
..

COGNISERVE: HETEROGENEOUS SERVER
ARCHITECTURE FOR LARGE-SCALE

RECOGNITION
..

AS SMART MOBILE DEVICES BECOME PERVASIVE, VENDORS ARE OFFERING RICH FEATURES

SUPPORTED BY CLOUD-BASED SERVERS TO ENHANCE THE USER EXPERIENCE. SUCH

SERVERS IMPLEMENT LARGE-SCALE COMPUTING ENVIRONMENTS, WHERE TARGET DATA

IS COMPARED TO A MASSIVE PRELOADED DATABASE. COGNISERVE IS A HIGHLY EFFICIENT

RECOGNITION SERVER FOR LARGE-SCALE RECOGNITION THAT EMPLOYS A HETEROGENEOUS

ARCHITECTURE TO PROVIDE LOW-POWER, HIGH-THROUGHPUT CORES, ALONG WITH

APPLICATION-SPECIFIC ACCELERATORS.

......Over the past decade, Web
search has become an important large-scale
workload for cloud servers, making it neces-
sary for architects to rethink server architec-
tures from power, cost, and performance
perspectives.1 In the next decade, we expect
recognition (of images, speech, gestures,
and text) to engender the new wave of fea-
tures supported on smart mobile devices.
For example, mobile augmented reality
(MAR) is an upcoming application that lets
users point their handheld cameras to an ob-
ject and, with the help of a cloud server, rec-
ognize that object and overlay relevant
metadata on it.2 Similarly, along with the
widespread use of handheld devices, there
has been a resurgence of interest in enabling
users to initiate searches and dictation by
speaking as opposed to typing. This also
requires the device to work with the cloud
server to perform speech recognition effi-
ciently and in real time. Typical operation

at the server involves extracting the most rel-
evant information from target data (image,
voice, and text) and mathematically compar-
ing it to a very large database of similar infor-
mation precomputed from possible matches.
The mathematical operations involved can
scale to very large databases, depending on
the range of inputs supported and the accu-
racy required. However, providing such rec-
ognition services at a large scale on cloud
servers requires understanding these work-
loads’ characteristics and designing a server
architecture that is highly efficient in terms
of power, throughput, and response time.

In this article, we describe the key charac-
teristics of two open-source recognition
workloads: image recognition based on
Speeded-Up Robust Features (SURF)3 and
OpenCV, and speech recognition based
on Sphinx (http://sourceforge.net/projects/
cmusphinx/files). On the basis of these char-
acteristics, we explore a recognition server

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 20

Ravi Iyer

Sadagopan Srinivasan

Omesh Tickoo

Zhen Fang

Ramesh Illikkal

Steven Zhang

Vineet Chadha

Paul M. Stillwell Jr.

Intel Labs

Seung Eun Lee

Seoul National University

of Science and

Technology

..

20 Published by the IEEE Computer Society 0272-1732/11/$26.00 �c 2011 IEEE

design (CogniServe) that employs a heteroge-
neous architecture with the following key
features:

� several small cores for low power and
high throughput,

� application-specific recognition acceler-
ators to improve response latency and
energy efficiency, and

� architectural support for general-
purpose programming and efficient
communication between cores and
accelerators.

Our small cores are based on Intel’s Atom
core, which is already a very low-power core.
To demonstrate acceleration of some of the
key hot spots in image and speech recogni-
tion, we designed and implemented three
hardware accelerators: Gaussian mixture
model (GMM), match, and interest point
detection (IPD).

From a programming-model and com-
munications perspective, accelerators have
traditionally been treated as devices in the
platform. The programming model is typi-
cally based on a clear demarcation of
general-purpose core functionality versus
special-purpose device functionality. General-
purpose user applications have relied on
mechanisms such as system calls to isolate
the user space processes from directly control-
ling the hardware. This model is well-suited
for I/O devices and coarse-grained accelerators
with execution times far higher than the
interface overheads. However, for efficient off-
loading of fine-grained accelerators in hetero-
geneous recognition servers, a more efficient,
intuitive programming interface is needed
for accelerators.

Our proposed CogniServe programming
model allows for offloading functions on
accelerators without incurring significant
overhead in system calls and data copies.
The architectural support we provide lets
cores and accelerators operate in the same
virtual-memory domain. We also enable a
direct user interface to accelerators via new
instructions. By introducing this architec-
tural support, we can provide a general-
purpose programming model for accelera-
tors. Moreover, reducing overhead allows
offloading at a far lower granularity than

has been possible thus far. In this article,
we restrict our description of the program-
ming model to such fine-grained accelerators.
However, it’s possible to use this same archi-
tecture with different accelerators for differ-
ent target segments in large-scale computing.

Recognition workloads and characteristics
As users interact more with devices

(smartphones, smart displays or TVs, and
so on), it’s possible to significantly enhance
their personalized experience by enabling
more natural modes of input and output
than with a traditional keyboard and
mouse, and by enabling new usage models
to provide information customized to the
user context. Recognition applications are
emerging in both of these areas:

� Various applications recognize speech
and gestures as a new, more natural
mode of input and output. For exam-
ple, some applications use speech recog-
nition to make voice calls, dictate notes,
or transcribe data. Others use gesture
recognition to replace remote controls
for smart TVs. Still others are used to
enable interactive gaming.

� Some applications recognize objects
and text in images and video to enrich
context and experience for users by pro-
viding additional information—for ex-
ample, mobile augmented reality.

In this article, we use two of these emerg-
ing recognition applications: object recogni-
tion in images and speech recognition. We
present execution time and hot-spot charac-
teristics for these workloads, which high-
lights the value of our recognition server
architecture.

Image recognition characteristics
Object recognition in images can be

used in various applications. Here, we
focus on MAR—a usage model that’s rap-
idly emerging on smartphones and other
mobile devices.2 Figure 1a shows the basic
flow of MAR image recognition, which
begins with a query image that the user
takes with the camera. The intent is to
compare this query image against a set of
preexisting images in a database for a

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 21

..

MAY/JUNE 2011 21

potential match. This comparison involves
three major steps:

1. Interest-point detection. Identify interest
points in the query image to uniquely
characterize the object.

2. Descriptor generation. Create descriptor
vectors for these identified interest
points.

3. Descriptor matching. Compare descrip-
tor vectors of the query image against
descriptor vectors of stored images in a
database (narrowed down by the user
context—that is, GPS location or
other information).

Researchers have proposed several algo-
rithms to detect interest points and generate
descriptors. The most popular are variants of
the Scale-Invariant Feature Transform
(SIFT)4 and SURF3 algorithms. We chose
the SURF algorithm for our MAR applica-
tion because it’s faster and sufficiently accu-
rate for the usage model of interest.
Researchers have also used SURF successfully
in mobile phones for MAR.2

Figure 2a shows SURF’s execution time
when running on two types of platforms: a
server platform with traditional large-core
microprocessors (Intel’s Xeon processor run-
ning at 3 GHz) and a netbook platform with
small-core microprocessors (Intel’s Atom
core running at 1.6 GHz). Because we
started with open-source code, we also
performed significant software optimizations
(multithreading, vectorization, and so forth),
which Figure 2a labels as ‘‘opt.’’ As Figure 2a
shows, our software optimizations have
already improved image recognition perfor-
mance by as much as 2�. In addition, the
performance difference between large and
small cores was roughly 4�. Despite this
difference, we explore recognition servers
built from small cores, for the following
reasons:

� A significant part of this difference
comes from the 2� frequency differ-
ence between the cores when measured.

� Multiple small cores can fit within
a large core’s footprint and power
envelope.

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 22

(a)

Interest point
detection

Descriptor
generation

Match against
database files

Picture
received from
phone via 3G

SURF

Match
and

content

Data from database

Each circle is
a detected IP

described
with a numeric

vector.

White lines
denote pairs
of matching

points.

(c)

Acoustic
front end

FFT,
DCT

ADC

LM and AM
searches

GMM
scoring

Speech
recognition

Image
recognition

Smart mobile
devices

Recognition
servers

(b)

Figure 1. Large-scale recognition for image and speech: image recognition flow detailing various stages, from image

capture to database matching (a); recognition architecture employing mobile clients and recognition servers (b); and speech

recognition flow detailing various stages for real-time speech identification (c). Thus, we extend the basic recognition

architecture to image and speech recognition. (ADC: analog-to-digital converter; AM: acoustic model; DCT: discrete cosine

transform; FFT: fast Fourier transform; GMM: Gaussian mixture model; LM: language model; SURF: Speeded-Up Robust

Features.)

..

22 IEEE MICRO

...

SYSTEMS FOR VERY LARGE-SCALE COMPUTING

� These algorithms’ server power con-
sumption and application execution
time must be reduced significantly
through hardware offloading anyway.

Figure 2b shows the key primitives and
hot spots in SURF-based image recognition
when running on the Intel Atom core. De-
scriptor matching takes the most amount of
time, followed by IPD (for 50 image
matches). The execution time breakdown
ratio depends on the number of images to
match against. (Extensive workload charac-
teristics and optimizations of image recogni-
tion are available elsewhere.5)

Speech recognition characteristics
Automatic speech recognition is particu-

larly attractive as an input method on hand-
held platforms because of their small form
factors. The rapid adoption of mobile de-
vices and the need for enriching context
has now made it even more important to
enable natural language navigation, accu-
rate transcriptions, and so on. In fact,
cloud service providers have already begun
enabling a rich user experience based on
voice, including voice-based search and
other features.

In our work, we target the more difficult
speech recognition applications that focus on

large vocabulary, continuous speech recogni-
tion (LVCSR). We employ the most widely
researched LVCSR software: Carnegie Mellon
University’s Sphinx 3.0 (http://sourceforge.
net/projects/cmusphinx/files). Figure 1c illus-
trates the basic flow of Sphinx 3, which
uses hidden Markov models (HMMs) as sta-
tistical models to represent subphonemic
speech sounds. There are basically three
steps in HMM-based speech recognition sys-
tems, including Sphinx 3: the acoustic front
end, GMM scoring, and acoustic-model
and language-model searches.

Figure 2c shows the execution time of
speech recognition on large cores (Intel’s
Xeon processor) and small cores (Intel’s
Atom core) when running on speech cap-
tured from the Wall Street Journal and
HUB-4 broadcast news. Again, we show
the impact of software optimizations that
we’ve already performed on the open-source
code to speed it up on Intel microprocessors
(including multithreading, vectorization, and
significant code and algorithmic optimiza-
tions). We achieved a speedup of 1.2�
when applying these optimizations. We also
found that the Atom core was about 5� to
6� slower than the Xeon core when process-
ing speech using the selected open-source en-
gine. As with image recognition, however, we
still argue for small cores to be supported in

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 23

0
500

1,000
1,500
2,000
2,500
3,000

Atom
(base)(a)

Atom
(opt)

Xeon
(base)

Xeon
(opt)

E
xe

cu
tio

n
tim

e
(m

s)

Descriptor matching
Descriptor generation
IP detection

0

(c)

40

80

120

160

Atom
(base)

Atom
(opt)

Xeon
(base)

Xeon
(opt)

S
pe

ak
in

g
tim

e
(%

)

Others
Search
GMM scoring

(b)

43%

5%

52%
58%

7%

35%

20 image matches 50 image matches

IP detectionDescriptor generationDescriptor matching

(d)

62%

36%

2%

65K-word vocabulary

82%

2%
16%

20K-word vocabulary

SearchOthers GMM scoring

Figure 2. Recognition hot-spot sensitivity: image recognition hot-spot sensitivity on Atom- and Xeon-based platforms

(a), image recognition hot-spot sensitivity with database size for database scaling (b), speech recognition hot-spot

sensitivity on Atom- and Xeon-based platforms (c), and speech recognition hot-spot sensitivity with vocabulary size

for database scaling (d). (opt: optimized.)

..

MAY/JUNE 2011 23

recognition servers, and for the same reasons
In addition, much of this difference comes
from large caches (8 Mbytes on the Xeon
core versus 512 Kbytes on the Atom).

Figure 2d shows hot-spot profiling of
Sphinx 3 on an Atom processor. As the fig-
ure shows, GMM scoring takes the most
amount of time (62 to 82 percent of process-
ing) followed by HMM (which takes 16 to
36 percent of the total execution time).
These were collected with Wall Street Journal
material with no background noise. Thus,
even without noise, the Sphinx 3 decoding
time on the Atom is 1.25� longer than in
real time.

In real-world usage cases, environmental
noise is unavoidable. Compared with clean
audio, decoding time for noisy audio can eas-
ily increase by 50 to 300 percent. This shows
that hardware acceleration is necessary, not
only for power consumption reasons, but
also for real-time decoding.

Recognition server architecture
Figure 3 shows the progression of the rec-

ognition server architecture design space that
we explored when developing CogniServe.
To provide a low-cost, energy-efficient architec-
ture, we developed a recognition server with
small cores (like the Intel Atom). Figure 3a
shows this basic server architecture, consisting
of multiple small cores connected via an

on-die interconnect to an integrated memory
controller for attaching it to DRAM. Various
commercial and research efforts are already
attempting to provide large-scale servers
based on Atom cores.6-8 Our basic design
represents a simple homogeneous chip multi-
processor (CMP) architecture, which is a
general-purpose CMP from the perspective
of programmability ease.

To further accelerate the recognition exe-
cution time, we explored the potential of inte-
grating application-specific accelerators for
the key recognition primitives. Figure 3b
shows this architecture at a high level, in
which we replaced some of the small cores
with a set of hardware recognition accelera-
tors (RA1, RA2). We included a GMM ac-
celerator for speech recognition because it
consumed more than 60 percent of the exe-
cution time, a match accelerator for image
recognition because it consumed more than
50 percent of the execution time, and an
IPD accelerator because it consumed more
that 40 percent of the execution time. All
three accelerators are key primitives in such
algorithms, and therefore are reusable across
a range of recognition workloads.

Another important criterion that we used
to choose these accelerators is that they pri-
marily involved integer or fixed-point com-
putations. The resulting architecture when
integrating accelerators and small cores on

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 24

Interconnect

Memory

SmallSmall Small Small

Homogeneous

(a) (b) (c)

ISA and common memory

SmallSmall R
A

1

R
A

2

General purpose Device specific

Heterogeneous

Separate memory; ISA vs. device

Interconnect

Memory

General purpose

SmallSmall R
A

1

R
A

2

General purpose

Heterogeneous

ISA and common virtual memory

Virtual memory interconnect

Memory

Figure 3. Recognition server: architecture and acceleration on small-core servers (a), driver-based accelerator integration

(b), and instruction set architecture (ISA)-based accelerator integration (c). We extended the generic programming model

from homogenous architectures to heterogeneous CPU and other device platforms. (RA: recognition accelerator.)

..

24 IEEE MICRO

...

SYSTEMS FOR VERY LARGE-SCALE COMPUTING

the die is essentially heterogeneous. This ar-
chitecture provides significant performance
improvement and energy efficiency, which
is inherent in hardware accelerators as
opposed to general-purpose cores. Tradi-
tional models essentially treat accelerators
like any other I/O device and let developers
employ accelerators based on device driver
abstraction, as Figure 3b shows.

Unlike the small cores, which employ
general-purpose instructions and virtual mem-
ory, accelerators are programmed using firm-
ware and device driver interfaces, and they’re
typically programmed using physical addresses
in memory. This makes it difficult to program
and also makes the architecture inefficient be-
cause it requires control transfer between the
user space and the kernel space before access-
ing the accelerator. Moreover, it requires
copying data back and forth between the
core and the accelerator for processing.

As Figure 3c shows, to address the lack of
general-purpose programming and ineffi-
ciency in traditional (device-driver-based)
models of heterogeneous architectures, we
designed architectural support in the hetero-
geneous recognition server, enabling direct
user access via an instruction set architecture
(ISA) from the core to the accelerator (thus
eliminating user-to-kernel transition over-
head). We also designed common memory
management units (MMUs), which let the
accelerator share the virtual-memory space
with the core so that data movement over-
heads can be eliminated as well.

Recognition accelerators in CogniServe
To improve energy efficiency and execu-

tion time for a class of special-purpose appli-
cations, architects have been exploring the
integration of domain-specific hardware
accelerators. The most popular hardware ac-
celerator over the past decade has been
graphics. However, over the years, research-
ers have developed application-specific
accelerators for video processing, image pro-
cessing, security and cryptography, and net-
working. We’ve designed and implemented
the following accelerators for speech and
image recognition:

� GMM accelerator. This speech recogni-
tion accelerator enables GMM scoring

for each of the feature vectors of an
audio frame.

� Match accelerator. This image recogni-
tion accelerator computes distance cal-
culations for matching descriptors
from a query image to descriptors
from a set of database images.

� IPD accelerator. This accelerator identi-
fies the interest points in an input image.

Here, we describe the design of these
accelerators in more detail.

GMM accelerator
Figure 4a shows the GMM accelerator ar-

chitecture, which includes weighted-square
sum calculation of the distances between
audio feature vectors and the mean values
in the Gaussian table, followed by score
generation. The GMM accelerator has a
five-stage pipeline, processing 39 different
computations concurrently. The arithmetic
logic units (ALUs) are 32-bit and 64-bit add-
ers, 32-bit � 16-bit ! 48-bit and 32-bit �
32-bit! 64-bit multipliers, and two shifters,
all in fixed-point format. The control unit
consists of a set of state machines that gener-
ate addresses for both fetches from the static
RAM (SRAM), and direct memory access
(DMA) transfers that copy data from
DRAM to SRAM. The DMAs ensure that
the audio feature vectors and Gaussian table
values are available to the ALUs for the
next set of operations.

The Gaussian table for the more than
8,000 senones accounts for most of the
memory traffic. (A senone is a set of proba-
bility density functions implemented as a
Gaussian mixture.) We adopt the audio-
frame-grouping technique to save main
memory bandwidth consumption. We
group four 10-ms audio frames for batch
processing, which cuts memory traffic by
4� at the cost of 40 ms of initial delay.

Match accelerator
The match accelerator for image recogni-

tion computes the Euclidean distance between
every pair of descriptor vectors (one interest
point from the query image, and one from
the database image) and computes the num-
ber of matches between two images. Each de-
scriptor has 64 dimensions, represented by 64

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 25

..

MAY/JUNE 2011 25

8-bit values (see Figure 4b). The match accel-
erator employs SRAM as a staging buffer in
the address space, without which all subse-
quent descriptor values would need to be

read from DRAM one at a time. Our design
uses an SRAM that supports a 64 � 64 de-
scriptor computation (requiring only 8
Kbytes). We rearranged the loop in the

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 26

...

38

i = 0

x
×

X 0

mM 0 –

×vV 0

x
×

X 1

mM 1 –

×vV 1
+

x
×

X 2

mM 2 –

×vV 2

x
×

X 3

mM 3 –

×vV 3
+

+

x ×
X 38

mM 38 –

×vV 38
+

+

+

+

+ –

LogAdd

>>14 +

LRD W

Gaussian score

Score

X SRAM
(1 ×156 bytes)

Control

AGU

System bus

(a)

(b) (c)

Bus LRD SRAM
(16 × 8 bytes)

W SRAM
(16 × 4 bytes)

M SRAM
(16 × 156 bytes)

V SRAM
(16 × 78 bytes)

1st 2nd 3rd 4th

sum = Σ (xi – mi)
2 × vi

5thPipeline
stages

q
×+

d

+

+

q

d

d

d

d

q

q

q

×+

×+

×+

×+

+

+

+

+

+

+

+

+

+
..
.

..
.

..
.

Sum

Query 0

DB 0

Query 1

DB 1

Query 2

DB 2

Query 3

DB 3

Query 63

DB 63

<

<

Min

Min2

D
is

ta
nc

e
ca

lc
ul

at
io

n

Load EU Sum1 Sum2 Min

1 2 3

63

i = 0
sum = Σ (qi – di)

2 System bus interface

Integral image computation
block

Integral
image
buffer

Control
state

machine

Control
information

memory

Computation pipeline
(shifting, multiplication,

 accumulation)

Accumulation buffer

0

Points for block filter Dyy
Points for block filter Dxx
Points for block filter Dxy
Hessian result point

x

2nd

Figure 4. Accelerator designs for recognition hot spots: GMM block for speech recognition (a), mobile augmented reality

(MAR) match implementation (b), MAR interest point detection (IPD) accelerator (c). (AGU: address generation unit;

DB: database; EU: Euclidian distance square unit; LRD: logarithmic reciprocal determinant; M, X, V, W: input and database

vectors; SRAM: static RAM.)

..

26 IEEE MICRO

...

SYSTEMS FOR VERY LARGE-SCALE COMPUTING

brute-force algorithm for 64 descriptor vectors
by using a loop-blocking technique. The
match accelerator data path requires comput-
ing the Euclidean distance square for every
pair of descriptor vectors.

The match accelerator has a five-stage
pipeline, computing 64 descriptor vectors
in 8-bit unsigned integer format concur-
rently. The load stage loads 64 descriptor
vectors from the internal SRAM into the
registers. The execution stage calculates the
Euclidean distance square between descrip-
tors by computing the difference between a
pair of descriptor vector elements and multi-
plying it by itself to compute the square. The
Sum1 and Sum2 stages accumulate 64 Eucli-
dean distance squares. The accumulated
value is checked against the minimum and
second minimum value in the Min stage,
and the results are stored to the internal
SRAM for the match operation. The final re-
sult, the number of matches between two
images, is calculated by accessing the Min
and Min2 memory obtained from the Eucli-
dean distance square unit. When the mini-
mum value is less than half the second
minimum, the number of matches increases
by 1 for the pair of descriptors.

IPD accelerator
IPD is the first phase in image recogni-

tion and comprises steps such as integral
image computation and Hessian matrix
computation. We designed the IPD accelera-
tor to efficiently implement these steps and
provide significant execution time reduction
at ultralow power. Figure 4c shows the
block filter points for Dxx , Dyy , and Dxy ,
which are needed to compute one Hessian
matrix result point when an ‘‘octave’’ equals
1 and an ‘‘octave layer’’ equals 1. The IPD
accelerator implements the following steps:

1. The accelerator reads a vector of an in-
tegral image from the integral image

buffer and sends it to the computation
pipeline block.

2. The accelerator reads an entry of the
control information table from the
control information memory, which
includes one associated entry for each
block filter point.

3. With the vector from step 1 and the
control information from step 2, the
computation pipeline block performs
shifting, coefficient multiplication, and
accumulation. The accumulation buf-
fers store the accumulated results for
each block filter.

4. Steps 1 through 3 are repeated until all
block filter points are processed. Then,
the final Hessian matrix results are cal-
culated and written into either an on-
chip buffer or system memory for the
next processing step.

5. Steps 1 through 4 are repeated for the
entire image.

Accelerator design evaluation
To evaluate the design of the three

accelerators, we conducted extensive
register-transfer level (RTL) simulations and
integrated each accelerator into a field-
programmable gate array (FPGA) platform.
We functionally verified that the accelerators
operate correctly and produce the correct
results. We also synthesized the designs on
a 45-nm process and gathered area, fre-
quency, and power statistics.

As Table 1 shows, the accelerators operate
at frequencies ranging from 400 MHz to
nearly 600 MHz and achieve speedups rang-
ing from 3� to 21� for the kernel. Significant
savings in power consumption accompany
these speedups. The accelerator logic consumes
only about 25 mW to 100 mW in power.

Figures 5a and 5b show the performance
gains of image and speech recognition for
various hardware configurations and different
processor frequency scales and comparison

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 27

Table 1. Accelerator performance and speedup from the software implementation.

Accelerator Frequency (MHz) Logic area (mm2) Power (mW) Speedup

GMM 542 0.63 98.0 6�
Match 568 0.08 23.5 21�
IPD 400 0.36 39.1 13�

..

MAY/JUNE 2011 27

databases. The Atom-based accelerator-
integrated platform is about 2� faster than
an Intel Xeon processor for 20 images, and
goes up to about 5� for 50 images. This ena-
bles the accelerator-integrated platform to
process more queries with lower power
consumption. Although our accelerator-
integrated platform is about 2� or 3� slower
than the Intel Xeon for speech recognition,
our platform delivers one-third the perfor-
mance at an order-of-magnitude lower
power consumption.

CogniServe accelerator programming
Traditional interfacing for accelerators has

been through device drivers, but this model

poses two challenges: performance loss due
to overhead latencies, and lack of a standar-
dized interface for software programming.
Extracting the maximum performance and
enabling a standardized programming inter-
face requires a new approach to accessing
accelerators and communicating with them.

Conventional approaches for accelerator
exposure are based on device driver abstrac-
tion. Figure 6a shows the overheads with
the device driver interfacing model.

� System call overheads range from 100
to 1,000 cycles for each call into the
driver (because they require a transition
from the user to the kernel).

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 28

0

20

40

60

80

100

120

140

160

S
p

ea
ki

ng
 ti

m
e

(%
)

20K vocabulary
65K vocabulary

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Atom
(SW)(a) (b)

Xeon
(SW)

Atom
(W/A)

Atom
(SW)

Xeon
(SW)

Atom
(W/A)

Atom
(SW)

Atom
(SW)

Xeon
(SW)

Xeon
(SW)

Atom
(W/A)

Atom
(W/A)

E
xe

cu
tio

n
tim

e
(m

s)

20 images

50 images

Figure 5. Performance scaling with frequency and database size: performance improvement of image recognition (a) and of

speech recognition (b). (SW: software; W/A: with acceleration.)

y
Kernel
buffer

User
buffer

Application

Device driver

Accelerator

System call

I/O access

User

Kernel

Software

Hardware

Copy from user
Copy to user

DMA read/write
(physical)

DMA read/write
(physical)

y
User

buffer
Application

Accelerator

User

Kernel

Software

Hardware AMMU

AISA

DMA read/write
(virtual)(a) (b)

Figure 6. CogniServe accelerator programming and communication: device driver interface (a) and virtual memory-based

acceleration (b). (AISA: accelerator ISA; AMMU: accelerator memory management unit; DMA: direct memory access.)

The proposed programming model achieves significant overhead reduction by eliminating data copy, buffer allocation,

and system-call cycles.

..

28 IEEE MICRO

...

SYSTEMS FOR VERY LARGE-SCALE COMPUTING

� Data copy overheads are incurred be-
cause the device driver must copy the
data from the user to the kernel buffer.
The copy overhead is around 2,100
cycles for a 4-Kbyte data transfer. An-
other approach is to pin the application
page and get the physical address using
kernel services. Although this approach
reduces copy overhead, it adds the cost
of address translation.

We address these overheads by intro-
ducing the architectural support shown in
Figure 6b, which has the performance ben-
efits listed in Table 2.

AISA extensions
We introduced new accelerator ISA

(AISA) extensions in the host core to reduce
unnecessary device driver overheads when
interfacing accelerators to the servers. These
extensions also provide a standard interface
for programs to access the accelerator hard-
ware from the user space. This lets programs
access the accelerator similar to accessing a
processor functional unit or coprocessor.
We define two new ISA extensions to create
split-instruction semantics (which avoids
blocking the processor during the accelerator
transaction).

� PUTTXN. This instruction provides a
process with an atomic method to
send data to an accelerator, along
with the context information
(returning a unique transaction ID
that can be used to query the status
asynchronously).

� GETTXN. This instruction provides a
process with a method for querying

the hardware for a given transaction’s
completion status.

We also define an accelerator ID instruc-
tion (AID) to enumerate and configure all
the available accelerators in the processor.

AMMU translation services
We designed a simplified memory model

to avoid data-copying requirements and en-
able the accelerators to operate in the
virtual-memory domain. The key compo-
nent of this new model is the accelerator
memory management unit (AMMU). The
AMMU is integrated on the interconnect
and offers address translation services to the
accelerators so that they can execute in the
virtual-memory domain. The AMMU also
lets programs access the accelerator functions
directly from the user space and communi-
cate using virtual-memory addresses. When
an accelerator tries to access the application
memory with a virtual address, the AMMU
intercepts the request and automatically
translates the virtual address into the corre-
sponding physical address. If the translation
isn’t present in the operating-system page
tables, the AMMU initiates a page fault
through an interrupt. The operating system
then services the page fault before the
AMMU can again attempt the translation.

Table 2 shows the overheads associated
with offloading the computationally inten-
sive portions of prominent recognition suites
using a traditional device driver approach on
the one hand, and using the proposed
programming-model-based approach with
the AISA and AMMU on the other hand.
Table 2 also shows the absolute overhead
(in CPU cycles) for the IPD, match, and

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 29

Table 2. Performance benefits of the proposed accelerator-programming model.

Classical driver model (overhead cycles) Proposed model

Accelerator Data copy

Buffer

allocation

System calls

and register

setup

Total

overhead

Total over-

head (cycles)

Overhead

reduction (%)

MAR IPD 1,110,657 616,355 726 1,727,738 550 99.97

MAR match 33,081 31,757 726 65,565 550 99.16

Sphinx GMM, N ¼ 8 3,735 6,378 726 10,840 550 94.93

Sphinx GMM, N ¼ 1 3,200 6,096 726 10,022 550 94.51

..

MAY/JUNE 2011 29

GMM accelerators. As is evident from this
table, the proposed interfacing model consid-
erably decreases the total data offload cycles
when compared with the classical driver
model. The reason for this performance ben-
efit is that the overheads for data copying
and kernel buffer allocation are avoided
when the offload occurs directly from the
user space. The only remaining interfacing
overheads are those for invoking the offload
from software and those due to the hardware
delays in queuing up the job for the accelera-
tor. Both of these overheads are insignificant
(about 550 cycles) and independent of the
nature of the offload as opposed to the driver
model.

Other overheads associated with virtual-
address-based execution on the accelerators
are translation look-aside buffer (TLB)
misses and page fault handling. The
AMMU keeps a cache of virtual-to-physical
address translations in its TLB, which is
managed like the processor TLB. Although
the analysis of performance data is beyond
the scope of this article, our preliminary
work in this area suggests that the overheads
to service a TLB miss aren’t very large when
compared to the benefits gained by reducing
the software offload path. This is especially
true in light of the spatial locality of recogni-
tion workloads, which can potentially make
intelligent TLB prefetching effective. Increas-
ing the interconnect speeds also reduces
the TLB miss service latencies. Page fault
servicing should add minimal cost to the
performance for recognition accelerator off-
loading, thanks to its use of source and des-
tination buffers allocated by the offloading
program.

The accelerators use source buffers to fetch
the input data provided by the offloaded
program for computation. The nature of rec-
ognition workloads dictates that the compar-
ison operations are performed between a
target and a source database. Both of these
database buffers are prefilled by the software
before the control is handed to the hardware
accelerators through offloading. The tempo-
ral locality makes it improbable for the
AMMU to get a page fault when accessing
the source buffer.

The accelerators use destination buffers to
communicate the results of recognition

offloading to software. Some applications al-
locate a destination buffer on the basis of de-
mand. This implies that, although the
pointer to the buffers is valid, the memory
doesn’t get allocated until the accelerator
accesses it to store the result. This can lead
to a page fault. However, the number of
page faults in such cases is limited (usually
just one) because most of the recognition
accelerators communicate a ‘‘match or no
match’’ result along with an optional index
into the database. This result can easily fit
into the smallest page allocated by the oper-
ating system. The examples discussed in this
article, MAR and speech recognition, fall
into this category.

A s this article shows, the CogniServe
recognition server architecture is well-

suited for recognition applications and will
foster further technology development in
this area. With recognition-based applica-
tions on smart devices constantly emerging,
we will continue studying additional algo-
rithms, and further refine the CogniServe
recognition server architecture with the
right set of accelerators and associated
architectural support. M I CR O

..
References

1. L.A. Barroso, J. Dean, and U. Holzle, ‘‘Web

Search for a Planet: The Google Cluster Ar-

chitecture,’’ IEEE Micro, vol. 23, no. 2,

2003, pp. 22-28.

2. G. Takacs et al., ‘‘Outdoors Augmented Re-

ality on Mobile Phone Using Loxel-Based Vi-

sual Feature Organization,’’ Proc. ACM 1st

Int’l Conf. Multimedia Information Retrieval

(MIR 08), ACM Press, 2008, pp. 427-434.

3. H. Bay et al., ‘‘Speeded-Up Robust Fea-

tures (SURF),’’ J. Computer Vision and

Image Understanding, vol. 110, no. 3,

2008, pp. 346-359.

4. D.G. Lowe, ‘‘Distinctive Image Features from

Scale-Invariant Keypoints,’’ Int’l J. Computer

Vision, vol. 60, no. 2, 2004, pp. 91-110.

5. S. Srinivasan et al., ‘‘Performance Charac-

terization and Acceleration of Optical Char-

acter Recognition on Handheld Platforms,’’

Proc. IEEE Int’l Symp. Workload Character-

ization (IISWC 10), IEEE Press, 2010,

doi:10.1109/IISWC.2010.5648852.

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 30

..

30 IEEE MICRO

...

SYSTEMS FOR VERY LARGE-SCALE COMPUTING

6. D.G. Andersen et al., ‘‘FAWN: A Fast Array

of Wimpy Nodes,’’ Proc. ACM SIGOPS

22nd Symp. Operating Systems Principles

(SOSP 09), ACM Press, 2009, pp. 1-14.

7. V. Reddi et al., ‘‘Web Search Using Mobile

Cores: Quantifying and Mitigating the

Price of Efficiency,’’ Proc. 37th Ann. Int’l

Symp. Computer Architecture (ISCA 10),

ACM Press, 2010, pp. 314-325.

8. SeaMicro, http://www.seamicro.com.

Ravi Iyer is a senior principal engineer and
director of the SoC Platform Architecture
Research Group at Intel Labs. His research
focuses on future system-on-chip (SoC) and
chip multiprocessor (CMP) architectures,
especially small cores, accelerators, cache and
memory hierarchies, fabrics, quality of service,
emerging applications, and performance eva-
luation. Iyer has a PhD in computer science
from Texas A&M University.

Sadagopan Srinivasan is an engineer at
Intel Labs, where he works on architecture
and applications for mobile and heterogeneous
systems. His research interests include proces-
sor architecture, memory subsystems, and
performance modeling and analysis. Srinivasan
has a PhD in computer engineering from the
University of Maryland, College Park.

Omesh Tickoo is a research scientist at Intel
Labs. His research interests include computer
system architecture, multimedia, and net-
working. Tickoo has a PhD in electrical and
computer systems engineering from Rensse-
laer Polytechnic Institute.

Zhen Fang is an engineer at Intel Labs,
where he works on architecture and applica-
tions for mobile and embedded systems. His
research interests include processor architec-
ture, memory subsystems, parallel proces-
sing, and performance modeling and
analysis. Fang has a PhD in computer
science from the University of Utah.

Ramesh Illikkal is a principal engineer in
the Integrated Platform Research Lab at Intel
Labs. His research interests include SoCs,

CMPs, server architectures, virtualization,
and memory hierarchies. Illikkal has an
MTech in electronics from Cochin Univer-
sity of Science and Technology in India.

Steven Zhang is a senior engineer in the
Integrated Platform Research Lab at Intel
Labs. His research interests include SoC
architecture, reconfigurable computing, and
quick prototyping. Zhang has a PhD in
communication engineering from Beijing
University of Posts and Telecommunications.

Vineet Chadha is a research scientist at Intel
Labs. His research interests include computer
architecture, virtualization, and distributed
computing. Chadha has a PhD in computer
and information science and engineering
from the University of Florida. He’s a
member of the IEEE Computer Society
and the ACM.

Paul M. Stillwell Jr. is a senior engineer in
the Integrated Platform Research Lab at Intel
Labs. His research interests include SoCs and
deeply embedded architectures. Stillwell has
a BS in electrical engineering from North
Carolina State University.

Seung Eun Lee is an assistant professor in
the Department of Electronic and Informa-
tion Engineering at Seoul National Univer-
sity of Science and Technology. His research
interests include computer architecture,
multiprocessor SoCs, networks on chips
(NoCs), and very large-scale integration
(VLSI) design. Lee has a PhD in electrical
and computer engineering from the Uni-
versity of California, Irvine. He’s a member
of IEEE.

Direct questions and comments about
this article to Ravi Iyer, JF2-58, 2111 NE
25th Ave., Hillsboro, OR 97124; ravishankar.
iyer@intel.com.

[3B2-9] mmi2011030020.3d 23/5/011 15:44 Page 31

..

MAY/JUNE 2011 31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

