. If µ is an ergodic shift invariant measure and hµ(F ) > 0,

then T̃∗µ = µ, where T̃ = T k for some k ∈ {1, 2, . . . , p− 1}.

Proof. We have that hµ(F ) > 0 implies that the transformation F is
µ-a.s. not 1-to-1. By the pigeonhole principle there must to be at least
two disjoint sets Ai, Aj with i < j < p and strictly positive µ−measures

such that T j−i : Ai → Aj is 1-to-1 and onto. Define T̃
.
= T j−i. Remark

2.2 allows to see that T̃ behaves like T, indeed T̃ : x 7→ x+ (j − i)d.
The supports of µ and T̃∗µ are not disjoint, because if A is a Borelian

set such that µ(A) = 1, then T̃∗µ(A) ≥ T̃∗µ(Aj) = µ(Ai) > 0. Also σ is

T̃∗µ-ergodic, because if A is a Borelian set such that σ−1A = A, then
T̃−1σ−1A = T̃−1A and T̃−1σ−1A = σ−1T̃−1A, therefore by µ-ergodicity
of σ we have that T̃∗µ(A) = 0 or 1. By a corollary of Birkhoff ergodic
theorem we conclude that T̃∗µ = µ. �

Remember that the Fourier coefficients of a measure µ on X are
defined for each s ∈ N and ξ ∈ (Z/pZ)n with n ∈ N as

µ̂([ξ]s)
.
=

∑
x∈(Z/pZ)n

µ([x]s)w
ξtx, where w

.
= e

2πi
p .

Lemma 2.4. If µ is an ergodic shift invariant measure, hµ(F ) > 0
and ξ ∈ (Z/pZ)n − {0n} (n ∈ N) such that ξtd[1,n] 6= 0 modulo p, then
µ̂([ξ]s) = 0 for any s ∈ N.
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Proof. We know that µ̂([ξ]s) = ̂̃T∗µ([ξ]s), but̂̃T∗µ([ξ]s) =
∑

x∈(Z/pZ)n
µ([x]s)w

ξtT̃ x = µ̂([ξ]s)w
kξtd[1,n] ,

then µ̂([ξ]s) = 0. �

Lemma 2.5. Let µ be an invariant for F and σ. If ξ ∈ (Z/pZ)n−{0n}
(n ∈ N) satisfies ξtd[1,n] = 0 modulo p, then µ̂([ξ]s) = 0 for any s ∈ N.

Proof. Notice that if ξ ∈ Z/pZ, then ξtd[1,1] = ξ so ξtd[1,1] = 0 if and
only if ξ = 0. This proves that for any ξ ∈ Z/pZ − {0} we are in the
case of Lemma 2.4, and therefore µ̂([ξ]s) = 0.

There are p non trivial solutions in ξ of ξtd[1,n] = 0, where by

trivial we main any ξ of the form (0, . . . , 0, ξ̃, 0, . . . , 0), (ξ̃, 0, . . . , 0) or

(0, . . . , 0, ξ̃) with ξ̃ ∈ (Z/pZ)m for m < n. This is enough, because
µ-invariance of σ implies that for any ξ of one of these forms µ̂([ξ]s) =

µ̂([ξ̃]s′) for s′ ∈ N, then recursively we must to arrive to some µ̂([ξ̃′]s′′)

in which ξ̃′ is not trivial. We are going to find all non trivial solutions.
When n = 2, the solution in ξ ∈ (Z/pZ)2 of ξtd[1,2] = 0 is given by
ξ = (aξ1, bξ1) with ξ1 ∈ Zp. Because, ξtd[1,2] = aξ1 + bξ1(−ab−1) = 0.
Inductively, it is easy to prove that the solution of ξtd[1,d] is given by
ξ = (ξ1z1, ξ1z2, . . . , ξ1zn) where ξ1 ∈ Z/pZ and zl is the l-th summand

in
∑n

k=1

(
n− 1
k − 1

)
ak−1bn−k = (a+ b)n−1. If we fix an ξ ∈ Z/pZ, then

F̂∗µ([ξ]s) =
∑

x∈Z/pZ

µ(F−1[x]s)w
ξtx =

∑
x∈Z2

p

µ([x]s)w
ξtFx,

where Fx
.
= F (x1, x2)

.
= (ax1 + bx2 + c), then ξtFx = ξ̃tx + ξt(c, c),

where ξ̃ = (aξ, bξ). By induction on n ∈ N, ξ1 ∈ (Z/pZ)n and ξ =

(ξ1, ξ1, . . . , ξ1) ∈ (Z/pZ)n, then ξtFx = ξ̃tx+ ξt(c, c, . . . , c) = ξ̃tx+ ξt~c,

where ξ̃td[1,n+1] = 0 and ~c ∈ (Z/pZ)n. In particular

F̂∗µ([ξ]s) =
∑

x∈(Z/pZ)n
µ(F−1[x]s)w

ξtx =
∑

x∈(Z/pZ)n+1

µ([x]s)w
ξ̃tx+ξt~c = µ̂([ξ̃]s)w

ξt~c.

If we assume that F is µ-invariant, then µ̂([ξ]s) = F̂∗µ([ξ]s) for any

ξ, but by the previous paragraph if n ∈ N, ξ̃ ∈ (Z/pZ)n and ξ̃td[1,n] = 0,

then µ̂([ξ̃]s) = µ̂([ξ]s)w
r for some ξ ∈ Z/pZ, r ∈ {0, 1, . . . , p − 1}, and

therefore µ̂([ξ̃]s) = 0. �

All the Lemmas together prove the Theorem 1.1.
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