
LOW-COMPLEXITY HOG FOR EFFICIENT VIDEO SALIENCY

Teahyung Lee, Myung Hwangbo, Tanfer Alan?, Omesh Tickoo, Ravishankar Iyer

Intel Labs, Hillsboro, Oregon, USA
?Technische Universitt Darmstadt, Computer Systems Group, Darmstadt, Germany

ABSTRACT

In this paper, we propose a low-complexity histogram of
oriented gradients (HOG) implementation for efficient video
saliency framework. After showing how original HOG calcu-
lations present significant computation bottleneck for visual
understanding pipes, we present the optimized HOG flow and
algorithm for video saliency framework, which can reduce
computational requirements without losing algorithmic per-
formance. Furthermore, simplification for light-weight com-
putations and data-reusable scanning for optimal memory
usage are explained for improving system efficiency. Based
on our testing and analysis, the proposed HOG implemen-
tation optimizes computational complexity and performance
while maintaining the video saliency algorithm capability.

Index Terms— low-complexity HOG, video saliency

1. INTRODUCTION

A widespread availability of inexpensive video cameras and
rise of social networking platforms has led to creation of huge
amount of video data. Effective consumption of such large
video data sizes is leading to the need for efficient video sum-
marization applications that can filter out salient parts of a
video or group of images [1, 2]. Video summarization is gen-
erally composed of three steps as shown in Fig. 1. Firstly fea-
ture extraction acquires spatial or temporal cues as saliency.
Then similarity measure is performed with attributes or at-
tention models using the extracted features/saliency. Finally
key frames are selected for a summary based on scene anal-
ysis information and decision policy. One typical example
can be found in [2]. To perform video summarization on mo-
bile/wearable environments, its computational complexity is
one of bottlenecks for real-time implementation. Our exper-
iments show that feature extraction puts high demands from
per-pixel processing as compared to the other steps. Fig. 1
shows the feature extraction is a dominant share of total com-
putation.

HOG (Histogram of Oriented Gradients) is one of most
popular and fundamental image features and a basis for other
higher-level and more complex feature sets [3, 4, 5]. Many
hardware accelerators for HOG have been developed for real-
time object detection. Cao proposed a variant of the HOG
feature set and efficient integral map for stop-sign detection
application [6]. Kadota et al. proposed several methods to
simplify computation, such as conversion of the division and

Summary
outputHOG

feature
extraction

Inter-frame
similarity

computation

Key-frame
selection

Video
input

Key-frame selection

HOG feature extraction

Similarity (distance) computation

1.6%

Fig. 1. Video summarization pipeline and their workload
analysis. The HOG feature extraction is a main bottleneck.

square root [7]. Most of previous architecture study on HOG
has been focused on real-time up to 1080p format case espe-
cially for object detection application [8, 9]. In our proposed
scheme, algorithm computation is explored for low complex-
ity and efficient system requirement. This is achieved by re-
ducing or removing expensive operations and functional units
such as arctangent, division, square-root, and normalization
steps in the design flow. Being one of popular feature extrac-
tion modules, some variations of HOG also have been studied
for dynamic application areas in [10, 11, 12].

In this paper we propose a low-complexity HOG for ef-
ficient video saliency framework, which shows equivalent
saliency results with optimal computational complexity and
performance for real-time system.

2. HOG-LX

HOG is an image feature [13] that consists of local 1-D his-
tograms of gradient directions when an image is partitioned
into small rectangular regions called cells. Computationally
it involves image gradient, orientation histogram per cell, and
contrast normalization over blocks. To reduce computations
of the original HOG while minimizing performance degrada-
tion as a scene descriptor, we propose a low-complexity HOG
(named HOG-LX) as an efficient front-end to many computer
vision applications. It reorganizes the order of computations
and creates operations per histogram channel. The design of
HOG-LX scheme in Fig. 2 is focused on hardware acceler-
ation, which can be leveraged for low-power/cost products
including wearable and mobile platforms.

2.1. Accelerated histogram binning

Each cell in the HOG computes an orientation histogram
from image gradients within a n × n cell region. Histogram

3749978-1-4799-8339-1/15/$31.00 ©2015 IEEE ICIP 2015

Input image Gradient operator

Magnitude computation Orientation computation

Histogram voting

Contrast normalization
Neighboring

 cell histogram
HOG

Image gradient

Cell histogram

Per-pixel
operation

Per-block
operation

Histogram channel finder

Gradient vector accumulator

Per-channel
operation

Vector sum

Fig. 2. HOG-LX computation flow that embeds new per-
channel operations in the histogram binning.

channels are evenly spread over 0 to 180 degrees while the
sign of gradient directions is commonly ignored. Every pixel
in the cell contributes a weighted vote for the histogram chan-
nels based on its gradient magnitude. This original binning
method [13] involves expensive computations to be executed
as per-pixel operations. Every pixel requires a squared or
square root operation of gradient values for the voting, arc-
tangent operation for the gradient orientation, and bilinear
operation for a split vote with neighboring bins. To address
this, we propose a new scheme that converts the per pixel
binning into operations per histogram channel. For example,
in case of the cell size n = 8 and the number of histogram
channel m = 9, ×64 operations (equal to n2) can be reduced
to ×9 operations (equal to m).

Per-channel computation: In Fig. 2 the histogram channel
finder and accumulator are newly introduced for per-channel
operations. Prior to the histogram voting, the channel finder
decides which channel each gradient belongs to and the ac-
cumulator computes a sum of all gradient vectors associated
with the same channel. Suppose two gradients in a cell lie on
the same channel as depicted in Fig. 3. Rather than dealing
with the individual gradients g1 and g2, we first take a vector
sum, gsum = g1 + g2. The remaining expensive operations
are then performed only on a single vector gsum. A vector
sum gBi

=
∑

k∈Bi
gk combines all the pixel gradient falling

on a channel Bi=1,...,9. Given gBi the per-channel operation
in Fig. 2 computes a squared root and arctan only once for
each channel. Also the bilinear interpolation for the vote split
does not need to be computed for every pixel gradient.

Histogram channel finding: The per-channel computation
needs to know which channel each pixel gradient belongs
to. We develop a fast channel finder that avoids arctan op-
eration. It minimizes the number of comparisons using the
symmetry of tangent. The channel boundary condition θi ≤
tan−1(Iy/Ix) ≤ θi+1 can be rewritten as Ix tan θi ≤ Iy ≤
Ix tan θi+1, which involves a series of comparisons between
the y-gradient Iy with a product of the x-gradient Ix and tan-
gent values at channel borders. The symmetric property of
tangent is employed to make the architecture design more

B1

x

...

x

...

x

...

B0

B2

B1

B0

B2

B1

B0

B2

Fig. 3. A vector sum used in HOG-LX. All pixel gradients
falling in the same histogram channel are combined into a
single vector gsum = g1 + g2.

Ix

*tan(200)

*tan(400)

t1 > Iy

t1 < Iy < t2

Ix > 0

Ix < 0

Ix > 0

Ix < 0

Ix > 0

Ix < 0

Ix > 0

Ix < 0

t2 < Iy < t3

t3 < Iy < t4

t4 < Iy

*tan(600)

*tan(800)

B0

B8

B1

B7

B2

B6

B3

B5

B4

200

400

600
800

B0

B1
B2

B3B4B5
B6

B7

B8

g = (Ix, Iy)

x

t1

t2

t3

t4

Fig. 4. A histogram channel finder data flow that can be
hardware-implemented as a series of comparisons given g =
(Ix, Iy).

simple; tan θ = − tan(π − θ), θ = [0, π). This symme-
try can decrease the number of multiplications and memory
requirement for boundary tangent values. The channel find-
ing process is followed by accumulating the current gradient
on gBi at the corresponding channel. Simultaneous operation
in the multiplication and accumulation would form a critical
pipeline path in the hardware architecture design.

2.2. Simplification for light-weight computations

The original HOG uses many sophisticated operations that
permit to capture a wide appearance variance of visual ob-
jects. From various experimental case studies we found that
the level of sophistication can be adjusted depending on appli-
cations, especially for scene classification or scene saliency in
which HOG is used as a global scene descriptor [2]. Given a
trade-off between HOGs discriminative power and algorithm
simplification, we observed that the performance degrada-
tion with lowering complexity can be acceptable in the video
saliency framework. HOG-LX chooses the following simpli-
fications which can eliminate non-hardware-friendly opera-
tions and achieve low-complexity while maintaining its role
as a global scene descriptor:

• Skip the bilinear voting in the histogram binning
• No arctangent computation in the histogram binning
• Use L1 norm of a gradient vector sum in the voting
• Use L∞ norm in the contrast normalization

Skipping the bilinear operation enables the coarse-level
channel finder in Fig. 4 where arctangent is no longer re-
quired. The contrast normalization using L∞ norm only
needs to keep maximums in cell histograms. These simpli-
fications can decrease a required chip area and functional
units, which also decreases power consumption significantly
for HW implementation.

3750

Cells under block normalization

A cell under histogram binning

Border cells Current image tile

Cell histograms discarded from local memory

Cell histograms available in local memory

0

2

4

6

8

10

12

14

16

0

5

10

15

20

25

0 160 320 480 640 800

Lo
ca

l M
e

m
o

ry
 (

K
b

it
s)

R
e

-c
al

cu
la

ti
o

n
(%

)

Tile Width(pixels)

Fig. 5. (Left) tiled horizontal image scanning and (right)
recalculation-rate vs. tile size.

2.3. Data-reusable scanning for efficeint memory usage

The gray region in Fig. 5 indicates a portion of the cell his-
tograms that should be kept in the memory while the cell
histogram and block normalization are concurrently running.
The required size M to hold this memory region can be ex-
pressed as M = (w/n+ 1)×m× d, an image width w, cell
width n , the number of channels m, and a bit-resolution d of
the cell histogram. To reduce M we divide the input image
into vertical tiles with overlapping border cells.

The tiled memory scanning in Fig. 5 keeps histograms of
horizontally adjacent cells of a single tile instead of keeping
an entire image in the local memory. The tile width can ad-
just the local memory size as much as needed under memory-
constrained conditions. Nonetheless cell histograms at the left
and right border of a tile is subject to recalculation when a
new tile of the image is fetched. As the tile width becomes
bigger the local memory size linearly increases and the recal-
culation rate exponentially decreases (see Fig. 5). When the
tile width is 20 cells (i.e., 160 pixels), a 432B local mem-
ory would be sufficient at the cost of 5% re-calculation rate
of cell histogram, which enables a low-cost solution for the
memory-constrained platform approach.

3. ANALYSIS AND EVALUATIONS

We used Verilog-based tool, ModelSim [14], for simulation
to evaluate the efficiency of HOG-LX. Across the different
range of tested formats HOG-LX showed better performance.
For example, for 1080p with 30 fps video using 20-cell width
tile, HOG-LX can achieve 1.17 GOPs and the local memory
size for cell histogram is 432B at 0.85 Mbps memory band-
width. The original HOG (without a sliding window scheme
used for detection) requires 15.12 GOPs and 3.07 Gbps mem-
ory bandwidth for 1080p with 30 fps. It demonstrates that our
low complexity solution can achieve a lighter system require-
ment under a memory size constraint, which is beneficial for
low power/cost system design. Since HOG-LX skips complex
functional units of arctan and division module, this architec-
ture is well-suited for low cost and low complexity designs,
which can be leveraged for wearable or mobile platform ar-
eas.

To compare the video saliency performance between the

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

Original HOG

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

HOG-LX

Baby Crawling Original HOG HOG-LX

Fig. 6. Comparison between the original HOG and HOG-LX
as a scene descriptor.

Original HOG HOG-LX

Fig. 7. Inter-frame similarity matrix of the original and HOG-
LX between 200 images from 10 actions in UCF-101.

original HOG and HOG-LX, we used UCF-101 action dataset
[15]. From 10 different action videos a total of 1000 images
are randomly selected for the input V. Fig. 6 illustrates one
example of the HOG-LX extracted from an entire image and
compares it with the original HOG [13]. At the top cell his-
tograms are visualized with bars aligned to corresponding ori-
entations. The bottom plots compare cell histograms at a se-
lect cell, which normalized by four different blocks. Since
the histogram patterns share a similar trend, both the original
HOG and HOG-LX are quite close in terms of overall gradi-
ent distributions. Fig. 7 compares the similarity wij between
an image i and j computed by the original HOG and HOG-
LX, respectively. Though both HOG are different to some
degree as shown in Fig. 6, their similarity matrices are very
close. It means that HOG-LX has an equivalent scene dis-
crimination power to the original HOG in the video saliency
framework where wij is a key input. This result also demon-
strates that HOG-LX is suitable for applications that use im-
age distance computations as a core functionality.

4. CONCLUSION

We proposed a low-complexity HOG as part of an efficient
video saliency framework implementation. From the work-
load performance analysis, which identifies HOG as a major
computational bottleneck, its original computational com-
plexity is reduced by using the vector sum and flow reorder-
ing. Additional algorithm simplifications and data-reusable
memory scanning were employed to improve system effi-
ciency. The proposed HOG-LX showed an equivalent dis-
crimination power as a scene descriptor in the video saliency
framework.

3751

5. REFERENCES

[1] A. Kamoji, R. Mankame, A. Masekar, and A. Naik, “Key
frame extraction for video summarization using motion activ-
ity descriptors,” IJRET, vol. 62, pp. 291–294, January 2014.

[2] S. Chakraborty, O. Tickoo, and R. Iyer, “Adaptive keyframe
selection for video summarization,” in WACV. IEEE, 2015.

[3] L.-J.Li, H. Su, Y. Lim, and L. Fei-Fei, “Object bank: an object-
level image representation for high-level visual recognition,”
IJCV, Sept 2013.

[4] P. Dollr, R. Appel, S. Belongie, and P. Perona, “Fast feature
pyramids for object detection,” IEEE PAMI, Aug 2014.

[5] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part
based models,” IEEE PAMI, Sept 2010.

[6] T. P. Cao and G. Deng, “Real-time vision-based stop sign de-
tection system on FPGA,” in PDICTA, 2008.

[7] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto,
and Y. Nakamura, “Hardware architecture for HOG feature
extraction,” in IIH-MSP, 2009.

[8] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “Architecture study of HOG feature extraction
processor for real-time object detection,” in SIPS, 2012.

[9] K. Takagi, K. Mizuno, S. Izumi, H. Kawaguchi, and M. Yo-
shimoto, “A sub-100-milliwatt dual-core HOG accelerator
VLSI for real-time multiple object detection,” in ICASSP,
2013.

[10] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk,
and B. Girod, “CHoG: compression histogram of gradients a
low bit rate descriptor,” in CVPR, 2009.

[11] N. Buch, J. Orwell, and S. Velastin, “3d extended histogram of
oriented gradients (3DHOG) for classification of road users in
urban scenes,” in BMVC, 2009.

[12] A. Bosch, A. Zisserman, and X. Muno, “Image classification
using POIs and multiple kernel learning,” IJCV, vol. 62, pp.
291–294, January 2008.

[13] N. Dalal and B. Triggs, “Histogram of oriented gradients for
human detection,” in CVPR. IEEE, 2005.

[14] Mentor Graphics, “ModelSim,” http://www.mentor.
com/products/fv/modelsim/.

[15] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: a dataset of
101 human action classes from videos in the wild,” in CRCV-
TR-12-01, 2012.

3752

