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Abstract

This paper investigates the relationship between stock illiquidity spillovers and
the cross-section of expected returns. I study industry-level illiquidity spillovers in
a directed network that describes the interconnections among stocks’ bid-ask spreads,
where the interconnections are latent and are estimated by a Granger-type measure. In
the directed illiquidity transmission network, the illiquidity of high sensitive centrality
(SC) industries, i.e., those active at receiving illiquidity from others, as well as high in-
fluential centrality (IC) industries, i.e., those active at transferring illiquidity to others,
tends to covary with that of their neighbours and neighbours’ neighbours across differ-
ent horizons due to illiquidity spillovers. As a result, long run returns of the portfolios
that contain stocks of central (high SC or high IC) industries may be more volatile
because of weak diversification of the liquidity risk across different horizons. Thus,
investors would require compensations for holding these central stocks. I confirm this
conjecture and find that central industries in illiquidity transmission networks do earn
higher average stock returns (around 4 % per year) than other industries. Market-beta,
size, book-to-market, momentum, liquidity and idiosyncratic volatility effects cannot
account for the high average return earned by central industries.
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1 Introduction

Liquidity plays a central role in the functioning of financial markets. Stock market liquidity is

documented as being closely related to business cycles (Næs, Skjeltorp and Ødegaard (2011)),

stock market returns (Amihud (2002)) and cross-sectional returns (Pastor and Stambaugh

(2003)). In a financial market where everyone is probably connected to everybody else, the

illiquidity risk exposure for a firm is not only related to its idiosyncratic liquidity level and

its correlation to market liquidity conditions, but also closely related to the properties of the

connected individual firm. For example, a firm’s poor liquidity condition could be a result of

drops in liquidity of its connected firms due to illiquidity transmissions (see Oh (2013) and

Cespa and Foucault (2014) among others). Current literature on illiquidity transmissions is

mainly focusing on undirected commonality and aggregated contagion in liquidity,1 and on

directed illiquidity spillovers between two firms, two stocks and two markets.2 In the recent

financial crisis, however, we observe that a major market-wide liquidity problem could be

a result of illiquidity spillovers originated from “important” industries, e.g., the financial

industry. Not much attention is put on understanding the heterogeneity in market-wide

illiquidity spillovers. To better understand this issue, this paper investigates the spillover

risk of illiquidity through modeling the market-wide illiquidity spillovers in a directed network

that describes the interconnections among industries’ idiosyncratic illiquidity risks.3 Then I

examine the relationship between the heterogeneous roles of industries in illiquidity spillovers

and the cross-section of expected returns.

When studying illiquidity spillovers in network analysis, we can explore the architecture

of the spillovers as a mechanism of how individual illiquidity evolves within an “illiquid-

ity network”. This exploration involves looking into the underlying illiquidity transmission

structure, rather than just superficially treating the aggregated market illiquidity as a given

outcome. In network analysis, centrality is a concept referring to a node’s position in the

functioning of network spillovers. Actually, a directed network assumption is straightforward

1See Cifuentes, Ferrucci and Shin (2005), Brockman, Chung and Pérignon (2009), Hameed, Kang and
Viswanathan (2010), Karolyi, Lee and van Dijk (2012), Koch, Ruenzi and Starks (2016) among the most
recent studies.

2See, e.g., Goyenko and Ukhov (2009), Oh (2013) and Cespa and Foucault (2014).
3Hameed et al. (2010) document inter-industry spillover effects in liquidity, which are likely to arise from

capital constraints in the market making sector.
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but implicit when considering network spillovers as any financial spillover must have a direc-

tion with a source and a target. In this regard, I study network centrality in two directions: i)

sensitive centrality (SC), which measures the degree of an industry being affected by others,

and ii) influential centrality (IC), which measures the degree of an industry affecting others.

In an illiquidity transmission network, high SC industries are the ones whose illiquidity can

easily be affected by the illiquidity of other industries, while high IC industries are the one

whose illiquidity can easily affect others’ illiquidity. As a result, central (high SC or high

IC) industries tend to play a major role in network spillovers, compared to those are isolated

with others.4 I also assume a neighbour effect: being affected by high SC industries makes

an industry more likely to be a high SC industry, and affecting high IC industries makes an

industry more likely to be a high IC industry as well. Thus, an industry’s centrality also

takes its connected industries’ centralities into account, providing the characteristics of what

kind of neighbours it is connected to in terms of the role in network spillovers. Implications

of influential centrality in network analysis have drawn growing attention in the literature

of financial systemic risk. For example, Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi

(2012) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) use asymmetric network struc-

tures to show the possibility that aggregate fluctuations may originate from idiosyncratic

shocks to high IC firms. However, research on sensitive centrality is missing in the existing

literature on financial network. I argue that SC is least as important as IC in terms of

asset pricing. In this paper, I provide a comprehensive analysis on sensitive centrality and

influential centrality simultaneously in a directed illiquidity network context.

Intuitively speaking, illiquidity spillovers would lead the illiquidity of a central industry

to covary with that of its connected neighbours and neighbours’ neighbours across different

horizons due to illiquidity spillovers, thus long run returns of the portfolios that contain these

central stocks may be more volatile due to weak diversification of the liquidity risk across

different horizons. Since a high SC industry’s illiquidity is easily affected by the illiquidity of

other industries, investors will demand a premium for holding this high SC stock as agents

demand compensation for not being able to use this stock to diversify the liquidity risk of

others. Similarly, since it is difficult to find other stocks to diversify a high IC industry’s

4An industry is isolated in a network means it is not connected to anybody in this network.
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liquidity risk as the high IC industry’s illiquidity would easily affect others’ illiquidity, the

high IC stocks should also earn a premium. The goal of this paper is to investigate whether

such illiquidity centralities (SC and IC) are risk factors in asset pricing where industries

are connected in an illiquidity network. I resolve this issue by examining the cross-sectional

relationship between the illiquidity centralities and expected returns. Based on the argument

stated above, my conjecture is that central stocks will earn higher average returns. The IC

measured from other economic networks has already been documented as a risk factor in

recent literature on network and asset pricing (see, e.g., Buraschi and Porchia (2012) and

Ahern (2013)), but the result about SC is still missing. Indeed, the empirical result in this

paper provides strong evidence to support my conjecture that both SC and IC industries do

earn higher average returns. Interestingly, my robustness check suggests the effects of SC

are even more robust than IC.

In this paper, illiquidity spillovers, network centralities and cross-sectional expected re-

turns are to be explored together. To verify my previous conjecture, we need a new analytical

procedure that includes four main steps: i) measuring industry’s illiquidity, ii) estimating

the illiquidity transmission network among different industries, iii) calculating centralities in

the illiquidity network, and iv) examining the cross-sectional relationship between illiquidity

centralities and expected returns.

First, liquidity has many dimensions; this paper focuses on a dimension associated with

bid-ask spreads in stock markets, which reflects the difficulty (cost) of stocks’ transactions. I

use Corwin and Schultz (2012)’s bid-ask spreads estimate to measure firms’ daily illiquidity.

Industry’s illiquidity is measured by the simple average of the individual bid-ask spreads

estimates of the firms that belong to this industry.

Then adapting the financial network estimation technique suggested by Billio, Getman-

sky, Lo and Pelizzon (2012) and Dufour and Jian (2016), I use a Granger-type measure to

estimate the directed relationships between every pair of industries in the stock market.5

I identify the directed illiquidity spillover from industry A to industry B by testing if the

marginal effect of industry A’s past illiquidity on industry B’s current illiquidity is positive.

The estimated illiquidity transmission network can be represented by an adjacency matrix.

5Actually, I focus on the industry level just for feasibility of implementation.
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Once we have the estimate of the adjacency matrix of the illiquidity transmission network,

I take it as given and use Bonacich (1987)’s generalized eigenvector centrality measure, which

is built on the neighbour effect assumption, to calculate industries’ sensitive centralities and

influential centralities in the illiquidity network. I re-estimate industries’ centralities each

year by the subsample in that year, then we obtain the annual series (1963 - 2015) of

industries’ centralities (SC and IC). In fact, high SC and high IC tend to coexist and are

persistent in an industry. I find that industries’ illiquidity sensitive and influential centralities

are positively correlated in time-series and in cross-section.

Following the classic procedure used by Fama and French (1992), I examine the cross-

sectional relationship between the illiquidity centralities and expected returns at portfolio

level as well as at industry level. Sorting industries by their respective SC and IC at the

beginning of each year, I form portfolios in 10 deciles based on SC and IC, respectively. I find

that with the portfolios rebalanced annually, average return differences between industries

in the highest and lowest SC deciles and average return differences between industries in

the highest and lowest IC deciles exceed 4% per year. The corresponding Fama-French-

Carhart four-factor alphas also exceed 4% per year. Both the return differences and the

four-factor alpha differences are economically and statistically significant at all standard

significance levels. Not surprisingly, industries’ centralities have relation with some well-

known risk factors. For example, high SC industries tend to be those industries with small

average firm size and high average book-to-market and low liquidity. To ensure that it is

not these characteristics, but the illiquidity centralities (SC and IC), that drive the return

differences documented in this paper, I perform a battery of bivariate sorts and re-examine

the raw return and alpha differences. These results are robust to controls for market-beta,

size, book-to-market, momentum, liquidity and idiosyncratic volatility. Results from cross-

sectional regressions corroborate this evidence. The risk premium between the highest and

the lowest deciles of SC and the premium of IC estimated by the Fama-MacBeth two-step

procedure are approximately 9% per year and 12% per year, respectively. A robustness check

for different subperiods (1970 - 2015, 1980 - 2015, 1990 - 2015 and 2000 - 2015) suggests the

effects of SC are even more robust than IC. In short, the illiquidity centralities (SC and IC)

do earn premiums in the cross-section of expected returns.
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The rest of this paper is organized as follows. Section 2 discusses the contributions of

this paper relative to related literature. Section 3 proposes a new analytical framework for

empirical studies. Section 4 provides the univariate portfolio-level analysis, the bivariate

analysis and industry-level cross-sectional regressions that examine a comprehensive list of

control variables. Section 4 makes a short conclusion.

2 Related Literature

This paper contributes to four strands of the literature: i) financial systemic risk with net-

work analysis and its asset pricing implications, ii) commonality in liquidity, illiquidity con-

tagions and illiquidity spillovers, iii) gradual information diffusion, and iv) financial network

estimation.

The first stream studies financial systemic risk with network analysis and its asset pricing

implications. As Andersen, Bollerslev, Christoffersen and Diebold (2012) mention, modern

network theory can provide a unified framework for systemic risk measures. For example,

Acemoglu et al. (2012), Elliott, Golub and Jackson (2014) and Acemoglu et al. (2015) show

market architectures may function as a potential propagation mechanism of idiosyncratic

shocks throughout the economy. Many of the efforts in this steam are put on studying

the effect of influential centrality because high IC firms (or sectors) are very likely to be

a source of market turbulences. Motivated by this intuition, Buraschi and Porchia (2012)

and Ahern (2013) conduct empirical analysis on firms’ fundamentals networks and on input-

output networks, respectively, and find evidences support the theory implications. They

document high IC firms do earn higher expected returns. This paper differs from them in

two aspects. First, I stress that sensitive centrality is at least as important as influential

centrality in terms of asset pricing. Sensitive centrality and influential centrality can be seen

as twin concepts that built on directed network structures, but respectively characterize

nodes’ importance in a network in distinct directions. As discussed before, both high SC

and high IC firms should earn risk premiums according to their network implications. In

this paper, I provide a comprehensive analysis on high SC and high IC industries. The result

related to IC is consistent with the implication of Acemoglu et al. (2012) and Acemoglu et
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al. (2015)’s theory in asset pricing, while SC turns out to be a more robust risk factor than

IC in explaining cross-sectional returns and is thus of great importance as well. Second, I

focus on a well-known risk, illiquidity risk, and its transmission structures. The illiquidity

network structure is directly identified by illiquidity spillovers. Thus the interpretation of

the network effects in terms of risk spillovers is more straightforward.

The second stream of literature studies commonality in liquidity, illiquidity contagions

and illiquidity spillovers in financial markets. Liquidity has been shown to covary strongly

across stocks6 and commonality in liquidity can influence expected returns7. Both illiquidity

comovements and illiquidity spillovers may describe the phenomenon of covaried illiquidity

across stocks. But illiquidity comovements studies the contemporaneous relationship among

cross-sectional illiquidity, while illiquidity contagions and spillovers focus more on the rela-

tionships across different horizons. Cifuentes et al. (2005) explore liquidity risk in a system

of interconnected financial institutions and finds contagious failures can result from small

shocks. Oh (2013) presents a model in which the contagion of a liquidity crisis between two

nonfinancial institutions occurs because of learning activity within a common creditor pool.

Cespa and Foucault (2014) show that cross-asset learning generates a self-reinforcing positive

relationship between price informativeness and liquidity, which can lead a small drop in the

liquidity of one security can, through a feedback loop, spill over and result in a large drop

in market liquidity. Longstaff (2010) conducts an empirical investigation into the pricing of

subprime asset-backed collateralized debt oblications (CDOs) and finds strong evidence of

contagion in financial markets was propagated primarily through liquidity and risk-premium

channels. These studies provide theories and empirical evidences of why illiquidity can spill

over and cause contagions in financial markets across different horizons. In fact, illiquidity

spillovers can happen even if there is no contemporaneous illiquidity comovement, and vice

versa. The main departure of this paper from this literature is primarily in the emphasis on

the network structure of illiquidity transmissions. Specifically, I focus on the asset pricing

implications of the heterogeneity of illiquidity spillovers.

The third stream of the literature studies gradual information diffusion in financial mar-

6See Brockman et al. (2009), Hameed et al. (2010), Karolyi et al. (2012), Koch et al. (2016) among the
most recent studies.

7See, e.g., Pastor and Stambaugh (2003) and Acharya and Pedersen (2005).
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kets. It has been documented that economic links between firms can serve as the channel

of gradual diffusion of information. Individual firm’s returns, return volatilities and credit

spreads can be predicted via firms’ linkages (see Cohen and Frazzini (2008),Hertzel, Li,

Officer and Rodgers (2008), Menzly and Ozbas (2010), Aobdia, Caskey and Ozel (2014),

Gençay, Signori, Xue, Yu and Zhang (2015), Albuquerque, Ramadorai and Watugala (2015)

and Gençay, Yu and Zhang (2016) among others). This literature implies potential effects

of network structures on asset pricing, since they find firm’s returns can be predicted by

the returns of the firms it is connected to. Actually, gradual information diffusion may also

provide a channel for risk spillovers.

The fourth strand of the literature studies the estimation on financial network struc-

tures. After all, most of financial relationships in financial markets are latent and needed

to be estimated from an appropriately identified model. Billio et al. (2012) use the Granger

noncausality testing to meausre connectedness in financial markets. Hautsch, Schaumburg

and Schienle (2015) measures the downside risk relationship from A to B by estimating the

marginal effect of the Value-at-Risk (VaR) of A’s returns on B’s returns. Diebold and Ylmaz

(2014) and Dufour and Jian (2016) propose general network measurement frameworks to

measure directed financial relationships. In this paper, illiquidity networks are estimated by

a Granger-type procedure that identifies illiquidity transmissions by measuring the illiquid-

ity prediction among industries. This method is in line with Billio et al. (2012) and Dufour

and Jian (2016). We share the same estimation logic: if industry A’s illiquidity transmits to

industry B, then industry B’s illiquidity can be predicted by industry A’s illiquidity.8 How-

ever, measuring network centrality also requires positive spillovers: if industry A’s illiquidity

transmits to industry B, a higher current illiquidity of industry A should increase the future

illiquidity of industry B. Therefore in this paper, I estimate the direct effect in the illiquidity

transmission network by testing positive prediction effects. Causality at multiple horizons

could measure the illiquidity spillovers from one industry to another while simultanenously

considering direct and indirect effects (see, e.g., Dufour and Jian (2016)). But the adjacency

matrix representing the underlying network structure in terms of all bilateral direct effects

8Goyenko and Ukhov (2009) also use a Granger-type procedure to study the illiquidity spillovers between
stock and bond markets.
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is sufficient to calculate network centralities. So I estimate the direct effect that is measured

by forecasting at horizon one: if industry A’s illiquidity transmits to industry B, a higher

today’s illiquidity of industry A should increase tomorrow’s illiquidity of industry B.

3 Analytical Framework

In this section, I provide an analytical framework to formalize and quantify illiquidity central-

ity for empirical analysis. I use adjacency matrix to represent a general illiquidity transmis-

sion network. Since any illiquidity transmission has direction, I categorize network centrality

into: i) sensitive centrality, which measures how sensitive is a node to a random shock in a

network; ii) influential centrality, which measures how influential id a node’s shock affecting

others in a network. Given directed network structures represented by an adjacency matrix, I

use Bonacich (1987)’s generalized eigenvector centrality to measure nodes’ network sensitive

centrality and influential centrality. Note that illiquidity transmission networks are latent, I

use Corwin and Schultz (2012)’s bid-ask spreads estimate to measure firms’ daily illiquidity

and apply a Granger-type specification method to empirically identify directed illiquidity

network structures.

3.1 Illiquidity Transmission Network

Network analysis can be used to model and explain financial contagions. For example, Allen

and Gale (2000) show that the possibility of contagion depends strongly on the completeness

of the underlying network structure. For the complete network shown in Figure 1a, individ-

uals can be insured by each others following Lucas (1977)’s diversification argument, such

that microeconomic shocks would average out and thus have negligible aggregate effects. For

the incomplete network shown in Figure 1b, idiosyncratic shocks may propagate throughout

the entire system and an individual problem can cause a systemic failure.

In this paper, I focus on illiquidity spillovers. Industries’ illiquidity may transmit to other

industries via an illiquidity network. I examine financial network structures in at industry

level and focus on industries’ centralities in their illiquidity network. Sensitive centrality

(SC) measures the degree of a node being affected by others: how sensitive is a industry to
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Figure 1: Financial Contagion and Network Structures

a random shock in a network. In Figure 2a, industry A is a high SC firm as illiquidity from

other industries can directly transmit to it. Influential centrality (IC) measures the degree

of a node affecting others: how influential of the shock of an industry affecting others in this

network. In Figure 2b, industry A is a high IC industry as its illiquidity can directly transmit

to all other industries. Note that a high SC industry is not necessarily low IC. Figure 2c

shows a case where industry A is both high SC and high IC. I call it absolute centrality

(AC). In Figure 2c, illiquidity from any other industries can directly transmit to industry

A, meanwhile, industry A’s illiquidity can also directly transmit to all other industries in

this network. Intuitively speaking, an industry being affected by a high SC industry tends

to be sensitive central as well. In Figure 3a, industry C is a high SC industry and it affects

industry A. Illiquidity can easily transmit to industry C and then spillovers to industry A via

industry C. Thus industry A is also a high SC industry due to industry C is sensitive central.

Likewise, an industry affecting a high IC industry also tends to be influential central. In

Figure 3 industry A’s illiquidity can transmit to every industry in this network: directly to

industry C and indirectly via industry C. Industry A is high IC since industry C is relatively

influential central in the rest of the network. In this sense, our illiquidity centrality (SC

and IC) has simultaneously taken directed direct effects and directed indirect effects into

account.

In view of asset pricing, both high SC and IC industries’ stocks are not desirable assets

to hedge against a deterioration in investment opportunities. For high SC stocks, they tend

to have low liquidity soon when others experiencing illiquidity during bad times. For high

IC stocks, their illiquidity may spread to the whole financial network and cause market-wide
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Figure 2: Network Centrality
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(a) Affected by a sensitive central industry
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(b) Affecting a influential central industry

Figure 3: Neighbour to a high sensitive (influential) central industry

illiquidity and aggregate turbulences. Influential centrality could also be viewed as a source

of market beta (see Ahern (2013)). Thus, as a “victim” of the illiquidity of others and

a “murderer” of market turbulences, high SC stocks and high IC stocks should both earn

higher expected returns. In this paper, I will empirically examine whether illiquidity network

centralities (SC and IC) are risk factors priced in cross-sectional stock returns. For now, I

use a simple network setting to further illustrate the intuition of why high SC and high IC

firms should earn premiums, even if there is no risk or return comovement.

Example 3.1. Suppose there are only three assets (i, j, k) in the market where investors are

risk-averse. Asset i’s illiquidity transmits to asset j, but they are independent from asset

k. In this network as shown in Figure 4, asset i and asset j are connected, and asset k is

isolated. Thus, asset i is a high IC asset as it affects asset j; asset j is a high SC asset as it

is affected by asset i; asset k is neither high IC nor high SC asset as it is isolated with the

spillovers from asset i to asset j. I compare asset k with asset i and asset j. Asset k is a

benchmark asset in this example.
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Figure 4: Simple network with high SC, high IC and isolated nodes

I assume the return of asset k at time t, Rkt, is independently drawn from the standard

normal distribution N(0, 1). For asset i, its return at time t, Rit, is also drawn independently

from N(0, 1). The return of asset j at time t, Rjt, is correlated to Rit−1 as asset i’s illiquidity

at time t − 1 can transmit to asset j’s illiquidity at time t. Without loss of generality,

I simply let Rjt = Rit−1. In this case, they all have the same expected return: E(Rit) =

E(Rjt) = E(Rkt) = 0; and the same variance of returns: Var(Rit) = Var(Rjt) = Var(Rkt) = 1.

Moreover, there exists a financial spillover, (i → j), but no contemporaneous comovement

of illiquidity or returns: Cov(Rit, Rjt) = Cov(Rkt, Rjt) = Cov(Rit, Rkt) = 0. Given the

size (number of chosen assets) of portfolios, all of these equal-weighted portfolios seen to be

equivalent to investors. However, this is not true because the spillover from asset i to asset

j does play a big role in affecting long run returns.

Suppose investors can only update their portfolio (p) every two periods and let’s assume

the interest rate is zero for simplicity; investors will be concerned about the average return

over two periods, 1
2
(Rp

t +Rp
t+1), instead of the current return, Rp

t . Now, we consider the cases

when investors have to hold a given asset z, z = i, j, k, and are randomly assigned another

asset with equal probability of 0.5 at the beginning of day t. I denote this random two-asset

portfolio as (z, ·). Investors hold the realized portfolio of (z, ·) over day t and day t+ 1.

There are three possible portfolios with two assets: (i, j), (i, k) and (j, k), whose cor-

responding returns on day t are denoted by Rij
t , Rik

t and Rjk
t , respectively, where Rij

t =

1
2
(Rit +Rjt), R

ik
t = 1

2
(Rit +Rkt) and Rjk

t = 1
2
(Rjt +Rkt). For example, (i, ·) implies investors

have to hold a random portfolio composed by asset i with probability 1 and either asset j

or asset k with equal probability 0.5. At the beginning of day t, the realized portfolio could

be (i, j) or (i, k), then investors hold the realized portfolio over 2 periods: day t and day

t + 1 and obtain the average return 1
2
(Ri·

t + Ri·
t+1) = 1

2

(
1
2
(Rij

t + Rij
t+1) + 1

2
(Rik

t + Rik
t+1)
)

=

1
8
(2Rit +Rjt +Rkt + 2Rit+1 +Rjt+1 +Rkt+1). Similarly, the average return of holding asset j
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for sure is 1
2
(Rj·

t +Rj·
t+1) = 1

8
(2Rjt+Rit+Rkt+2Rjt+1+Rit+1+Rkt+1) and the average return

of holding asset k for sure is 1
2
(Rk·

t +Rk·
t+1) = 1

8
(2Rkt +Rit +Rjt + 2Rkt+1 +Rit+1 +Rjt+1).

• The random portfolio (k, ·) is superior to the random portfolio (j, ·):

The expected average return of (k, ·) over two periods and the expect average return

of (j, ·) over two period are equal: E
(
1
2
(Rk·

t + Rk·
t+1)
)

= E
(
1
2
(Rj·

t + Rj·
t+1)
)

= 0. But

the variance of the two-period average return of (k, ·) is less than (j, ·): Var
(
1
2
(Rk·

t +

Rk·
t+1)
)

= 7
4
, while Var

(
1
2
(Rj·

t +Rj·
t+1)
)

= 2. Thus, the high SC asset j is less attractive to

investors than the isolated asset asset k, because asset j will carry the shock from asset

i on day t to day t+ 1 and makes the portfolios with asset j tend to be more positive

correlated across different periods, which increases the return variance of holding asset

j in their portfolios.

• The random portfolio (k, ·) is superior to the random portfolio (i, ·):

The expected average return of (k, ·) over two periods and the expect average return

of (i, ·) over two period are equal: E
(
1
2
(Rk·

t +Rk·
t+1)
)

= E
(
1
2
(Ri·

t +Ri·
t+1)
)

= 0. However,

the variance of the two-period average return of (k, ·) is less than (i, ·): Var
(
1
2
(Rk·

t +

Rk·
t+1)
)

= 7
4
, while Var

(
1
2
(Ri·

t + Ri·
t+1)
)

= 2. Thus, the high IC asset i is less attractive

to investors than the isolated asset k, because asset i will transmit its shock on day t

to other(s) on day t+ 1 and makes the portfolios with asset i tend to be more positive

correlated across different periods, which increases the return variance of holding asset

i in their portfolios.

In summary, the isolated asset k is more attractive to investors than the high SC asset j

and the high IC asset i, thus investors would demand compensations for holding high SC and

high IC assets. In fact, the risk diversification argument in classic portfolio theory requires

weakly correlated assets, such as the isolated asset k in this example. Therefore, high SC or

high IC assets may not be considered as desirable components in a portfolio in a network

environment to diversify financial risks in the long run.

To model network structures mathematically, I use an adjacency matrix to model all the

direct relationships in a network. Suppose there are N industries in an illiquidity network,
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A = [Aij]i,j=1,...,N is an N by N matrix indicating which pairs of industries have direct

illiquidity transmission. We let Aij = 1 if and only if industry i’s illiquidity will directly

transmit to industry j; otherwise, Aij = 0 if industry i’s illiquidity does not directly transmit

to industry j. For example, the network structures in Figure 1a and in Figure 1b can be

represented by the matrices in Table 1 and in Table 2 respectively.

Table 1: adjacency matrix and the network structure in Figure 1a

A B C D

A 0 1 1 1
B 1 0 1 1
C 1 1 0 1
D 1 1 1 0

Table 2: adjacency matrix and the network structure in Figure 1b

A B C D

A 0 1 0 0
B 0 0 1 0
C 0 0 0 1
D 1 0 0 0

3.2 Eigenvector Centrality Measure

In network literature, there are some centrality measures to gauge a node’s “central impor-

tance” in a network from different aspects. Among them, I use the generalized eigenvector

centrality measures proposed by Bonacich (1987) to better measure illiquidity spillovers cen-

trality in stock markets.

Given an adjacency matrix of a directed network, A = [Aij]i,j=1,...,N , where N is the size

of the network. Aij = 1 if and only if industry i affects industry j, otherwise, Aij = 0.

Following Bonacich (1987), we define industry i’s sensitive centrality, SCi, as the sum of a

linear function of the sensitive centralities of all the other industries that affect industry i:

SCi =
∑

j:Aji=1

(α +
1

λ
SCj) =

N∑
j=1

Aji(α +
1

λ
SCj), (1)
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where α ≥ 0, λ > 0. Being affected by a high SC industry j (SCj is large) can increase

industry i’s sensitive centrality (SCi) in this network. 1/λ is the weight of one’s sensitive

centrality measure on others’. A smaller λ means the influence of the neighbour effect is

greater. In a given network, we say industry i is more sensitive central than industry j if

and only if SCi > SCj.

In matrix notation, let SC = [SC1, ..., SCN ]′, we have

(
I − 1

λ
A′
)
SC = αA′l, (2)

where I is an N ×N identity matrix and l is a N × 1 column vector of ones.

When α = 0, we have
(
I − 1

λ
A′
)
SC = 0 then SC is an eigenvector of the transpose of

the adjacency matrix A with its eigenvalue λ. If A is an irreducible non-negative matrix,

Perron-Frobenius theorem states that the only eigenvector whose components are all positive

are the one associated with the biggest eigenvalue λmax. In practice, we do require positive

centrality measures in order to determine which one are more central in a network. Hence,

the eigenvector sensitive centrality is the eigenvector associated with the biggest eigenvalue

of A′.

When α > 0, it is simply the scale of the centrality vector. Without loss of generality, we

could let α = 1. If A is an irreducible non-negative matrix and λ is greater than the biggest

eigenvalue of A′ in magnitude, the sensitive centrality vector has the following representation,

SC =

(
I − 1

λ
A′
)−1

A′l

= A′l +
1

λ
(A′)2l +

(
1

λ

)2

(A′)
3
l + .... (3)

All elements in the sensitive centrality vector SC are positive as all the elements in equation

(3) are nonnegative and A is irreducible. Moreover, the parameter 1/λ can be interpreted

as a probability and SC as the expected number of directed paths in a network activated

directly or indirectly to each individual.

To obtain a positive sensitive centrality vector from equation (3), the weight of one’s

sensitive centrality measure on others’, 1/λ, is at most 1/λmax, where λmax is the biggest
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eigenvalue of A′.9 If we wish to put more weight on considering the effect of being a neighbour

to a high SC (IC) industry in a network, a greater weight parameter 1/λ should be selected.

Therefore, in order to capture the neighbour effect as much as possible I will focus on the

eigenvector centrality measure in empirical analysis hereafter.

Similar arguments apply to define a industry’s influential centrality (IC). We define indus-

try i’s influential centrality, ICi, as the sum of linear functions of the influential centralities

of all the other industries who are affected by industry i:

ICi =
∑

j:Aij=1

(α +
1

λ
ICj) =

N∑
j=1

Aij(α +
1

λ
ICj). (4)

Affecting a high IC industry j (ICj is large) can increase industry i’s influential centrality

(ICi) in this network. In matrix notation, let IC = [IC1, ..., ICN ]′, we have
(
I − 1

λ
A
)
IC =

αAl. The eigenvector influential centrality is the eigenvector associated with the biggest

eigenvalue of the adjacency matrix A.

Example 3.2. In Figure 5, I show a small but complex network to illustrate how the

eigenvector centrality measures, sensitive centrality (SC) and influential centrality (IC), can

point out the central components in this network and quantify their degrees.

D

A

B C

D

E

Figure 5: Eigenvector centrality of a small but complex network

The network shown in Figure 5 can be represented by the adjacency matrix in Table

3. This table also presents the calculated values of their respective eigenvector sensitive

9Given α > 0, if 1/λ ≥ 1/λmax, the equation (3) does not converge and SC is not well defined in this
case.
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centrality and eigenvector influential centrality. The most sensitive central node is D (0.57)

because it is affected by two main nodes B and C. Node A and node E are equally second

sensitive central (0.45) as they are both only affected by node D. Node B and Node C are

the least sensitive central (0.36) as they are only affected by node A. In terms of influential

centrality, node A is the most central (0.64) because its effect can spillover to everyone in

this network. Node D is second most central (0.51) as it can transmit node A’s effect spilling

via node B and node C to node E and back to node A. The influential centralities of node

B and node C are equalled (0.40) as they only affect node D. Interestingly, the influential

centrality of node E is zero, because it affects no one in this network.

Table 3: adjacency matrix and eigenvector centrality measures

A B C D E IC

A 0 1 1 0 0 0.64
B 0 0 0 1 0 0.40
C 0 0 0 1 0 0.40
D 1 0 0 0 1 0.51
E 0 0 0 0 0 0.00

SC 0.45 0.36 0.36 0.57 0.45

3.3 Bid-Ask Spreads Measure for Illiquidity Risk

In general, illiquidity risk in financial markets is a financial risk that a given financial asset or

security cannot be traded quickly enough in the market without impacting the market price.

Liquidity has many dimensions. This study focuses on a dimension associated with bid-ask

spreads. In stock markets, the spread is the difference between the bid and ask prices for a

particular stock. The bid price corresponds to the highest price the demand side is willing

to pay; the asking price corresponds to the lowest price the supply side is willing to sell. In

other words, the bid-ask spread reflects the divergence of the demand side and the supply

side for a stock. Wider the divergence makes the transactions more difficult to make, since

investors have to pay more “spread cost” to buy or sell a stock.

Thus, the level of the illiquidity risk of a stock increases with the size of its bid-ask
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spreads. The interconnections of industries’ bid-ask spreads can be interpreted as industries’

illiquidity risk transmission network.

In this paper, I use Corwin and Schultz (2012)’s bid-ask spreads estimate, which only

requires stock’ daily high and low prices, to measure firms’ illiquidity risk. We assume that

there is a spread of S%. Because of the spread, observed prices for buys are higher than

the actual values by (S/2)%, and observed prices for sells are lower than the actual values

by (S/2)%. If we further assume that the daily high price is buyer-initiated and the daily

low price is seller-initiated, then we will have HO = HA(1 + S/2) and LO = LA(1 − S/2),

where HO(LO) is the observed high (low) price and HA(LA) is the actual high (low) price.

Following Corwin and Schultz (2012), the bid-ask spread estimate on day t is

St =
2(eα − 1)

1 + eα
, (5)

where α =
√
2β−
√
β

3−2
√
2
−
√

γ

3−2
√
2
, β =

[
ln
(
HO

t−1

LO
t−1

)]2
+
[
ln
(
HO

t

LO
t

)]2
and γ =

[
ln

(
max{HO

t−1,H
O
t }

min{LO
t−1,L

O
t }

)]2
.

This bid-ask spread estimate has several advantages for our empirical analysis. First,

this estimate is very easy to compute. No optimization problem needs to be solved. Second,

this estimate only requires the daily observations of high price and low price. High price and

low price are available in almost all stock databases. Third, the daily bid-ask spreads St for

any given stock can be estimated from low-frequency (daily) sample observations.

3.4 Granger Causality and Network Estimation

Once we have firms’ estimates of their respective daily bid-ask spreads, we want to uncover

the underlying network structures of how firms’ bid-ask spreads spill over to each other.

Following Billio et al. (2012) and Dufour and Jian (2016), this paper uses a Granger-type

procedure (see, e.g., Granger (1969) and Sims (1972)) to identify the existence of directed

relationships between every pair of nodes in the illiquidity risk network.

To identify the dynamic structures of the underlying illiquidity transmission network, I

divide the whole daily panel sample into annual subsamples. Suppose in year y we have

τy days in this annual subsample, and we have Ny firms’ estimates of their respective daily

bid-ask spreads: [S1t, S2t, ..., SNkt]
τy
t=1. I assume the illiquidity risk network structure is fixed
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in each given year but can vary year by year. In year y, the network structure can be

represented by an Ny by Ny adjacency matrix: Ay = [Ayij]i,j=1,...,Ny . where Ayij = 1 if and

only if firm i’s bid-ask spreads can affect firm j’s bid-ask spreads; otherwise, Ayij = 0.

To estimate the directed relationship from firm i to firm j, Aij, I use the following

regression model,

Sjt = β0 + βiSit,p + βjSjt,p + βZZt,p + εjt, t = 1, ..., τk, (6)

where Sjt is firm j’s spread on day t, Sit,p = [Sit−p, ..., Sit−1]
′ is the past recent p days’

observations of firm i’s spreads, and Sjt,p = [Sjt−p, ..., Sjt−1]
′ is the past recent p days’

observations of firm j’s spreads. Zt,p = [Z1
t,p, ..., Z

S
t,p]
′ is the past recent p days’ observations

of S state variables, Zs
t,p = [Zs

t−p, ..., Z
s
t−1] for s = 1, ..., S. β0 is a scalar parameter, βi is

a row vector correspond to Sit,p, βj is a row vector correspond to Sjt,p and βZ is a row

vector correspond to Zt,p. Then the general Granger-type procedure for identifying network

structures becomes a testing problem (H0 : βi = 0, H1 : βi 6= 0):

Akij =

1, reject H0

0, can not reject H0

(7)

Some notes of caution are needed here. First, selecting state variables Z is important.

One of the drawbacks of using the bilateral Granger noncausality testing in network estima-

tion comes from spurious effects. If the regression model in equation (6) does not include

the common factor(s) that are orthogonal to firm j’s past spreads but correlated to firm i’s

past spreads and firm j’s current spread, we may reject H0 even if there is no effect from

firm i to firm j.

Second, the choice of day lag p is somewhat arbitrary, however, I suggest p = 1 for the

network analysis in this paper. Setting Akij = 1 implies we expect to see firm i’s spread

yesterday will affect firm j’s spread today. When p = 1, the noncausality implication is in

line with the direct effect interpretation in network adjacency matrix. Moreover, note that

we only have one year daily observations in each subsample, thus small p can increase the

estimation precision, especially when we add some state variables in the regression model.
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Furthermore, measuring network centrality requires positive spillovers: if firm i’s illiquidity

transmits to firm j, a higher today’s illiquidity of firm i should increase tomorrow’s illiquidity

of firm j. When βi is univariate, a more appropriate way to identify network structures is

by testing whether βi > 0.

Third, in order to ensure the adjacency matrix to be irreducible, the underlying illiquidity

risk network should be strongly connected and not too sparse. Thus, the significance level

selected for testing cannot be too low, otherwise the estimated network may be too sparse.

4 Illiquidity Network Centrality and the Cross-Section

of Expected Returns

In the previous section I have discussed how to estimate illiquidity network structures by

daily bid-ask spread estimates and how to apply eigenvector centrality measure to measure

nodes’ centralities in the network. This section explores the empirical relation between the

cross-section of expected returns and the illiquidity centrality (SC and IC). For feasibility

of implementation, the illiquidity network and the cross-section of expected returns are

examined at industry level.

4.1 Data

The first dataset includes all the stock information from the Center for Research in Securities

Prices (CRSP) for stocks traded in New York Exchange (NYSE), American Stock Exchange

(AMEX), and NASDASQ with share codes 10 or 11 from January 1963 through December

2015. I use daily stock high prices and low prices to calculate daily bid-ask spread estimates.

I use share prices and shares outstanding to calculate market capitalization. The first 3 digits

of the Standard Industry Classification (SIC) code indicate the industry level. Industry’s

returns and bid-ask spreads are defined as the simple average of the returns and bid-ask

spreads for the stocks belong to the industry. The second dataset is COMPUSTAT, which is

used to obtain the equity book values for calculating the book-to-market ratios of individual

firms and the book-to-market ratios of industry defines as the simple average of the book-
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to-market ratios of individual firms belong to the industry. The third dataset is from the

Kenneth French’s data library to obtain risk-free rates and four-factor portfolios returns.

These variables are defined in detail in the Appendix and will be discussed when they are

used in the analysis.

4.2 Illiquidity Network Centralities

Using daily stock high prices and low prices I calculate daily bid-ask spreads estimates Sikt

for individual stock ik that belongs to industry i on date t, with the adjustments suggested in

Corwin and Schultz (2012). Industry i’s bid-ask spread estimate on date t, Sit = 1
ni

∑
ik∈i Sikt,

where ni is the number of stocks belong to industry i on date t. In year y, we have τy daily

observations of Ny industries’ daily bid-ask spreads estimates: [S1t, S2t, ..., SNyt]
τy
t=1.

To identify Ny industries’ illiquidity network structure Ay = [Ayij]i,j=1,...,Ny in year y, I

use the following regression equation:

Sjt = β0 + βiSit−1 + βjSjt−1 + βZZt−1 + εjt, t = 2, ..., τy. (8)

The directed relationship from industry i to industry j is specified as: Ayij = 1 if and only

if βi > 0; otherwise, Ayij = 0. The state variable Zt−1 includes: 1) average bid-ask spreads

estimates of the stocks belong to the major group of industry j on day t − 1, where the

major group is indicated by the first two digits of SIC codes; 2) average bid-ask spreads

estimates of all stocks on day t − 1. By controlling major industry average illiquidity and

market average illiquidity of industry j, a positive marginal effect (βi > 0) of the illiquidity

of industry i on day t−1 on the illiquidity of industry j on day t can be safely interpreted as

the illiquidity spillover from industry i to industry j: increase in the illiquidity of industry i

today leads the illiqudity of industry j up tomorrow. I use the simple t-statistic on one tail

test at significance level 0.1 to test whether βi > 0 in equation (8). I repeat this procedure

for every pair of industries. After implementing Ny × Ny OLS regressions and testings on

equation (8), we find all the directed relationships in the network and uncover the underlying

illiquidity transmission network structure in year y, Ay.

Given each year y, we already have its adjacency matrix Ay by the procedure described
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above. I calculate sensitive centralities and influential centrality for each industry by the

eigenvector centrality measure. More central industry will have a higher centrality measure

in cross-section, however note that eigenvector is set to have unit norm, thus eigenvector

centrality measures are not comparable directly across different years. To fix this problem,

I rescale the industries’ centrality measures for each year, such that the sum of squares of

industries’ centrality measures in year y equals the size of the network in this year (Ny).

After rescaling, more central industries given a year will still have higher centrality measures

in cross-section as they are rescaled by the same weight. In addition, centrality measures

in different years are comparable in terms of relative centrality in their respective networks.

If the centrality measure of an industry is greater than 1, which is the root mean square

of all industries’ centrality measures in the network, it implies the industry is a relatively

central industry, and vice versa. In any given year y, we have industry i’ sensitive centrality

measure (SCiy) and its influential centrality measure (ICiy) such that 1
Ny

∑
i SC

2
iy = 1 and

1
Ny

∑
i IC

2
iy = 1. SCiy = 1 (ICiy = 1) means (approximately) that industry i does not

have an unusually large or small degree of centrality in year y, irrespective of the number of

industries in the illiquidity network in year y (Ny), and I call these industries as “middle-

industry”.

Table 4 presents summary statistics of the empirical distributions of illiquidity network

centralities in cross-section across different years from 1963 to 2015. The network centralities

are estimated for every year from January 1963 to December 2015. There are 53 years from

1963 to 2015. In these years, there are 310 industries in illiquidity networks on average. Panel

A presents summary statistics for sensitive centrality. The yearly median of the medians of

cross-sectional sensitive centrality measures is 0.96, which is close to 1 of middle-industry.

In contrast, for influential centrality in panel B the yearly median of the medians of cross-

sectional influential centrality measures is only 0.73, but the yearly median of the 75%

quantiles of cross-section influential centrality measures is 1.09, which is close to 1 of middle-

industry. It implies high influential industry (ICi > 1) is minority in illiquidity networks

in average years. Compared to the sensitive centrality median ‘max-min’ spread (1.29 =

1.71 - 0.42), the influential centrality has a wider median ‘max-min’ spread (2.54 = 2.71 -

0.17). In cross-section, illiquidity influential centralities have a wider spread than illiquidity
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sensitive centralities. For both sensitive centrality and influential centrality, most of their

cross-sectional empirical distributions from 1963 to 2015 are right-skewed and have heavier

tails than normal distribution. Right-skewed network distribution is often documented in

economic and social network literature (see e.g., Jackson et al. (2008)).

To investigate the empirical relation between sensitive centrality and influential centrality

of a given industry in illiquidity networks, Table 5 presents the descriptive statistics of

industries’ time-series correlations. I only calculate the time-series correlations between

sensitive centrality and influential centrality for those industries have more than 10 years

centralities observations in sample. Then we have 395 industries’ sensitive centralities and

influential centralities time-series correlations and their respective p-values to null hypothesis

of no correlation. The average sensitive centrality and influential centrality correlation is 0.42;

the 25% quantile of the sensitive centrality and influential centrality correlations is 0.32; for

most (> 75%) industries the p-values are less than 0.1. It means the changes of illiquidity

sensitive centrality for most industries tends to go with the direction of their changes in

influential centrality. If an industry get more connections to others, its illiquidity will have

more chances to affect others as well as being affected by others. High SC (or IC) industries

in the illiquidity network tend to be high absolute centrality.

4.3 Univariate Portfolio-Level Analysis

Table 6 presents the equal-weighted and value-weighted average monthly returns of decile

portfolios that are formed by sorting the industries based on the illiquidity network cen-

tralities (SC and IC) respectively estimated in past calendar year. Centrality measures are

estimated every year from January 1963 to December 2014. Industry’s returns are calculated

by the equal-weighted returns of stocks belong to the industry, and value-weighted portfolios

are the average industry returns weighted by industry’s total market capitalizations. For

example, I estimate industries’ centrality measures in 2000 with the sample from January

2000 to December 2000, and form the portfolios from January 2001 to December 2001 based

on the industries’ centrality measures in 2000. Portfolios are rebalanced yearly. Portfolio 1

(Low SC (IC)) is the portfolio of industries with the lowest SC (IC) in the past calendar

year, and portfolio 10 (high SC (IC)) is the portfolio of industries with the highest SC (IC)
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in the past calendar year.

In Panel A sorted by sensitive centrality, the equal-weighted raw return difference between

decile 10 (high SC) and decile 1 (low SC) is 0.36% per month (4.32% per year) with a

corresponding Newey-West (1987) t-statistics of 3.66. In addition to the raw returns, Table

6 also presents the intercepts (Fama-French-Carhart 4-factor alphas) from the regression of

the equal-weighted portfolio returns on a constant, the excess market return, the size factor,

the book-to-market factor, and the momentum factor, following Fama and French (1993) and

Carhart (1997). The difference in alphas between the high SC and low SC equal-weighted

portfolios is 0.45% per month (5.40% per year) with a Newey-West t-statistic of 3.72. This

difference is economically significant and statistically significant at all conventional levels.

Similar significant results also apply to value-weighted portfolios. The value-weighted raw

return difference between decile 10 (high SC) and decile 1 (low SC) is 0.38% per month

(4.56% per year) with a corresponding Newey-West t-statistics of 2.15; the difference in

alphas between the high SC and low SC value-weighted portfolios is 0.49% per month (5.88%

per year) with a Newey-West t-statistic of 2.65.

Taking a closer look at the value-weighted average returns and alphas across deciles, it

is clear that they are not strictly monotonic increasing as SC increases. The average returns

of decile 1 to 9 are very close, in the range of 1.24% to 1.47% per month, but decile 10 (high

SC) average return jumps significantly to 1.82% per month. The alphas for the first 9 decile

are close too, from 0.61% to 0.84%, but again the alpha for the decile 10 jumps up to 1.23%.

A similar pattern also exists for equal-weighted average returns and alphas. The average

return and alpha for the high SC decile portfolio are significantly higher than those in decile

1 to 9. It implies investors dislike the high SC portfolio industries’ stocks especially. The

most sensitive central industries are the most exposed to idiosyncratic illiquidity spillovers

from other industries, thus investors may demand a premium to hold these high SC portfolio

due to with they too sensitive to others’ illiquidity.

In Panel B sorted by influential centrality, the equal-weighted raw return difference be-

tween decile 10 (high IC) and decile 1 (low IC) is 0.40% per month (4.80% per year) with

a Newey-West t-statistic of 3.19. The difference in alphas between the high IC and low IC

equal-weighted portfolio is 0.48% per month (5.67% per year) with a t-statistic of 3.35. Simi-
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lar significant results also apply to value-weighted portfolios. The value-weighted raw return

difference between decile 10 (high SC) and decile 1 (low SC) is 0.31% per month (3.27% per

year) with a corresponding Newey-West t-statistics of 2.33; the difference in alphas between

the high SC and low SC value-weighted portfolios is 0.31% per month (3.27% per year) with

a Newey-West t-statistic of 2.31. The difference of average returns and alphas between high

IC and low IC portfolios are economically and significant and statistically significant.

Again, the average returns and alphas across deciles for the equal-weighted and value-

weighted portfolios are not strictly monotonic increasing as IC increases. But the high

(low) IC portfolio still has the highest (lowest) average return and alpha across deciles. The

highest influential centrality industries transfer their idiosyncratic illiquidity risk to many

others and leave investors no place to hide in the stock market. Therefore, the illiquidity

risk with holding the high IC portfolio is the most difficult to be hedged. The high IC stocks

should earn a premium.

Comparing Panel A and Panel B, we can see that the average returns and alphas spreads

between high SC and low SC and the spreads between high IC and low IC are close. Moreover,

the patterns of average returns and alphas across deciles sorted by SC and by IC are similar.

Note that we have already found the changes of illiquidity sensitive centrality for an industry

tends to go with the direction of its change in influential centrality across different years in

Table 5. Even though we find high SC and high IC portfolios earn significantly higher average

returns and alphas compared with low SC and low IC portfolios respectively, these spreads

may be generated from similar portfolios components. Table 7 presents the distribution of

industries across deciles sorted by SC and sorted by IC. The ith row and jth column element

in the table is the time-series average of the percentage ratios of the number of the industries

in portfolio j sorted by IC, as well as in portfolio i sorted by SC, over the total number of

the industries in portfolio i sorted by SC. We can find from the table that industries in

high (low) decile portfolios sorted by SC are more likely to be in high (low) decile portfolios

sorted by IC. The table entries around diagonal are clearly greater than those in off-diagonal

positions. On average, 23.02 percent of decile 1’s industries sorted by SC belong to decile 1

portfolio sorted by IC; 28.89 percent of decile 10’s industries sorted by SC belong to decile

10 portfolio sorted by IC. In other words, about 3/4 of the industries that belong to the
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decile 1 (10) portfolio sorted by SC do not belong to the decile 1 (10) portfolio sorted by IC.

These industries can tell apart the risk associated with SC and the risk associated with IC

in their respective 10-1 portfolio10. The return and alpha differences of the 10-1 portfolios

sorted by SC and IC respectively are not generated from similar portfolio components.

The 10-1 portfolios are constructed to capture the risk premium associated with sensitive

centrality and influential centrality in the illiquidity network. In Table 6, we have found

solid evidence that the 10-1 portfolios sorted by SC and sorted by IC are respectively both

statistically and economically significant, however, it is still possible that we may just by

“luck” pick up the well-performed industries in decile 10 and poor-performed industries in

decile 1 as our portfolio formations are rebalanced annually. It is desirable for a trading

strategy to utilize annually rebalanced portfolio as its transaction cost will be much lower

than the strategies rebalanced monthly or even daily. But annually rebalancing does not

provide many opportunities for changes in portfolio components. It would cast doubt on the

reliability of the statistical properties for a trading strategy with low turnovers.

To examine this issue more carefully, we look at the transition matrix of industries in

portfolios sorted by SC and sorted by IC. Table 8 presents the probability transition matrix

of industries in different decile portfolios in successive two years. The ith row and jth column

element in the 10 by 10 table is the time-series average of the percentage ratios of the number

of the industries in portfolio i in year y shifting to portfolio j in year y+1 over the number of

the industries in portfolio i in year y. If portfolio formations are purely random, industries

are equally distributed in different deciles; all the entries in the transition matrix should

equal 10(%). The range of the table entries is from 7.22 to 12.44 for deciles sorted by SC in

Panel A; the range of the table entries is from 5.64 to 15.44 for deciles sorted by IC in Panel

B. The maximum probability of an industries stay at the same decile in two successive years

is only 12.44 (15.44) for decile sorted by SC (IC). In other words, it is quite unlikely that we

pick up the well-performed industries consistently in decile 10 and poor-performed industries

in decile 1 just by “luck” in Table 6 because most of industries do not stay at the same decile

in two successive years and go to other different deciles with approximately equal probability.

Taking a closer look at the tables, we can find the table entries around diagonal are a little

10Long the high decile portfolio and short the low decile portfolio.
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bit greater than those in off-diagonal positions. In Panel A, for example, the probability of

an industry in decile 10 (High SC) shifting to decile 1 (Low SC) next year has the lowest

value of 8.25% for industries from decile 10, while the probability of an industry in decile 10

(High SC) staying at decile 10 (High SC) next year has the highest value of 12.44%. It is in

line with our intuition since we expect a relatively low (high) SC industry in this year will

be more likely to be relatively low (high) SC industry in next year. Similar arguments also

apply to deciles sorted by IC in Panel B. In conclusion, the results documented in Table 6

are trustworthy in term of statistics since industries in different deciles reshuffle enough in

each year, even though our annually rebalancing does not provide many opportunities for

changes in portfolio components.

In finance literature, market beta, book-to-market, illiquidity, momentum and idiosyn-

cratic volatility are well-known risk factors of pricing returns in the cross-section at firm

level (see Fama and French (1992), Fama and French (1993), Amihud (2002), Pastor and

Stambaugh (2003), Jegadeesh and Titman (1993), Ang, Hodrick, Xing and Zhang (2006)

among others). Though I study illiquidity network centralities at industry level, it would

be important to investigate whether industries’ sensitive centrality measures and influential

centrality measures have relation with these well-know risk factors. To get a clearer picture

of the component in portfolios sorted by sensitive centrality and influential centrality, Table

9 presents summary statistics for the industries in the deciles sorted by SC in Panel A and

those sorted by IC in Panel B. Specifically, the table reports for each decile the simple aver-

age across the years and across the industries of various characteristics for the industries: the

average firm market capitalization (in millions of dollars, labeled FSIZE), the industry mar-

ket capitalization (in millions of dollars, labeled ISIZE), the market beta (labeled BETA),

the book-to-market (labeled BM), the average stock bid-ask spreads estimate (in percent,

labeled SPREAD), the average Amihud (2002) illiquidity measure (scaled by 106, labeled

RTV), the average industry monthly return in the past calendar year prior to portfolio for-

mation (in percent, labeled MOM), and the industry idiosyncratic volatility over the past

calendar year prior to portfolio formation (labeled IVOL). Definitions of these variables are

given in the Appendix.

In Panel A sorted by sensitive centrality, as SC increases across deciles industry market
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capitalization increases but firms’ average market capitalization exhibits little change in a

range from 1.13 millions of dollars to 1.22 millions of dollars with less than 10% in variation.

In others words, an industry’s sensitive centrality is irrelevant to its average firm size, but a

bigger industry, which has more firms and has bigger market capitalization, tends to have a

higher sensitive centrality measure. It can be partially explained by the fact that an industry

with more firms would have greater exposure to illiquidity spillovers in stock market. In

contrast to the conjecture that sensitive centrality may serve as a source of market beta in

financial network analysis (see Ahern (2013)), industries’ market betas are almost the same

across different deciles in our illiquidity network. Momentum and idiosyncratic volatility

are also almost the same across deciles. As SC increases across the deciles, firms’ average

book-to-market ratio increases slightly. The value industries, which have higher average

firms’ book-to-market ratios, tend to have higher sensitive centrality measure. In additon to

Corwin and Schultz (2012)’s bid-ask spreads estimate to measure illiquidity, I also consider

a more widely used illiquidity measure proposed by Amihud (2002), which measures firm’s

illiquidity as the sensitivity of firm’s absolute returns to its trading volume in dollars. Not

surprisingly, those industries with higher sensitive centrality measures tend to have greater

bid-ask spreads and return-to-volume (RTV). These results may provide an explanation of

the value-premium known at least since Fama and French (1992). A motivation of the value-

premium is that value firms are consistent bad performers in periods of systemic downturns.

It may be because in the periods of systemic downturns value firms are more sensitive to

market illiquidity thus poor liquidity make their returns further lower during these periods.

In Panel B sorted by influential centrality, as IC increases across deciles firms’ average

market capitalization decreases. Industries with small firms are more suitable distress vehi-

cles than industries with large firms whose relatively large trading volumes could serve as

temporary buffers to slow down illiquidity propagation.11 Interestingly, the industry market

capitalization exhibits an U-shape across deciles. A bigger industry, which has more firms

and small caps on average, tends to has a higher influential centrality measure. As IC in-

creases across deciles, industries’ market betas decrease slightly (influential industries are

11Buraschi and Porchia (2012) find small firms have higher influential centrality in a network connecting
firms’ fundamentals.
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less correlated to market returns); industries’ book-to-market increases slightly (high book-

to-market industries may be a source of systemic distress). Similar to the pattern across

deciles sorted by SC, as IC increases across deciles illiquidity measures (SPREAD and RTV)

are higher. Momentum and idiosyncratic volatility are also almost the same across deciles.

Given these differing characteristics, there is some concern that the 4-factor model used

in Table 6 to calculate alphas is not adequate to capture the true difference in risk and

expected returns across the portfolios sorted by SC and the portfolios sorted by IC. The

4-factor model does not control for the differences in expected returns due to differences

in industry size or illiquidity. In the following two subsections I provide different ways to

deal with the potential interaction of the illiquidity centrality measures with industry size,

book-to-market and liquidity.

4.4 Bivariate Portfolio-Level Analysis

In this section I examine the relation between illiquidity causality measures and future in-

dustry returns after controlling for average firm market capitalization, industry market cap-

italization, market beta, book-to-market, illiquidity measured by return-to-volume, average

industry monthly return in the past calendar year prior to portfolio formation, and industry

idiosyncratic volatility over the past calendar year prior to portfolio formation. For example,

I control for industry capitalization by first forming 5 decile portfolios ranked based on in-

dustry capitalization. Then, within each industry size decile, I sort industries into portfolio

ranked based on sensitive centrality and portfolio ranked based on influential centrality so

that decile 1 (decile 10) contains industries with lowest (highest) centrality measures.

Table 10 presents average industry return across the 5 control deciles to produce decile

portfolio with dispersion in SC but with similar levels of the control variables. For each

column controlling variables, the equal-weighted average return difference between the high

SC and low SC portfolios are still all economically and statistically significant. After con-

trolling for firms’ average size, industry size, market beta, book-to-market, momentum and

idiosyncratic volatility, the equal-weighted average return differences between the high SC

and low SC portfolios are 0.29% (3.14%), 0.32% (3.84%), 0.28% (3.36%), 0.28% (3.36%),

0.29% (3.48%), and 0.30% (3.60%) per month (per year), with Newey-West t-statistics of
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2.83, 3.27, 2.78, 2.83, 3.19 and 3.17, respectively. The corresponding values for the equal-

weighted average risk-adjusted return differences are 0.40% (4.80%), 0.39% (4.68%), 0.31%

(3.72%), 0.37% (4.44%), 0.35% (4.20%) and 0.40% (4.80%) per month (per year), with t-

statistics of 2.71, 2.97, 2.93, 2.76, 3.46 and 2.67, which are also highly significant. Note

that the absolute return to trading volume in dollars (RTV) illiquidity measure proposed by

Amihud (2002) is a much more popular way to measure illiquidity in literature, for brevity

hereafter I only use Amihud (2002)’s RTV measure to control the illiquidity risk to make

the results in this paper comparable to existing studies.12 We found that industries sen-

sitive centralities are positive correlated with industry size, book-to-market and illiquidity

(SPREAD and RTV)in Panel A of Table 9. After controlling each of these variables (ISIZE,

BM and RTV), the average returns and alphas of the 10-1 portfolios sorted by SC remain

significant. But the average return and alpha of the 10-1 portfolios decrease most after con-

trolling RTV. After controlling RTV, the average return of the 10-1 portfolios decreases to

0.20% per month (2.4% per year) with a Newey-West t-statistic of 2.20; the alpha of the

10-1 portfolios decreases to 0.29% per month (3.48% per year) with a t-statistic of 2.11.

Nevertheless, these results of high-low spread of the portfolios sorted by SC are still eco-

nomically and statistically significant. For the double sorted value-weighted decile returns

portfolios exhibit very similar significant results, except after controlling industry size the

average returns of the 10-1 portfolios decrease to 0.21% per month (2.52% per year) with a

t-statistic of 1.54, which is insignificant for conventional significance levels.

Table 11 presents average industry return across the 5 control deciles to produce decile

portfolio with dispersion in IC but with similar levels of the control variables. For each

column controlling variables, almost all the equal-weighted average returns and alphas of 10-

1 IC portfolios are economically and statistically significant, and are close to those sorting

only by SC in Table 6. After controlling for firms’ average size, industry size, market beta,

book-to-market, momentum and idiosyncratic volatility, the equal-weighted average return

differences between the high SC and low SC portfolios are 0.35% (4.2%), 0.36% (4.32%),

0.31% (3.72%), 0.34% (4.08%), 0.35% (4.20%), 0.25% (3.00%) per month (per year), with

t-statistics of 3.16, 2.99, 2.60, 2.85, 3.37, 2.11, respectively. The corresponding 10-1 alphas

12The results of using SPREAD to control illiquidity risk are very similar.
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are 0.45% (5.40%), 0.45% (5.40%), 0.34% (4.08%), 0.44% (5.28%), 0.38% (4.56%) and 0.34%

(4.08%) per month (per year), with t-statistics of 3.41, 3.11, 2.59, 3.21, 3.51 and 2.67, which

are also both economically and statistically significant. The only exception is the average

return of the 10-1 portfolio after controlling RTV, which is 0.16% per month with a t-statistic

of 1.42. But the 10-1 alpha after controlling RTV is 0.27% per month (3.24% per year) with

a t-statistic of 2.24, which is also significant. However, the 10-1 IC portfolios are not always

significant for the value-weighted portfolio returns, even though their averages returns and

alphas are all positive.

In summary, these results indicate that for both the equal-weighted and value-weighted

portfolios, the well-known cross-sectional effects at firm level such as size, market beta, book-

to-market, liquidity, momentum and idiosyncratic volatility can not explain the high returns

to high SC industries, while similar robust results do not apply to the high returns to high

IC industries except for the case of equal-weighted portfolios sorted by IC.

4.5 Industry-Level Cross-Section Regressions

So far we have tested the significance of illiquidity sensitive centrality (SC) and illiquidity

influential centrality (IC) as determinants of the cross-section of future returns at portfolio-

level. The portfolio-level analysis has the advantage of being non-parametric in the sense that

we do not impose a functional form on the relation between illiquidity centrality measures

and future return. But the portfolio-level analysis misses a large amount of information in the

cross-section via aggregation. Moreover, it fails to control for multiple effects simultaneously.

In this section, I examine the cross-sectional relation between the centrality measures (SC

and IC) and expected returns at the industry level using Fama and MacBeth (1973) two-step

regressions.

I present the time-series averages of the slope coefficients from the regression of industry

returns on sensitive centrality (SC), influential centrality (IC), market beta (BETA), aver-

age of logs of firms’ market capitalizations (FSIZE), log of industry market capitalization,

average of logs of firms’ book-to-market (BM), illiquidity (RTV), momentum (MOM), and

idiosyncratic volatility (IVOL). The average slopes provide standard Fama-MacBeth tests

for determining which explanatory variables on average have non-zero premiums. Monthly
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cross-sectional regressions are run for the following econometric specification and nested

versions:

Ri,t,y+1 =λ0,t,y + λ1,t,ySCi,y + λ2,t,yICi,y + λ3,t,yBETAi,y + λ4,t,yFSIZEi,y + λ5,t,yISIZEi,y

+ λ6,t,yBMi,y + λ7,t,yRTVi,y + λ8,t,yMOMi,y + λ9,t,yIVOLi,y + εi,t,y+1

where Ri,t,y+1 is the realized return on industry i in month t in year y + 1, the predictive

cross-section regression are run on the lagged values of SC, IC, BETA, FSIZE, ISIZE, BM,

RTV, MOM, and IVOL, which are all calculated or estimated with the sample from January

to December in year y. This setting assures the associated trading strategy is rebalanced

annually.

Table 12 reports the time-series average of the slope coefficients λi,t,y (i = 1, ..., 9) over

the 624 months from January 1964 to December 2015 for all industries in the illiquidity net-

works that are estimated annually from 1963 to 2014. The Newey-West adjusted t-statistics

are given in parentheses. The univariate regressions show a positive and statistically signifi-

cant relation between illiquility sensitive centrality and the cross-section of future industry

returns; and a positive and statistically significant relation between illiquility influential cen-

trality and the cross-section of future industry returns. The average slope, λ1,y, from the

monthly regressions of realized returns on SC alone is 0.82 with a t-statistic of 2.05. The

economic magnitude of the associated effect is higher than that documented in Table 6 and

Table 10 for the univariate and bivariate sorts. The spread in average SC between decile 10

and decile 1 is 0.93 (1.50 - 0.57). Multiplying this spread by the average slope yields an esti-

mate of the monthly risk premium of 0.76% per month (9.12% per year). The average slope,

λ2,y, from the monthly regressions of realized returns on IC alone is 0.69 with a t-statistic of

1.70. The economic magnitude of the associated effect is also higher than that documented

in Table 6 and Table 11. The spread in average IC spread between decile 10 and 1 is 1.64

(1.96 - 0.32). Multiplying this spread by the average slope yields an estimate of the monthly

risk premium of 1.13% month (13.56% per year).

Conditional on 6 other variables (BETA, FSIZE, BM, RTV, MOM and IVOL), the eco-

nomic magnitudes and the significance levels of λ1,y and λ2,y remain almost unchanged. The
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average slope coefficient on SC, λ1,y, conditional on the 6 control variables, is 0.88 with

a t-statistic of 2.14; the average slope coefficient on IC, λ2,y, conditional on the 6 control

variables, is 0.79 with a t-statistic of 1.95. Since we have found in Table 7 that SC and IC

are cross-sectional positive correlated, our primary interest is the full specification with SC,

IC, and the 6 control variables. In this specification, the average slope coefficient on SC is

0.83 with a t-statistic of 2.00; the average slope coefficient of IC is 0.62 with a t-statistic of

1.92.13 Theses results are very similar to the univariate regressions.

In the last specification in Table 12, I exclude SC and IC in the full specification regres-

sion to investigate the effect of dropping SC and IC to other control variables in explaining

the cross-section returns at industry level. In the last specification, the average slope coef-

ficient on RTV is 0.81 and significant, while those average slope coefficient on RTV in the

specification with either SC or IC or both are smaller than 0.81 and statistically insignificant.

It implies the illiquidity risk premium associated with RTV can be captured by SC and IC

but not vice versa.

The table shows only SC, IC and MOM are consistently significant under the regressions

of all specifications in the table. Many well-known cross-sectional effects at firm level such

as market-beta, size, book-to-market, liquidity, and idiosyncratic volatility are not robustly

significant in explaining the cross-section returns at industry level. The size effect measured

by ISIZE is significantly positive with a t-statistic of 2.10 only in the full specification; the

book-to-market effect measured by BM is significantly positive only in the full specifications

excluding either SC or IC; the liquidity effect measured by RTV is significantly positive only

in the specification without SC and IC. The signs of these effects are in line with those

documented in literature. Note that these variables in this paper are measured at industry

level and renewed annually, return dispersions associated with these variables could be small

due to firms’ aggregations into industry level. The momentum effect, however, is surprisingly

robust at industry level.

As a robustness check for the significant effects of SC and IC, Table 13 presents the

cross-sectional regression results of the full specification model under different subperiods

13Controlling SPREAD instead of RTV in the full specification has little effect on the results. In such
specification, the average slope coefficient on SC is 0.94 with a t-statistic of 2.18; the average slope coefficient
of IC is 0.76 with a t-statistic of 2.27.
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(1970 -2015, 1980 - 2015, 1990 - 2015 and 2000 - 2015). SC is positive and statistically

significant at the level of 0.1 in all subperiods. IC is also positive and statistically significant

at the level of 0.1 in all subperiods except the most recent and shortest subsample period

of 2010 - 2015, while the mean of coefficients for IC of 2010 - 2015 is still positive. Another

observation is the effects of SC and IC measured by their respective mean coefficients are

even larger in recent decades.

The clear conclusion is that the cross-sectional regressions provide strong corroborating

evidence for an economically and statistically significant positive relation between the illiq-

uidity centrality measures (SC and IC) and future returns, consistent with our conjecture

that illiquidity centralities (sensitive centrality and influential centrality) are an important

idiosyncratic risk that should be priced in financial markets, and they indeed earn risk pre-

miums in the cross-sectional stock returns at industry level. Moreover, SC is a more robust

risk factor than IC in explaining cross-sectional returns.

5 Conclusion

This paper proposes a new analytical framework to study centralities in an illiquidity trans-

mission network and its asset pricing implication in the cross-section of expected stock re-

turns. I document a statistically and economically significant relation between lagged illiq-

uidity centralities (sensitive centrality and influential centrality) and future returns. This

result is robust to controls for numerous other potential risk factors. The result related to

influential centrality is consistent with the asset pricing implication of Acemoglu et al. (2012)

and Acemoglu et al. (2015)’s theory, while I find sensitive centrality is an even more robust

risk factor than influential centrality in explaining cross-sectional returns. In summary, I

find strong evidence that the illiquidity network centralities (SC and IC) may be important

risk factors in asset pricing with network structures of securities.

This paper differs from the existing literature studying commonality in liquidity, illiq-

uidity spillovers and contagions in that I consider illiquidity spillovers in a network envi-

ronment with focus on industries’ illiquidity interconnections, instead of basing it on simple

two-agents settings or on contemporaneous correlation-based analysis. Moreover, I consider
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network centrality in two directions: i) sensitive centrality (SC), which measures the degree

of a node being affected by others; and ii) influential centrality (IC), which measures the

degree of a node affecting others. Existing literature related to financial network centrality

is mostly motivated by the systemic risk studies that suggest idiosyncratic shocks to an in-

fluential firm may cause aggregate market failures, so they tend to only consider influential

centrality. I argue that sensitive centrality is at least as important as influential centrality in

terms of asset pricing. Indeed, I find strong evidence in illiquidity network to support this

conjecture. I find that SC and IC are positively correlated in time-series and in cross-section

and each adds to the explanation of cross-sectional returns even given the other measure.

The approach used in this paper can be applied to study many other financial networks,

such as return network, volatility network, and credit-spread network. An interesting di-

rection for further research may be studying direct and indirect network effects in a unified

framework with the general network measurement method proposed by Dufour and Jian

(2016). After all, the adjacency matrix can only tell us about direct effects. If we want to

study financial spillovers and propagations in depth, measuring indirect effects is also nec-

essary. In this paper I assume the illiquidity network is unweighted. But weighted economic

effects of financial spillovers could provide us more insights to understand the strength of

underlying financial networks. Of course, different network centrality measures have to be

selected accordingly. I leave a detailed analysis of these issues to future work.

36



References

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2015) ‘Systemic risk and

stability in financial networks.’ American Economic Review 105(2), 564–608

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2012)

‘The network origins of aggregate fluctuations.’ Econometrica 80(5), 1977–2016

Acharya, Viral V., and Lasse Heje Pedersen (2005) ‘Asset pricing with liquidity risk.’ Journal

of Financial Economics 77(2), 375 – 410

Ahern, Kenneth R (2013) ‘Network centrality and the cross section of stock returns.’ Avail-

able at SSRN 2197370

Albuquerque, Rui, Tarun Ramadorai, and Sumudu W. Watugala (2015) ‘Trade credit and

cross-country predictable firm returns.’ Journal of Financial Economics 115(3), 592 – 613

Allen, Franklin, and Douglas Gale (2000) ‘Financial contagion.’ Journal of Political Economy

108(1), 1–33

Amihud, Yakov (2002) ‘Illiquidity and stock returns: cross-section and time-series effects.’

Journal of Financial Markets 5(1), 31 – 56

Andersen, Torben G., Tim Bollerslev, Peter F. Christoffersen, and Francis X. Diebold (2012)

‘Financial risk measurement for financial risk management.’ Working Paper 18084, Na-

tional Bureau of Economic Research, May

Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang (2006) ‘The cross-section

of volatility and expected returns.’ The Journal of Finance 61(1), 259–299

Aobdia, Daniel, Judson Caskey, and N. Bugra Ozel (2014) ‘Inter-industry network structure

and the cross-predictability of earnings and stock returns.’ Review of Accounting Studies

19(3), 1191–1224

Billio, Monica, Mila Getmansky, Andrew W. Lo, and Loriana Pelizzon (2012) ‘Econometric

measures of connectedness and systemic risk in the finance and insurance sectors.’ Journal

37



of Financial Economics 104(3), 535 – 559. Market Institutions, Financial Market Risks

and Financial Crisis

Bonacich, Phillip (1987) ‘Power and centrality: A family of measures.’ American Journal of

Sociology 92(5), 1170–1182

Brockman, Paul, Dennis Y. Chung, and Christophe Pérignon (2009) ‘Commonality in liquid-

ity: A global perspective.’ Journal of Financial and Quantitative Analysis 44(4), 851–882

Buraschi, Andrea, and Paolo Porchia (2012) ‘Dynamic networks and asset pricing.’ In ‘AFA

2013 San Diego Meetings Paper’

Carhart, Mark M. (1997) ‘On persistence in mutual fund performance.’ The Journal of

Finance 52(1), 57–82

Cespa, Giovanni, and Thierry Foucault (2014) ‘Illiquidity contagion and liquidity crashes.’

Review of Financial Studies 27(6), 1615–1660

Cifuentes, Rodrigo, Gianluigi Ferrucci, and Hyun Song Shin (2005) ‘Liquidity risk and con-

tagion.’ Journal of the European Economic Association 3(2/3), 556–566

Cohen, Lauren, and Andrea Frazzini (2008) ‘Economic links and predictable returns.’ The

Journal of Finance 63(4), 1977–2011

Corwin, Shane A., and Paul Schultz (2012) ‘A simple way to estimate bid-ask spreads from

daily high and low prices.’ The Journal of Finance 67(2), 719–760

Diebold, Francis X., and Kamil Ylmaz (2014) ‘On the network topology of variance de-

compositions: Measuring the connectedness of financial firms.’ Journal of Econometrics

182(1), 119 – 134

Dimson, Elroy (1979) ‘Risk measurement when shares are subject to infrequent trading.’

Journal of Financial Economics 7(2), 197 – 226

Dufour, Jean-Marie, and Bixi Jian (2016) ‘Multiple horizon causality in network anal-

ysis: Measuring volatility interconnections in financial markets.’ Available at SSRN:

http://ssrn.com/abstract=2745341

38



Elliott, Matthew, Benjamin Golub, and Matthew O. Jackson (2014) ‘Financial networks and

contagion.’ American Economic Review 104(10), 3115–53

Fama, Eugene F., and James D. MacBeth (1973) ‘Risk, return, and equilibrium: Empirical

tests.’ Journal of Political Economy 81(3), 607–636

Fama, Eugene F., and Kenneth R. French (1992) ‘The cross-section of expected stock re-

turns.’ The Journal of Finance 47(2), 427–465

Fama, Eugene F., and Kenneth R. French (1993) ‘Common risk factors in the returns on

stocks and bonds.’ Journal of Financial Economics 33(1), 3 – 56
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Appendices

A Variable Definitions

1. SPREAD: SPREAD is the average of daily Corwin and Schultz (2012)’s bid-ask spreads

estimates within a year for the firms belong to the same industry specified by the first

three digits of SIC codes.

2. RTV: RTV is the average of daily Amihud (2002)’s illiquidity estimates (RTVi,t) within

a year for the firms belong to the same industry specified by the first three digits of

SIC codes.

RTVi,t =
|Ri,t|

V OLVi,t
(9)

where RTVi,t is firm i’s illiquidity estimate on day t. Ri,t is firm i’s return on day t.

V OLVi,t is firm i’s trading volume in dollars on day t.

3. ISIZE: ISIZE is the average of daily sum of market capitalizations within a year for

the firms belong to the same industry specified by the first three digits of SIC codes:

ISIZEi,t =
∑
ik∈i

MCik,t (10)

where MCik,t is firm ik’s market capitalization (stock’s price times shares outstanding

in millions of dollars) on day t, and firm ik belongs to industry i.

4. FSIZE: FSIZE is the average of daily average of market capitalizations within a year

for the firms belong to the same industry specified by the first three digits of SIC codes:

FSIZEi,t =
1

ni

∑
ik∈i

MCik,t (11)

where MCik,t is firm ik’s market capitalization (stock’s price times shares outstanding

in millions of dollars) on day t, and firm ik belongs to industry i. ni is the number of

firms belong to industry i.
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5. BM: Following Fama and French (1992), I compute a firm’s book-to-market ration in

month t using the market value of its equity at the end of December of the previous

year and the book value of common equity plus balance-sheet deferred taxes for the

firm’s latest fiscal year ending in prior calendar year.

BMi,t =
1

ni

∑
ik∈i

BMik,t (12)

where BMi,t is industry i’s book-to-market in month t. BMik,t is firm ik’s book-to-

market in month t, for firm ik belongs to industry i. ni is the number of firms belong

to industry i. Industry’s book-to-market in year y is the simple average of monthly

industry’s book-to-market in year y.

6. BETA: To take into account nonsynchronous trading, I follow Scholes and Williams

(1977) and Dimson (1979) and use the lag and lead of the market portfolio as well as

the current market when estimating beta:

Ri,d−rf,d = αi+β1,i(Rm,d−1−rf,d−1)+β2,i(Rm,d−rf,d)+β3,i(Rm,d+1−rf,d+1)+εi,d, (13)

where Ri,d is the average return of the stocks belong to industry i on day d, rf,d is the

risk-free rate on day d and Rm,d is the market return on day d. I use simple OLS to

estimate equation 13 for each industry using daily returns within a year. The market

beta of industry i in year y is defined as β̂i = β̂1,i + β̂2,i + β̂3,i.

7. IVOL: I use a simple CAPM model specification to estimate the yearly idiosyncratic

volatility of a firm:

Ri,d − rf,d = αi + βi(Rm,d − rf,d) + εi,d, (14)

where εi,d is the firm i’ idiosyncratic return on day d. The idiosyncratic volatility of

firm i in year y is defined as the standard deviation of daily OLS residuals in year y:

IVOLi,t =

√
̂var(ε̂i,d). (15)

The idiosyncratic volatility of an industry in year y is the average of the idiosyncratic
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volatilities of the firms belong to that industry in year y.

8. MOM: The momentum variable of firm i for every months in year y + 1 is the simple

average of firm i’ daily returns in year y. The momentum of an industry is the simple

average of the momentums of the firms belong to that industry.
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Table 4: Summary statistics of illiquidity network centralities panels. Centrality measures
are estimated every year from January 1963 to December 2015. Column descriptive statistics
provide characteristics of the empirical distribution of cross-section centrality measures in
a given year. Row descriptive statistics provide characteristics of each column’s descriptive
statistics across different years (1963 - 2015). Skewness is unbiased skew, for those are
greater than 0 are right-skewed; kurtosis is unbiased kurtosis using Fisher’s definition of
kurtosis (kurtosis normal = 0). Panel A presents summary statistics for sensitive centrality;
Panel B presents summary statistics for influential centrality.

Panel A: Sensitive Centrality

Cross-section Centrality Measures
count mean std min 25% 50% 75% max skewness kurtosis

count 53 53 53 53 53 53 53 53 53 53
mean 310.28 0.95 0.28 0.39 0.75 0.90 1.12 1.83 0.51 0.21
std 42.87 0.05 0.13 0.14 0.15 0.12 0.04 0.30 0.40 0.59
min 222 0.81 0.15 0.15 0.35 0.54 1.01 1.44 -0.26 -0.74
25% 282 0.94 0.19 0.25 0.67 0.89 1.10 1.60 0.24 -0.14
50% 311 0.98 0.21 0.42 0.83 0.96 1.11 1.71 0.45 0.08
75% 332 0.98 0.34 0.52 0.86 0.97 1.14 2.09 0.80 0.43
max 393 0.99 0.59 0.62 0.88 1.00 1.24 2.47 1.69 2.99

Panel B: Influential Centrality

Cross-section Centrality Measures
count mean std min 25% 50% 75% max skewness kurtosis

count 53 53 53 53 53 53 53 53 53 53
mean 310.28 0.85 0.49 0.18 0.52 0.72 1.05 2.84 1.38 2.34
std 42.87 0.10 0.14 0.11 0.17 0.17 0.14 0.62 0.53 2.22
min 222 0.41 0.22 0.00 0.05 0.11 0.26 1.62 0.27 -1.14
25% 282 0.82 0.41 0.12 0.41 0.63 1.01 2.46 1.09 1.16
50% 311 0.87 0.49 0.17 0.51 0.73 1.09 2.71 1.37 1.78
75% 332 0.91 0.57 0.23 0.65 0.84 1.12 3.18 1.54 2.55
max 393 0.98 0.91 0.44 0.84 0.97 1.35 4.92 3.57 11.94

44



Table 5: Summary statistics of the time-series correlations of sensitive and influential central-
ities of given industries. Centrality measures are estimated every year from January 1963 to
December 2015. I only calculate the time-series correlations between sensitive centrality and
influential centrality for those industries have more than 10 years centralities observations
in sample. Column statistics provide time-series correlations of any given industry and its
p-value to null hypothesis of no correlation. Row descriptive statistics provide characteristics
of each column’s statistics across different industries.

corr p-value

count 395 395
mean 0.42 0.09
std 0.19 0.19
min -0.37 0.00
25% 0.32 0.00
50% 0.45 0.00
75% 0.55 0.07
max 0.82 0.96
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Table 6: Return and alpha on portfolios of stocks sorted by illiquidity network centralities.
Decile portfolios are formed every year from January 1964 to December 2014 by sorting
industries based on the sensitive centrality (SC) in Panel A and based on the influential
centrality (IC) in Panel B. Centrality measures are estimated every year from January 1963
to December 2014. Industry returns are calculated by the equal-weighted returns of stocks
belong to the industry. Portfolio 1 (10) is the portfolio of industries with lowest (highest) cen-
tralities in the past calendar year. The tables reports the equal-weighted and value-weighted
average monthly returns, the 4-factor Fama-French-Carhart alphas on the equal-weighted
and value-weighted portfolios, and the average centrality of industries in the past calendar
year. The last two rows present the differences in monthly returns and the differences in
alphas with respect to the 4-factor Fama-French-Carhart model between portfolios 10 and
1 and the corresponding t-statistics. Average raw and risk-adjusted returns are given in
percentage terms. Newey-West (1987) adjusted t-statistics are reported in parentheses.

Panel A: Sorted by sensitive centrality

Equal-Weighted Value-Weighted
Decile Average Return 4-factor Alpha Average Return 4-factor Alpha SC

Low SC 1.06 0.31 1.44 0.74 0.57
2 1.11 0.42 1.35 0.64 0.68
3 1.18 0.42 1.36 0.67 0.75
4 1.26 0.52 1.44 0.76 0.81
5 1.24 0.53 1.47 0.82 0.87
6 1.07 0.33 1.32 0.61 0.94
7 1.28 0.59 1.42 0.80 1.02
8 1.26 0.62 1.26 0.72 1.12
9 1.12 0.47 1.43 0.84 1.26

High SC 1.42 0.76 1.82 1.23 1.50

10-1 0.36 0.45 0.38 0.49
(3.66) (3.72) (2.15) (2.65)

Panel B: Sorted by influential centrality

Equal-Weighted Value-Weighted
Decile Average Return 4-factor Alpha Average Return 4-factor Alpha IC

Low IC 1.05 0.33 1.26 0.62 0.32
2 1.20 0.52 1.55 0.89 0.44
3 1.18 0.47 1.42 0.74 0.52
4 1.20 0.48 1.37 0.76 0.60
5 1.22 0.53 1.50 0.83 0.68
6 1.18 0.45 1.45 0.82 0.77
7 1.17 0.49 1.54 0.87 0.89
8 1.19 0.48 1.41 0.76 1.06
9 1.16 0.45 1.35 0.72 1.33

High IC 1.44 0.81 1.57 0.93 1.96

10-1 0.40 0.48 0.31 0.31
(3.19) (3.35) (2.33) (2.31)
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Table 7: Distribution of industries across deciles sorted by sensitive centrality and sorted
by influential centrality. Centrality measures are estimated every year from January 1963
to December 2014. Decile portfolios are formed every year from January 1964 to December
2015 by sorting industries based on the sensitive centrality (SC) and based on the influential
centrality (IC). Portfolio 1 (10) is the portfolio of industries with lowest (highest) centralities
in the past calendar year. The ith row and jth column element in the table is the time-series
average of the percentage ratios of the number of the industries in portfolio j sorted by
influential centrality, as well as in portfolio i sorted by sensitive centrality, over the total
number of the industries in portfolio i sorted by sensitive centrality.

By influential centrality
By sensitive
centrality Low IC 2 3 4 5 6 7 8 9 High IC

Low SC 23.02 16.29 12.07 11.18 8.32 7.95 5.66 5.61 4.53 3.48
2 16.90 13.53 12.94 12.58 10.57 7.98 8.18 6.04 5.11 4.28
3 14.32 12.15 12.86 10.99 11.21 9.54 9.57 7.24 6.21 4.01
4 9.84 11.61 12.89 11.64 12.13 10.87 10.05 7.19 7.29 4.60
5 8.64 12.20 9.82 10.54 10.57 11.52 10.15 11.29 7.29 6.10
6 8.15 9.22 10.90 11.18 10.69 10.36 12.57 10.84 8.36 5.84
7 5.25 8.49 8.45 11.13 10.81 10.91 11.42 11.77 11.28 8.60
8 4.84 6.23 6.97 7.22 10.87 10.54 12.21 12.82 12.95 13.47
9 4.34 4.77 6.91 5.94 7.34 8.51 10.90 12.98 17.38 19.05

High SC 3.01 3.88 4.72 6.12 6.06 6.87 7.94 12.68 17.94 28.89
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Table 8: Transition matrix of industries in portfolios sorted by illiquidity network centralities.
Centrality measures are estimated every year from January 1963 to December 2014. Decile
portfolios are formed every year from January 1964 to December 2015 by sorting industries
based on the sensitive centrality (SC) in Panel A and based on the influential centrality (IC)
in Panel B. Portfolio 1 (10) is the portfolio of industries with lowest (highest) centralities
in the past calendar year. The ith row and jth column element in the table is the time-
series average of the percentage ratios of the number of the industries in portfolio i in year y
shifting to portfolio j in year y+ 1 over the number of the industries in portfolio i in year y.

Panel A: Sorted by sensitive centrality

To
From Low SC 2 3 4 5 6 7 8 9 High SC

Low SC 11.39 10.58 11.05 10.56 7.22 8.75 8.78 9.12 8.91 8.25
2 10.90 9.04 9.96 9.78 9.79 9.81 8.19 8.77 8.96 8.96
3 9.95 8.98 10.60 8.89 10.30 9.62 9.82 8.72 9.33 8.64
4 9.35 11.01 8.65 9.99 10.19 8.13 9.58 9.56 9.33 9.36
5 9.05 9.65 8.43 10.24 10.27 9.78 10.41 9.10 9.13 9.04
6 10.00 9.79 9.42 9.01 9.06 8.87 10.30 9.80 9.24 9.13
7 8.63 9.01 10.28 9.55 10.43 8.28 10.06 9.18 10.50 9.67
8 8.78 8.43 8.37 9.51 9.44 10.63 9.20 10.86 9.87 10.44
9 7.78 9.33 9.06 8.14 10.26 9.67 9.46 10.33 10.52 10.99

High SC 8.25 8.57 8.57 9.22 8.53 8.61 10.13 11.33 10.19 12.44

Panel B: Sorted by influential centrality

To
From Low IC 2 3 4 5 6 7 8 9 High IC

Low IC 10.86 11.20 11.28 10.77 9.83 9.86 10.07 7.41 6.52 7.54
2 10.87 11.64 10.74 9.74 11.71 7.47 9.95 8.11 7.69 7.15
3 12.92 9.85 10.43 9.17 10.58 8.45 8.89 9.39 7.62 8.07
4 9.42 10.82 11.33 10.55 9.73 8.94 8.64 8.60 8.47 7.94
5 11.27 9.99 9.91 9.62 8.24 8.90 8.76 9.17 9.61 8.90
6 8.70 8.84 8.19 8.42 9.91 10.49 9.50 11.03 9.80 9.81
7 8.69 11.38 8.51 8.49 9.48 9.58 9.90 8.58 11.21 9.63
8 8.05 7.76 8.56 9.71 8.42 10.91 10.14 10.58 11.72 10.16
9 6.27 7.55 8.64 9.32 8.36 8.40 11.50 10.85 11.34 13.09

High IC 7.05 5.64 7.08 8.17 9.00 9.31 9.23 12.28 12.13 15.14
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Table 9: Summary statistics for decile portfolios sorted by illiquidity network centralities.
Centrality measures are estimated every year from January 1963 to December 2014. Decile
portfolios are formed every year from January 1964 to December 2015 by sorting industries
based on the sensitive centrality (SC) in Panel A and based on the influential centrality (IC)
in Panel B. Portfolio 1 (10) is the portfolio of industries with lowest (highest) centralities
in the past calendar year. The table reports for each decile the simple average across the
years and across the industries of various characteristics for the industries: the average
stock market capitalization (in millions of dollars, labeled FSIZE), the industry market
capitalization (in millions of dollars, labeled ISIZE), the market beta (labeled BETA), the
book-to-market (labeled BM), the average stock bid-ask spreads estimate (in percent, labeled
SPREAD), the average Amihud (2002) illiquidity measure (scaled by 106, labeled RTV), the
average industry monthly return in the past calendar year prior to portfolio formation (in
percent, labeled MOM), and the industry idiosyncratic volatility over the past calendar year
prior to portfolio formation (labeled IVOL).

Panel A: Sorted by sensitive centrality

Decile FSIZE($106) ISIZE($106) BETA BM SPREAD(%) RTV(10−6) MOM(%) IVOL

Low SC 1.22 14.86 0.89 2.59 1.84 4.82 0.08 0.28
2 1.13 16.05 0.87 3.17 2.09 6.63 0.08 0.29
3 1.18 15.51 0.87 3.19 2.16 6.56 0.07 0.28
4 1.25 19.02 0.87 2.89 2.25 7.11 0.08 0.27
5 1.19 18.00 0.87 3.41 2.11 7.70 0.08 0.28
6 1.17 20.97 0.88 3.08 2.21 7.25 0.08 0.27
7 1.13 20.06 0.88 2.77 2.32 7.85 0.09 0.28
8 1.28 25.64 0.86 3.82 2.41 7.51 0.08 0.28
9 1.18 20.25 0.85 3.28 2.55 6.02 0.08 0.26

High SC 1.18 30.09 0.87 4.36 2.64 7.53 0.08 0.27

Panel B: Sorted by influential centrality

Decile FSIZE($106) ISIZE($106) BETA BM SPREAD(%) RTV(10−6) MOM(%) IVOL

Low IC 1.37 21.20 0.94 2.93 1.59 4.63 0.08 0.26
2 1.29 23.67 0.89 2.76 1.75 6.74 0.08 0.28
3 1.34 20.01 0.90 3.10 1.76 4.78 0.08 0.27
4 1.27 17.25 0.88 4.06 1.92 6.64 0.08 0.27
5 1.15 15.75 0.87 2.92 1.88 6.06 0.08 0.28
6 1.12 16.97 0.87 3.32 2.12 6.58 0.07 0.28
7 1.26 18.67 0.85 3.23 2.43 7.35 0.08 0.28
8 1.00 18.96 0.84 2.88 2.57 8.14 0.08 0.28
9 1.16 19.12 0.84 3.72 3.06 8.70 0.07 0.28

High IC 0.94 28.72 0.82 3.68 3.48 9.34 0.07 0.28
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Table 10: Returns on portfolios of industries sorted by sensitive centrality after controlling for FSIZE, ISIZE, BETA, BM, RTV,
MOM, and IVOL. Centrality measures are estimated every year from January 1963 to December 2014. Double-sorted, equal-
weighted and value-weighted decile portfolios are formed every year from January 1964 to December 2015 by sorting industries
based on sensitive centralities after controlling for average firm market capitalization, industry market capitalization, market
beta, book-to-market, return-to-volume, industry momentum, and industry idiosyncratic volatility. In each case, I first sort the
industries in to 5 deciles using the control variable, then within each decile, I sort industries into 10 decile portfolios based on
the sensitive centralities over the previous calendar year so that decile 1 (10) contains industries with the lowest (highest) SC.
This table presents average industry returns across the 5 control deciles to produce decile portfolio with dispersion in SC but
with similar levels of the control variable. “10-1 Return” is the difference in average monthly returns between the High SC and
Low SC portfolios. “10-1 Alpha” is the difference in 4-factor alphas on the High SC and Low SC portfolios. Newey-West (1987)
adjusted t-statistics are reported in parentheses.

Equal-Weighted Returns

Decile FSIZE ISIZE BETA BM RTV MOM IVOL

Low SC 1.10 1.04 1.05 1.03 1.13 1.04 1.07
2 1.12 1.15 1.15 1.18 1.17 1.09 1.13
3 1.18 1.19 1.22 1.19 1.12 1.27 1.14
4 1.23 1.19 1.24 1.25 1.23 1.21 1.28
5 1.13 1.20 1.12 1.09 1.31 1.17 1.18
6 1.08 1.04 1.13 1.21 1.11 1.16 1.12
7 1.22 1.32 1.18 1.19 1.19 1.13 1.28
8 1.25 1.19 1.16 1.28 1.15 1.29 1.13
9 1.21 1.24 1.36 1.27 1.22 1.25 1.28

High SC 1.39 1.36 1.33 1.31 1.33 1.33 1.37

10-1 Return 0.29 0.32 0.28 0.28 0.20 0.29 0.30
(2.83) (3.27) (2.78) (2.83) (2.20) (3.19) (3.17)

10-1 Alpha 0.40 0.39 0.31 0.37 0.29 0.35 0.40
(2.71) (2.97) (2.93) (2.76) (2.11) (3.46) (2.67)

Value-Weighted Returns

FSIZE ISIZE BETA BM RTV MOM IVOL

1.57 1.50 1.29 1.28 1.40 1.27 1.47
1.54 1.54 1.38 1.45 1.41 1.30 1.31
1.57 1.57 1.31 1.33 1.37 1.43 1.45
1.55 1.62 1.48 1.51 1.43 1.49 1.51
1.57 1.64 1.31 1.30 1.59 1.37 1.44
1.39 1.35 1.38 1.33 1.35 1.32 1.33
1.59 1.64 1.34 1.27 1.34 1.45 1.59
1.63 1.61 1.20 1.40 1.31 1.34 1.35
1.62 1.63 1.55 1.58 1.48 1.37 1.49
1.84 1.71 1.55 1.50 1.68 1.51 1.75

0.27 0.21 0.26 0.23 0.29 0.24 0.29
(2.05) (1.54) (1.94) (1.71) (2.41) (1.95) (1.85)
0.38 0.29 0.34 0.33 0.39 0.31 0.40

(2.41) (1.96) (2.46) (2.26) (2.41) (2.57) (2.10)
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Table 11: Returns on portfolios of industries sorted by influential centrality after controlling for FSIZE, ISIZE, BETA, BM,
RTV, MOM, and IVOL. Centrality measures are estimated every year from January 1963 to December 2014. Double-sorted,
equal-weighted) and value-weighted decile portfolios are formed every year from January 1964 to December 2015 by sorting
industries based on influential centralities after controlling for average firm market capitalization, industry market capitalization,
market beta, book-to-market, return-to-volume, industry momentum, and industry idiosyncratic volatility. In each case, I first
sort the industries in to 5 deciles using the control variable, then within each decile, I sort industries into 10 decile portfolios
based on the sensitive centralities over the previous calendar year so that decile 1 (10) contains industries with the lowest
(highest) SC. This table presents average industry returns across the 5 control deciles to produce decile portfolio with dispersion
in SC but with similar levels of the control variable. “10-1 Return” is the difference in average monthly returns between the
High SC and Low SC portfolios. “10-1 Alpha” is the difference in 4-factor alphas on the High SC and Low SC portfolios.
Newey-West (1987) adjusted t-statistics are reported in parentheses.

Equal-Weighted Returns

Decile FSIZE ISIZE BETA BM RTV MOM IVOL

Low IC 1.10 1.12 1.15 1.12 1.14 1.07 1.15
2 1.17 1.19 1.14 1.14 1.22 1.24 1.08
3 1.23 1.12 1.15 1.22 1.19 1.15 1.15
4 1.20 1.19 1.23 1.14 1.15 1.11 1.18
5 1.12 1.23 1.13 1.21 1.20 1.24 1.21
6 1.04 1.19 1.21 1.16 1.19 1.16 1.36
7 1.15 1.12 1.16 1.15 1.22 1.17 0.95
8 1.29 1.25 1.26 1.20 1.12 1.19 1.36
9 1.14 1.12 1.15 1.17 1.25 1.22 1.21

High IC 1.45 1.47 1.46 1.45 1.30 1.42 1.40

10-1 Return 0.35 0.36 0.31 0.34 0.16 0.35 0.25
(3.16) (2.99) (2.60) (2.85) (1.42) (3.37) (2.11)

10-1 Alpha 0.45 0.45 0.34 0.44 0.27 0.38 0.34
(3.41) (3.11) (2.59) (3.21) (2.24) (3.51) (2.67)

Value-Weighted Returns

FSIZE ISIZE BETA BM RTV MOM IVOL

1.53 1.54 1.29 1.27 1.43 1.37 1.42
1.60 1.59 1.36 1.38 1.35 1.42 1.34
1.75 1.57 1.41 1.41 1.49 1.42 1.37
1.61 1.47 1.40 1.32 1.37 1.37 1.51
1.53 1.77 1.35 1.38 1.46 1.41 1.59
1.34 1.58 1.42 1.38 1.43 1.38 1.58
1.67 1.58 1.46 1.43 1.51 1.38 1.29
1.61 1.74 1.43 1.46 1.42 1.47 1.68
1.59 1.52 1.30 1.37 1.42 1.50 1.52
1.68 1.69 1.57 1.47 1.53 1.48 1.51

0.14 0.15 0.27 0.20 0.09 0.11 0.09
(1.36) (1.26) (2.41) (1.82) (0.92) (1.03) (0.65)
0.21 0.24 0.30 0.24 0.21 0.13 0.18

(1.85) (1.62) (2.38) (2.07) (1.90) (1.12) (1.38)
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Table 12: Industry-level cross-sectional return regressions. Each month from January 1964 to
December 2015 I run an industry-level cross-section regression of the return in that month on
subsets of lagged predictor variables including sensitive centrality (SC), influential centrality
(IC), FSIZE, ISIZE, BETA, BM, RTV, MOM, and IVOL. Centrality measures (SC and
IC) are estimated every year from January 1963 to December 2014. Industry returns are
calculated by the equal-weighted returns of stocks belong to the industry. For example, the
industry return of each month in 2001 are regressed on the the lagged predictor variables
estimated with the sample from January 2000 to December 2000. In each row, the table
reports the time-series averages of the cross-sectional regression slope coefficients and their
associated Newey-West (1987) adjusted t-statistics (in parentheses).

SC IC BETA FSIZE ISIZE BM RTV MOM IVOL

0.82
(2.05)

0.69
(1.70)

0.88 0.48 0.47 -0.52 0.91 0.50 0.66 0.04
(2.14) (1.41) (1.02) (-1.30) (2.18) (1.32) (2.57) (0.06)

0.79 0.49 0.47 -0.52 0.90 0.50 0.63 0.13
(1.95) (1.43) (1.02) (-1.3) (2.18) (1.32) (2.38) (0.20)

0.83 0.62 0.49 -0.58 0.87 0.57 0.68 0.65 0.27
(2.00) (1.92) (1.02) (-1.46) (2.10) (1.52) (1.45) (2.52) (0.39)

0.65 0.45 0.51 -0.44 0.81 0.64 0.50
(1.52) (1.41) (1.10) (-1.09) (1.93) (2.44) (0.71)
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Table 13: Industry-level cross-sectional return regressions in subperiods (1970 -2015, 1980 -
2015, 1990 - 2015 and 2000 - 2015). Each month from January in each starting year (1970,
1980, 1990 and 2000) to December 2015 I run an industry-level cross-section regression of
the return in that month on lagged predictor variables including sensitive centrality (SC),
influential centrality (IC), FSIZE, ISIZE, BETA, BM, RTV, MOM, and IVOL. Centrality
measures (SC and IC) are estimated every year from January 1963 to December 2014. Indus-
try returns are calculated by the equal-weighted returns of stocks belong to the industry. For
example, the industry return of each month in 2001 are regressed on the the lagged predic-
tor variables estimated with the sample from January 2000 to December 2000. In each row,
the table reports the subsample time-series averages of the cross-sectional regression slope
coefficients and their associated Newey-West (1987) adjusted t-statistics (in parentheses).

Subperiods SC IC BETA FSIZE ISIZE BM RTV MOM IVOL

1970 - 2015
0.89 0.68 0.50 -0.62 0.97 0.65 0.75 0.70 -0.09

(1.89) (1.87) (0.93) (-1.36) (2.05) (1.50) (1.39) (2.74) (-0.14)

1980 - 2015
0.90 0.70 0.46 -0.83 0.87 0.53 0.68 0.67 -0.11

(1.69) (1.75) (0.75) (-1.69) (1.70) (1.14) (1.14) (2.49) (-0.16)

1990 - 2015
1.24 0.94 0.81 -0.89 1.16 0.84 0.88 0.50 -0.29

(1.94) (1.80) (1.03) (-1.49) (1.78) (1.45) (1.12) (1.83) (-0.36)

2000 - 2015
1.93 0.96 1.15 -0.32 1.43 1.46 1.26 0.83 -1.13

(2.10) (1.34) (0.91) (-0.52) (1.51) (1.76) (1.11) (2.14) (-0.91)
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