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Abstract 

 

Specialized hardware accelerators are enabling today’s 
System on Chip (SoC) platforms to target various 
applications. In this paper we show that as these SoCs evolve 
in complexity and usage, the programming models for such 
platforms need to evolve beyond the traditional driver 
oriented architecture. Using a test set up that employs a 
programmable FPGA based accelerator to implement one of 
the critical computation functions of a Mobile Augmented 
Reality based workload, we describe the performance 
drawbacks that a conventional programming model brings to 
compute environments employing hardware accelerators. We 
show that these performance issues become more critical as 
the interface latencies continue to improve over time with 
better hardware integration and efficient interconnect 
technologies. Under these usage scenarios, we show with 
measurements that the software overheads enforced by the 
current programming model, like those associated with 
system calls, memory copy and memory address translations 
account for a major part of the performance overheads. We 
then propose a novel High Performance Portable 
Accelerator Interface (HiPPAI) for SoC platforms using 
hardware accelerators to reduce the software overheads 
mentioned above. In addition, we position the new 
programming interface to allow for function portability 
between software and hardware function accelerators to 
reduce the application development effort. Our proposed 
model relies on two major building blocks for performance 
improvement. A uniform virtual memory addressing model 
based on hardware IOMMU support and direct user mode 
access to accelerators. We demonstrate how these 
enhancements reduce the overheads of system calls and 
address translations at the user/kernel boundary in 
traditional software stacks and enable function portability.  
 
1. Introduction 
 

Increasing transistor density driven by Moore’s 
law along with the limitations imposed by the 
frequency scaling and the need for single thread 
performance is forcing the processor architecture to 
integrate more and more specialized functionalities 
into the hardware. Increasing number of embedded 
platforms (SoCs) use specialized hardware accelerators 
or IP blocks to implement functionality in hardware [8, 
9, 10, 11, 12]. Traditionally these accelerators were 
treated as devices in the platform by the software. In 
this paper, we analyze the suitability of the 
conventional programming models for such platforms. 
The programming models were based on a clear 
demarcation of functionality between hardware and 

software. Operating systems provided the isolation 
between high level user functions and low level 
hardware execution units/compute engines and 
platform devices. User applications typically rely on 
mechanisms like system calls to isolate the user space 
processes from directly controlling the hardware. This 
allowed the OS and drivers to be the single point of 
management for the shared HW resources. Such a 
model provides resource isolation and enables sharing 
at the cost of performance overheads in terms of 
system calls and resource indirection (page tables, 
interrupt vectors etc.) This model is well suited for IO 
devices and accelerators with execution times much 
higher than these interface overheads. As interconnect 
latencies shrink (especially with SoCs), the 
performance overheads introduced by the traditional 
programming models are becoming the major 
bottleneck in allowing fine grain acceleration 
opportunities [6, 7]. Reducing the overall interface 
overheads enables an efficient accelerator interface 
design capable of supporting a wide range of execution 
offloads.  

In this paper we approach this problem from the 
performance and functionality points of view. We 
analyze the various performance hotspots in the 
conventional OS/driver model with respect to 
accelerator integration. The goal is to understand the 
major overheads of the current model and to motivate 
the need for a low overhead software interface for the 
low latency SoC accelerators. We show that the 
conventional programming methods impact the 
accelerator performance by introducing various 
overheads. We show that while the relative impact of 
these overheads on performance can be reduced by 
offloading more coarse grained functionality to the 
hardware accelerators, a change to the programming 
model is required to reduce these overheads in the 
general case.  We propose a new software interface 
model based on virtual memory addressing that 
removes the performance bottlenecks identified along 
with the hardware support needed to enable it. Having 
a consistent programming model between the software 
and hardware execution of the same functionality 
provides greater flexibility in the software 
development and deployment in a wide range of 
hardware with varying degrees of acceleration support. 
We underline the need for application programmers to 
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have the flexibility to uniformly develop their 
programs for both hardware assisted and non-assisted 
environments. This flexibility enables portability of 
applications across platforms with hardware function 
accelerators and the ones without the hardware assist. 
In the later case, various software modules/libraries 
can provide the required functionality. Keeping the 
actual function implementation in hardware or 
software transparent to the application designer 
improves the development and debugging time while 
enabling portability. Our proposed programming 
model enables portability using standardized function 
interfaces and data transfer paths between the 
application and the function execution unit (in software 
or hardware accelerator). We enumerate the hardware 
and software support needed to enable such a function 
portability capability. We combine these functional and 
performance requirements to propose a system 
architecture framework called High Performance 
Portable Accelerator Interfacing for SoC platforms 
(HiPPAI). 

 Our prototype implementation uses a modified 
Linux/driver stack with FPGA based accelerator. The 
FPGA is programmed to emulate a complex compute 
function (Fast Hessian Detect) of an open source 
implementation of a Mobile Augmented Reality 
(MAR) based workload [13].  Using this set-up we 
profile the traditional device driver model to identify 
performance bottlenecks. Our experiments show that 
the user-kernel interface and the kernel-hardware 
interfaces introduce both set-up and data path 
inefficiencies in case of SoCs with hardware 
accelerators. Our measurements show that these 
inefficiencies increase the total function execution time 
by an order of magnitude. We have implemented our 
proposed programming model on the prototype set-up 
and our measurements show that various pieces of the 
model address the performance bottlenecks and 
portability issues present with traditional software 
stacks. 

The rest of the paper is organized as follows. 
Section 2 details the motivation for a new accelerator 
interface – we present a detailed analysis of the 
overheads associated with today’s device model based 
approach. In Section 3 we introduce a new SoC 
interface which avoids most of the unnecessary 
overheads.  We describe how different methods can be 
adopted to remove different overhead components. In 
section 4 we describe the MAR workload used for our 
prototype studies. In section 5, we describe our 
evaluation platform which comprises the hardware and 
software components and changes we made to build 

the prototype environment. We also describe our 
analysis methodology in this section. Section 6 
contains the data we collected and the results of our 
analysis. We demonstrate the performance benefits of 
the new interface. We conclude with future work and 
summary in Section 7. 
 

2. Background and Motivation 
Impact of overhead on accelerator feasibility
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Figure 1: Impact of communication overhead on the effective 
speedup of HW accelerators. 
 

For many application specific computations, use 
of dedicated hardware designs can achieve better 
performance and power-efficiency than software 
running on a general purpose CPU core. But 
specialized hardware implementations also have their 
limitations. Hardware development incurs relatively 
higher costs compared to traditional software 
development. It has limited application domain and 
high upgrade cost. While software running on general 
purpose processors is easy to develop and upgrade, it 
may not achieve the performance and power 
requirement guidelines needed for an SoC. A hybrid 
computation model where most of the application runs 
on general purpose processors and only the essential 
portions of the application are offloaded to special 
purpose hardware is a natural solution to the problem.  
Identification of the functions for offload and the 
implementation of these in the hardware in a 
performance and power efficient way is key to the 
success of this hybrid model. The first step in this 
process is to run software applications under study on a 
general purpose CPU core to identify the hotspots.  

Figure 1 demonstrates the impact of interface 
overhead on the effective speedup of an accelerator. 
The x-axis shows the overhead in terms of the 
execution time of the function being accelerated. The 
y-axis shows the effective speedup for various absolute 
accelerator speed ups.  
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Figure 2: Accelerator interfacing options 

 
 

For example, the effective speedup goes down 
from 10x with no communication overhead to a 2x 
effective speed with a communication overhead of 
40% of the execution time. With large offloads, the 
effect of communication cost can be kept minimal, 
but as the granularity of the offloaded function 
decreases, the impact of communication overhead 
becomes a deciding factor in the effective speedup. 
On the other hand, as the granularity of the offloaded 
function goes up, it becomes highly specialized. Fine 
grain accelerators are more amenable to reuse by 
multiple applications. Design complexity and cost 
can be kept low with small offload designs. The 
interface cost needs to be kept to a minimum for fine 
grain offload to be performance effective. We outline 
the two main contributors of latency in an accelerator 
environment below. 
 

2.1. Hardware Interconnect Latency 

IO interconnect and bus technologies have come 
far from their early inception days. We have seen 
steady decline in the IO latencies from bus 
technologies that span through ISA, PCI, PCIe, 
SATA, USB2 and alike. Other technologies in the 
pipeline promise to make the IO latency a very 
insignificant part of the total function execution time 
in the future. Figure 2 shows the various accelerator 
interfacing options available today.  

Until recently, the only interface available for 
accelerator integration was through standard IO buses 
discussed above. Recently with Intel’s Quick Assist 
[1, 17] and AMD’s Torrenza [2], it has become 
possible to connect an accelerator using chip-to-chip 
interconnects like FSB, QPI and Hyper Transport. 
This drastically reduces the accelerator interconnect 
latency.  For comparison – round trip latency across a 
PCIe Gen 2 connected accelerator can be around 1 
microsecond, while the latency on FSB could be one 
magnitude lower – under 100ns. Moving to system 
on chip (SoC) architectures where the core and the 

accelerators are integrated into single chip, the 
latencies can be another magnitude lower (~10ns). 
These reduced interconnect latencies enable smaller 
offloads to be more effective.  
 

2.2. Software and Interfacing overhead   
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Figure 3: Classic Device Driver Model 

 

As the IO interconnects get faster, the 
performance bottlenecks are shifting from hardware 
to software. Once the function to be offloaded is 
encountered, there needs to be a sequence of 
operations done in software and hardware before the 
actual function is executed in hardware and the 
results are made available to the application. We now 
look at the major components in this overhead based 
on the classic device driver model used today.  As 
shown in Figure 3, a classic device driver works in 
Kernel mode directly accessing and managing the 
accelerator hardware. Due to the inherent nature of 
kernel mode device drivers, there are several 
overheads associated with this model. 
o System Call Overhead 
To protect kernel data security, the OS doesn’t allow 
the user application to directly access the kernel code 
& data. So when a user application wants to access a 
device, it must go through the system call interface 
which is much more expensive than a normal 
function call. For hardware devices that implement a 
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course-grain function, this may be okay, but for 
devices that implement fine-grained functionality the 
transition from user space to kernel space is too 
costly. In the results section we present our 
measurements for the most frequently invoked 
system calls. 
o Data Copying Overhead 
Hardware accelerators cannot directly access user 
buffer pages in memory since user buffer pages can 
be swapped out to disk without notice. Devices and 
accelerators are not capable of handling page faults 
so the device drivers use kernel buffers which are 
pinned down and guaranteed to never be swapped 
out. The device driver must then copy data from the 
user buffer into its kernel buffer during a ring 
transition in order to perform any useful work.  
If the user application needs to exchange a large 
amount of data with the accelerator, there is also 
another option. Instead of creating a kernel buffer, 
the device driver can lock user buffer pages into 
memory and unlock them when the accelerator 
finishes accessing the page. In this case, the device 
driver still needs to pay lock/unlock user page 
overhead instead of data copying overhead. 
o Address Translation Overhead 
A traditional operating system typically employs a 
multi-tiered approach to address translation. For 
example under Linux, a resource (memory/IO) virtual 
address from a user application gets translated to a 
Kernel (OS) virtual address before a hierarchical 
page walk returns a physical address to be used for 
the transaction. While this approach reduces the need 
for multiple data copies between the user and the OS 
context, the address translations themselves come 
with a non-negligible performance penalty. 
Experimental data for these latencies is presented in 
our results sections ahead. 
o Other OS overheads 
To the OS software, an accelerator device can appear 
as a standard I/O device residing on a system IO bus. 
In this case the IO command, configuration, read and 
write latencies can prove to be a significant 
performance bottleneck if the software is not 
designed to handle such configurations optimally. 
Traditional operating system kernels like Linux, 
Windows, etc assume high IO latencies and as a 
result the user applications have to wait between the 
issue of a transaction to an IO device and getting its 
completion. These wait times can add to the function 
execution times and in turn, reduce performance. 
With reduced IO latencies, the software needs to be 
reconfigured to avoid long wait states to take 
advantage of speedy IO busses. 

For classical devices like hard disk or human 
input devices, the device operation delay dominates 

the total IO delay. The device driver overheads 
mentioned above only accounts for a very tiny 
portion of the total IO delay. And these device driver 
overheads will not have any significant effects on 
classic device IO performance. But for hardware 
accelerator devices, the device operation latency can 
be as small as a few hundred cycles. These device 
driver overheads can be a dominant component 
affecting hardware accelerator IO performance.  

To avoid the device driver overheads discussed 
above, developers have used a direct device driver 
model in the past. The basic idea behind this model is 
to pre-allocate a large fixed-size physical memory as 
device memory and used by the accelerator in a 
dedicated fashion. Both accelerator IO resources and 
device memory are memory-mapped into user 
application address space. The device driver can 
directly manage the hardware accelerator in user 
mode and directly manipulate the data in device 
memory without data copying overhead. 

However this model has limitations that restrict 
its adoption on systems involving function hardware 
acceleration. The direct-mapping device driver model 
can reduce some of the overhead inherent in the 
classic device driver model, but it still has serious 
limitations. Each accelerator must pre-allocate a large 
fixed-size physical memory block and as such that 
memory cannot be reused for other purposes. The 
memory must also be physically contiguous so that 
the hardware device can access it. Due to memory 
fragmentation, it is difficult for system software to 
find large physically contiguous memory during 
runtime. So the common practice is to pre-allocate 
this large physical memory when the accelerator is 
initialized. For an SoC platform with limited total 
physical memory capacity and many hardware 
accelerators, this can cause serious memory pressure. 
Also if dynamic user buffers are to be used with 
accelerators, this model will have the data copy 
overhead. 

In both these driver models we face issues when 
sharing of complex data structures is involved. 
Because the accelerator cannot access data through a 
user virtual address pointer with these memory 
models, data in the device memory domain must be 
organized as simple record-based data structure. In 
case a user application wants to send pointer-based 
data structures to an accelerator, the device driver 
must perform an expensive serialization operation to 
copy the pointer-based data structure to device 
memory. 

In summary, the classic device driver model has 
inherent overheads which can be unacceptable for 
hardware accelerators. The direct-mapping device 
driver model reduces these overheads, at the cost of 
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dividing memory space into two independent 
domains (an inflexible approach). This generates 
many serious constraints on its programming model. 
When adopting direct-mapping device model, 
programmers may need to put in substantial efforts to 
rewrite the code to ensure the user application and the 
device driver don’t violate any constraints such as 
data security and protection.       

In the next section we present our new accelerator 
interfacing model to minimize the software 
overheads in hybrid environments and enable 
complex data sharing between applications and 
accelerators. These optimizations are important in 
environments where accelerators are connected 
through low latency hardware interconnects - as in 
the case of SoCs, and accelerators connected to 
QuickAssist[1] and Torrenza[2].  
 

3. Proposed Approach: HiPPAI 
 

Our HiPPAI approach addresses the issues 
presented in the previous section with the following 
fundamental goals: 

 

1) Eliminate unnecessary system overheads 
incurred due to domain boundaries and multiple 
resource addressing modes. 

2) Abstract the function interface to the SoC 
accelerators such that the application 
development is decoupled from the details of 
function implementation.   

 

To achieve these goals we base our HiPPAI 
programming model on two important concepts: 
1) Virtual Memory Accelerators: Our programming 

model introduces the concept of virtual memory 
accelerators. This concept moves the accelerator 
function execution to the virtual memory 
domain. No address translations, system calls or 
page walks are needed until the hardware 
resource (memory) is accessed. The only address 
translation required is enabled through an IO-
MMU. This mechanism eliminates all but the 
absolutely necessary overheads from the 
classical device driver. Pointer chasing in 
hardware accelerators also becomes possible 
through this model since the addressing domain 
is uniform between the user and the function 
accelerator. 

2) HW/SW function portability: We use 
standardized interface definitions to couple the 
function accelerators with user programs. These 
interfaces decouple the function implementation 
from program design making it possible to port 
the user programs between SoCs of varying 
acceleration capabilities. Further, the discovery, 
enumeration and initialization of the function 

accelerators are performed independently by an 
agent in the operating system. This makes it 
possible to “virtualize” the accelerator and 
present multiple interface contexts to different 
applications. 

Our proposed architecture goes beyond just letting 
the device access virtual memory to place/retrieve 
data from and allows coordinated data operation 
accesses from the accelerator and the IA core in a 
fashion that is transparent to the application. The 
work presented in this paper differs from the work 
presented so far in many aspects. While the other 
researchers have concentrated on architectures and 
programming models to develop offload aware 
applications (IBM Hydra [19]), developed techniques 
to tightly integrate the heterogeneous compute 
engines like CPU and GPU (Pangaea [20]) and 
software layers to allow function acceleration in a 
platform dependent fashion (Merge), our work 
concentrates mainly on removing the software 
bottlenecks due to the classical driver model which 
all of the above models still rely on. 
The next two subsections present the components of 
our HiPPAI programming model in detail.  
 

3.1. Virtual Memory Accelerators 
Figure 5 illustrates the proposed virtual address 

domain accelerator model in comparison with the 
physical memory model used by drivers. With the 
accelerator working in the virtual address domain, it 
no longer accesses the physical address space 
directly. Instead it can access user virtual addresses 
directly without any address translation in software. 
When the accelerator tries to access application 
memory with a virtual address, special hardware 
called an Input/Output Hardware Management Unit 
(IOMMU) will intercept the request and 
automatically translate the virtual address into the 
corresponding physical address. The IOMMU is a 
special hardware unit performing address translation 
from the device driver address space to physical 
memory address space. As a mature technology for 
high-end platforms, the IOMMU can be applied in 
many contexts. First, it can allow legacy 32-bits 
devices to access 64-bit high memory. Second, it 
provides memory protection from malicious or 
misbehaving devices. Originally, this protection 
capability was devised for virtualization since it 
allows unmodified native device drivers to be used in 
a guest operating system. 
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Figure 5: Comparison between accelerator memory models 
 

The model presented here overcomes the 
performance bottlenecks presented by the classical 
models. First, since the device driver runs in user 
mode, there is no system call overhead. Second, the 
user application and accelerator share the same user 
virtual address space. There is neither a need to copy 
data between different buffers nor the requirement of 
a user to kernel address translation. Because of this 
uniform address space, the virtual-address domain 
device driver model doesn’t have the programming 
constraints of direct-mapping device driver model. 
The accelerator does not need pre-allocated device 
memory and it can directly access pointer-based data 
structures. 
 

3.2. HW/SW Function Portability 
Our proposed model incorporates a functional 

interface that achieves two purposes: 
 

a) Uniform call semantics: We propose to implement 
the software interface to the accelerator as a 
standardized function call specific to the intended 
operation of the accelerator. This kind of design 
decouples the accelerator design from application 
development. All that an application programmer 
needs to know is the name of the function call to 
invoke a specific task that may be accelerated on a 
target platform. We envision that these names will be 
globally known and would be derived from available 
specifications in the field of operations. For example, 
in the case of image/video processing one could use 
the function names from the architecture frameworks 
like OMAP [3, 4] or Intel Performance Primitives 
Library [12].  
b) Portable: The proposed design retains the 
portability for cases where the hardware acceleration 
is either completely unavailable on the platform or 
the degree of acceleration varies between different 
platforms. In Figure 6 we show two different paths a 
function call from the application can follow 
depending on availability of the hardware 
acceleration. The Portable Accelerator Interface 

(PAI) is responsible for scheduling tasks on the 
hardware accelerator or diverting the call to a 
software module if the accelerator is not available. In 
our set-up the discovery, enumeration and 
initialization of the hardware is performed by various 
global agents in operating system before the PAI gets 
to use its resources. The PAI functionality includes 
support for user mode interfaces for direct access by 
the applications. This direct path avoids the 
unnecessary system call and address translation 
overheads. In case of our prototype implementation, 
this was achieved in PAI by mapping accelerator 
memory mapped IO space into the user domain. In 
case the PAI does not detect an initialized hardware 
accelerator, it redirects the function execution to a 
previously initialized software routine run on the core 
itself. The PAI can be something as simple as a static 
library or be hidden under bigger architecture 
frameworks like OMAP or IPP. 
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Figure 6: HiPPAI: The Proposed high performance, 

portable interface architecture 
 
 
 

4. MAR Workload 
We will use Mobile Augmented Reality (MAR) 

as a workload to demonstrate the implication of the 
interface overheads and the benefits of HiPPAI. In 
the MAR usage scenario, we start with a query image 
from the camera. The intent is to compare this query 
image against a set of pre-existing images in a 
database for a potential match. We focus on still 
images in this work. The still-image MAR 
application essentially does the following: (a) 
acquire/capture the image, (b) recognize objects by 
computing interest points in the image, (c) match to a 
pre-established set of images in a database and, (d) 
display relevant meta-data overlaid on the object in 
the screen.  Our initial analysis shows that the first 
and last step (image capture and information overlay) 
are negligible in execution time. Furthermore, for this 
paper we focus primarily on the image recognition 
part which is further decomposed into two basic steps 
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as illustrated in Figure 7:  (a) Interest-point detection: 
identify interest points in the query image and (b) 
Descriptor generation: create descriptor vectors for 
these interest points 
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Figure 7: MAR System Flow 
 

There are several algorithms that have been 
proposed to detect interest points and generate 
descriptors. The most popular algorithms amongst 
these are variants of SIFT (Scale-Invariant Feature 
Transform)[14]  and  SURF (Speeded up Robust 
Features)[15, 16]. We chose the SURF algorithm for 
our MAR application because it is known to be fast 
and has sufficient accuracy for the usage model of 
interest. In addition, previous researchers have also 
used SURF successfully for mobile phones for MAR. 
Figure 7 shows an illustration of the use of SURF for 
detecting interest points and matching against other 
images in a database. We refer the reader to [15] for a 
more detailed description. In our set-up we use the 
FPGA based accelerator to emulate the Match and 
Fast Hessian Detector algorithm, which is a 
computational part of the Interest Point Detection 
block in Figure 7. 
 

5. Preliminary Evaluation Prototype 
In order for us to understand the changes in the 

software and the hardware requirements, we 
prototyped the proposed driver model with a virtual 
memory accelerator. We used the IOMMU 
capabilities of the platform originally designed to 
support device virtualization. The following section 
describes our experiment environment.  

We use an Intel Core i7 3.2G processor (Nehalem 
micro-architecture) and Intel X58 express chipset 
(Tylersburg) as our experiment platform.  It has Intel 
QuickPath Interconnect (QPI) to connect with the 
X58 chipset. The Intel X58 express chipset supports 
Intel Virtualization Technology for Directed I/O 
(Intel VT-d)[4]. Intel VT-d architecture supports 
DMA remapping, which is a generalized IOMMU 

architecture. Figure 8 shows the block diagram for 
our experiment system. The experiments run on 
Linux Fedora 8 with the Linux kernel updated to 
2.6.28 with a patch to the Intel VT-d code. This patch 
enables the VT-d IOMMU to be configured with OS 
page tables rather than the VMM page tables. This 
allows the address translation from Virtual Address 
to Physical Address, rather than the translation from 
Guest Physical Address to Host Physical Address as 
intended by the virtualization use.  

Our prototype implementation employs a PCIe 
based Altera Stratix II programmable FPGA to 
emulate the Fast Hessian Detector and Match 
accelerators for the MAR workload described earlier. 
At the time of writing this paper, the FPGA is able to 
access the image data and write data back into system 
memory through DMA. 
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Figure 8: Experiment platform with Intel i7 processor and 

chipset with IOMMU support 
 
 

6. Results 
The goal of our experiments is to characterize the 

major overheads associated with the current driver 
models described in earlier sections. These overhead 
include system call, data copy and page pinning 
overhead. Our experiment prototype is already 
described in Section 5. The experiments are 
conducted into two parts. First, overhead associated 
with conventional device driver software interface for 
buffer management and user-kernel boundary 
crossing are evaluated. Secondly, the overhead 
associated with proposed driver and conventional 
driver is compared in terms kernel API and function 
invoked. For each experiment, average, minimum 
and maximum statistics from several invocations are 
presented. 
 

6.1. Classic Driver Model Overheads 
Figure 9 shows the measured overheads for key 

kernel API calls to process the data to/from the 
application. An example of a kernel function API is 
the copy_to_user function which is used to copy a 
buffer in the kernel to the user space.  The overhead 
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associated with its invocation depends on the size of 
the data buffer transferred. From Figure 9 we can see 
that the average amount of cycles consumed by the 
copy_to_user function is around 2100 cycles to 
transfer 4KB of data.  The figure also shows the copy 
overhead to/from kernel for different block sizes. 
Note that this overhead may vary based on the kernel 
and process state, prefetching, caching and other O/S 
optimization mechanisms (e.g. cache buffers). To 
minimize the variability in the data, we ran each copy 
test thousands of times and then averaged the data. 
Additionally, to minimize the cache effects of 
copying data, we ensured that a new source and 
destination buffer block is allocated for each copy 
operation.  
 

DataCopy Overhead

0

500

1000

1500

2000

2500

3000

3500

4000

4500

256 512 1024 2048 4096 8192

Block Size

C
yc

le
s

Copy_from_user
copy_to_user

 
Figure 9: User-Kernel Copy management overheads 

     Figure 10 shows the overhead associated with key 
system calls used as a means of communication 
between user and kernel space. A conventional 
device driver framework for the accelerators uses 
these calls multiple times for every operation on the 
hardware. The results are shown for both one-way 
(system call into the kernel) and round trip (initiation 
and completion calls across the user-kernel 
boundary). We chose these calls for analysis because 
these are in the data path of an application execution 
which accesses the hardware accelerators. As an 
example from Figure 10, we see that an average read 
call takes about 400 clock cycles to execute on our 
prototyping system. From Figures 9 and 10 we note 
that the total overhead for these operations is non-
negligible especially with fine grain offloads. 
Intuitively, if the time taken by the actual function 
execution in the accelerator is of an order of 
magnitude larger than the interface overheads, one 
can justify the cost involved in using the 
conventional device driver model. But this limits the 
offload opportunity considerably. 
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Figure 10: System call overheads 

 

6.2. Classic vs. HiPPAI Overheads 
 

We compare the total overheads of our 
programming model with that of a conventional 
device driver in this sub-section.   
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Figure 11: Data path of classic driver and proposed 
interface. Shaded area indicates the onetime setup cost  

Figure 11 gives the overall call path during the 
invocation of DMA read and write calls.  Note that 
shaded area indicates the cost associated to one time 
setup cost for the DMA transactions whereas other 
calls indicate the overhead during the data transfer 
and processing of application workload. This means 
that a classic driver will incur the overhead of kernel 
entry and exit along with data copy every time a 
buffer is being shared between the user level 
application and the accelerator. These most frequent 
overheads in the data path are removed in our 
proposed HiPPAI model. Figure 12 gives the 
comparison of different overheads for classical and 
HiPPAI model for setup and DMA execution. The x-
axis gives the DMA operation whereas the y axis 
indicates the cycles consumed. Note that even though 
the set-up overhead is more in case of the proposed 
HiPPAI driver, the frequent data-path calls (DMA 
read and write) have lesser overhead. 
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Figure 12: Overhead Comparison between classic driver 
and HiPPAI model for 4KB data transfer 
 

Figure 13 provides an overhead breakdown of 
user-level DMA read and write. To evaluate the 
read/write overhead, we first flush the system cache 
with dummy writes forcing the workload data to be 
read from memory every time (instead of reading 
from the cache).  
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Figure 13: Classic driver vs. HiPPAI model DMA 
read/write overhead 
For the base value, we measured the overhead 
associated with HiPPAI for DMA read and DMA 
write using a block size of 4K bytes. For this case, 
DMA read takes an average of 35K cycles whereas 
DMA write takes 25K cycles.  Note that DMA read 
and write overhead is significantly different because 
the DMA read call must transfer the data from system 
memory to the FPGA whereas the DMA write is 
posted to the chipset which may perform the actual 
write to system memory at a later time.  
 

6.3. Benefits of HiPPAI on Fast Hessian 
offloads 

We executed the Match and Hessian + Integral 
Image calculation algorithms of MAR on an 
optimized software stack as well as on our FPGA 
accelerator. Figure 14 shows the execution times in 
cycles, on a logarithmic scale, for these MAR 
functions. We observe from the figure that there is an 
appreciable reduction of total execution times when 
the MAR functions are accelerated in hardware. The 
actual measured speedup for the match algorithm was 
close to 20X in situations where a given image is 
matched against a database of 1 to 50 images. 
Similarly, the maximum speedup possible with 

Hessian Detect + Integral Image calculations was 
close to 14X.  
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(b) Fast Hessian Detect execution time 

Figure 14: MAR hardware acceleration 
 

Further, to estimate the performance gains 
obtained through HiPPAI, we analytically compare 
the execution times of the direct device model with 
the HiPPAI model using the experimental data 
gathered from our prototype. For example, from the 
data used to plot Figure 14(b) we observe that it takes 
3.2M cycles to do fast hessian calculations for image 
size of 640x480 bytes. For this image size, a total of 
approximately 307.2 KB of data have to be 
transferred to the FPGA and 1.2 MB of data has to be 
transferred from the FPGA. For a classic device 
driver, this operation involves 2 memory allocations 
(malloc), 2 DMA buffer allocations in OS kernel, 2 
copies from user/kernel space, and the overheads for 
actual DMA Read and DMA Write.  We show the 
comparative overhead added by the classic driver and 
the HiPPAI to this execution time in figure 15. From  
Figure 15 we observer that HiPPAI achieves an 
overhead reduction of approximately 1.6M (1.6M to 
0) cycles. The percentage overhead is dependent on 
the offloaded function granularity. For the Fast 
Hessian Accelerator which takes 3.2M cycles this 
reduction translates to 12% less overhead (12.3% to 
0% going from classic to HiPPAI). Note that the 
working set size (size of the input image size) and the 
accelerator compute time impact the overall overhead 
considerably.  Note that we have not considered the 
overhead associated with FPGA initialization cost for 
this analysis since this is a one time cost. 
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Figure 15: Data path execution cycles for Fast Hessian 
Accelerator 

The data presented in this section shows the 
efficacy of the HiPPAI in interfacing fine grain 
accelerators in SoCs. Very low overhead interfaces 
provided through HiPPAI allow small and medium 
size functions to be offloaded to accelerators. Further, 
a portable interface specification using a virtual 
memory based addressing model and user mode 
access provides better programming flexibility. It 
also allows complex data structures to be shared 
between application and accelerators. These 
functional benefits combined with the performance 
advantage demonstrated in this paper make HiPPAI 
apt for future SoC accelerator interfacing. 
 

7. Summary and Future Work 
 

In this paper we presented the challenges 
associated with using classical drivers for hardware 
accelerators on SoC platforms. We showed that these 
drivers come with a high performance cost due to 
multiple system calls and address translations. To 
avoid these costs we proposed a new HiPPAI Virtual 
Memory based accelerator interface that allows 
programming of accelerator functions from the user 
space. To enable this, HiPPAI utilizes a hardware IO-
MMU for translating virtual addresses to physical 
addresses. Such a model allows the user application 
and the hardware accelerator to operate in the same 
addressing domain. As such, the HiPPAI model 
avoids the need for system boundary crossings 
through syscalls and the need for address translations 
between the user and kernel domains.  Further, this 
also allows complex data structure sharing between 
the application and the accelerators and enables 
function portability, decoupling application design 
from the degree of hardware function acceleration 
availability on any target platform. Our programming 
model presented in this paper incorporates a portable 
accelerator interface that decouples the function 
implementation from the application making it 
possible to migrate between SoCs with varying 
degree of accelerator support.  

 The future work in this area includes completing 
the FPGA emulator for offloading all of the MAR 
algorithm or selective building blocks depending on 

the experiment requirements. We are also working to 
finalize the interface specification that addresses 
performance and portability in the general case 
regardless of specific functions being offloaded. 
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