
Machine Learning-based Runtime Scheduler for Mobile Offloading Framework

Heungsik Eom, Pierre St Juste, Renato Figueiredo
Advanced Computing and Information Systems Laboratory

Electrical and Computer Engineering
University of Florida, Gainesville, Florida, USA

{hseom, pstjuste, renato}@acis.ufl.edu

Omesh Tickoo, Ramesh Illikkal, Ravishankar Iyer
Intel Corporation

2111 N.E. 25th Avenue
Hillsboro, Oregon, USA

{omesh.tickoo, ramesh.g.illikkal, ravishankar.iyer}@intel.com

Abstract—Remote offloading techniques have been proposed
to overcome the limited resources of mobile platforms by
leveraging external powerful resources such as personal work-
stations or cloud servers. Prior studies have primarily focused
on core mechanisms for offloading. Yet, adaptive scheduling
in such systems is important because offloading effectiveness
can be influenced by varying network conditions, workload
requirements, and load at the target device. In this paper, we
present a study on the feasibility of applying machine learning
techniques to address the adaptive scheduling problem in
mobile offloading framework. The study considers 19 different
machine learning algorithms and four workloads, with a
dataset obtained through the deployment of an Android-based
remote offloading framework prototype on actual mobile and
cloud resources. From this set, a subset of machine learning
algorithms, which have relatively high scheduling accuracy, is
selected to implement an offline offloading scheduler. Finally,
by taking computational cost and the scheduling performance
into account, we use Instance-Based Learning to evaluate
an online adaptive scheduler for mobile offloading. In our
evaluation, we observe that an Instance Learning-based online
offloading scheduler selects the best scheduling decision in
87.5% instances, in an experiment setup in which an image
processing workload is offloaded while subject to varying
network bandwidth conditions and the amount of data transfer.

Keywords-Mobile platform, cloud, offloading, machine learn-
ing, scheduling, energy consumption

I. INTRODUCTION
Rapid enhancements in computing capabilities of mobile

platforms have been driving the increased adopting and
use of mobile computing platforms by increasing numbers
of users. Today’s mobile platforms are able to deliver
capabilities that are close to those of non-mobile platforms
such as desktops or workstations. For instance, a mobile
phone equipped with a Graphic Processing Unit (GPU)
core is able to achieve approximately 10GFLOPS/Watt of
computer-power, which is identical as a 4-core desktop with
GPU [1]. Despite of these significant advancements, mobile
platforms remain significantly limited by resources such
as memory size, storage capacity, and especially battery
lifespan. To alleviate the problem of the resource limitations
in mobile platforms, computation offloading techniques have
been proposed as a way to extend the capabilities of mobile
platforms to more powerful resources. These may include

personal computers, servers, or even public cloud resource
over the network [2], [3], [4].
However, the benefits from these systems can vary due to

different requirements for data transfer among various types
of mobile applications and dynamic network conditions
including latency and bandwidth. As a result, offloading
is not always beneficial, and poor offloading decisions can
result in the degradation of performance or energy consump-
tion. Therefore, offloading frameworks need to consider the
scheduling of workloads onto remote or local processing
resources adaptively, as a function of network conditions
and application requirements.
In this paper, we address these challenges by considering

machine learning techniques for a runtime adaptive sched-
uler for mobile offloading framework. Machine learning
technique is a branch of artificial intelligence through which
a system can learn from previous data and adapt to un-
seen situations dynamically. By applying machine learning
techniques to the remote offloading scheduling problem,
a scheduler can be automatically trained from previous
offloading behaviors and make decisions on whether the
mobile workload should be offloaded or executed locally
informed by past behavior and current conditions. There
have been a number of related studies proposing adaptive
offloading mechanisms for mobile platforms. To the best
of our knowledge, our work is the first to systematically
study machine learning techniques to a mobile offloading
scheduler. To this end, we have developed a remote offload-
ing system based on the OpenCL framework, which is the
well-defined hardware-level offloading API [5]. With the
OpenCL-based remote offloading framework, we perform
detailed measurement experiments under various network
conditions and mobile applications to show the necessity
and efficacy of an adaptive offloading mechanism. One
of the contributions of our work is the combination of
dynamic network conditions and application requirements
into Computation-to-Communication ratio, which considers
the local processing time for the workload, the amount of
data transfer, and network bandwidth. The computation-to-
communication ratio is a composite measurement which
coalesces three dynamic features into one parameter, and
is used as an attribute of the machine learning technique.

2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing

978-0-7695-5152-4/13 $26.00 © 2013 IEEE

DOI 10.1109/UCC.2013.21

17

2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing

CFP13UCC-USB/13 $26.00 © 2013 IEEE

DOI 10.1109/UCC.2013.21

17

2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing

CFP13UCC-USB/13 $26.00 © 2013 IEEE

DOI 10.1109/UCC.2013.21

17

For the evaluation on the feasibility of applying machine
learning techniques to the adaptive scheduling problem, we
utilized Weka [6], a Java-based open source package.
After investigating the scheduling accuracy of several

machine learning algorithms using Weka, we choose a few
machine learning algorithms which have relatively high
scheduling accuracy to implement an offline offloading
scheduler. Further, by taking the complexity and scheduling
performance into account, we select Instance-Based Learn-
ing algorithm for an online scheduler for mobile offload-
ing framework. In the evaluation, we show that although
Instance-Based Learning online offloading scheduler is fairly
simple and has low overhead, it provides performance ad-
vantages over non-adaptive schedulers for mobile offloading.
The rest of the paper is organized as follows. In Section

II, we overview previous works on scheduling problems in
mobile offloading frameworks, as well as machine learn-
ing techniques for dynamic runtime schedulers. Section III
discusses the challenges in remote offloading scheduling
based on empirical and experimental data. Section IV de-
scribes various machine learning techniques used for mobile
offloading framework. In Section V and VI, we evaluate
various offline machine learning-based runtime schedulers
and show the potential benefits of the implementation of
online runtime scheduler. Finally, we conclude the paper in
Section VII.

II. RELATED WORK
A. Adaptive Mobile Offloading
Many studies have considered adaptive mobile offloading

to provide performance improvements and energy savings
for mobile platforms. In [7], the authors focus on relieving
the memory limitation of a mobile device by dynamically
making the offloading decision with Offloading Inference
Engine (OLIE) which is based on the fuzzy control model.
In particular, OLIE profiles the available memory size of
a mobile device and network bandwidth, and maps them
into the offloading decision specifications by the application
developer, such that when the current condition matches any
specified rule, an offloading action is triggered. In MAUI [3],
the authors assume that offloading is always preferable to
local processing; however, it depends on three factors to
determine which methods should be offloaded to the remote
server: the device’s energy consumption characteristics, the
program characteristics, and the network characteristics.
Specifically, MAUI used the lightweight throughput mea-
surement to profile network condition. In [8], a prediction
model for the performance of distributed mobile applications
is evaluated through a sample image processing application
(i.e. face detection). The prediction model heuristic uses
linear functions to approximate the time for local, remote
execution and data transfer. The server updates these func-
tions using least-squares method, and returns the updated
heuristic linear functions to the client so that those updated

functions are used for the performance comparison between
local processing and offloading. Kovachev et al. [9] propose
a simple cost function of a service-based mobile cloud
computing middleware for Android platforms under three
restrictions: minimized memory usage, minimized energy
usage, and minimized execution time.
Mobile ”Grid” systems, where mobile devices participate

as resource users or providers, also consider scheduling
techniques to improve the performance of the systems
while tackling the resource constraints of mobile platforms.
In [10], a novel energy-aware scheduling is formulated and
the level-based list scheduling heuristic is proposed for a
Mobile wireless Ad hoc NETwork (MANET). The authors
predefine the models for the task, the processor or the mobile
device, and the cost function, and the scheduler tries to
minimize the cost function by mapping each task to the
resource through the level-based list scheduling heuristic.
Although the above-mentioned approaches take into ac-

count dynamic parameters from the application level or
the network level (i.e. CPU cycles, network bandwidth)
to predict system performance and schedule the mobile
workload execution, they still rely on predefined decision
rules or cost models, preventing the scheduler from adapting
to dynamic conditions during runtime. In contrast, in this
paper we consider approaches that do not rely on any
predefined specifications or prior knowledge of the mobile
application. Instead, we consider machine learning tech-
niques for adaptive runtime mobile offloading schedulers.
Once trained with training data, the scheduler predicts the
behavior of an incoming task when deciding on local or
remote execution.

B. Machine Learning Techniques for Dynamic Schedulers
Machine learning techniques have been used to address

dynamic scheduling problems in various areas, such as het-
erogeneous computing platforms, grid computing systems as
well as in data center. In [11], machine learning techniques
are used to provide a compiler-based, automatic and portable
predictor for multi-core processors. In order to determine the
best number of threads and scheduling policy, the authors
used a feed-forward artificial neural network and a multi-
class support vector machine model, respectively. Berral et
al. [12] propose an energy-aware data center through server
consolidation by turning off idle servers with assistance from
machine learning based scheduling. The scheduler predicts
the future performance of the jobs and power consumption
in the resulting job allocation using linear regression algo-
rithms. The novel Adaptively Scheduled parallel R (ASpR)
framework, which transparently parallelizes scripts in the
popular R language, is presented in [13]. This framework
uses artificial neural networks for the performance modeler
which predicts task computation and data communication
costs, and this modeler is used by the directed acyclic graph
to determine an appropriate schedule.

181818

Figure 1. Overall architecture of the OpenCL-based remote offloading
framework for mobile platforms

In our work, we further consider the appropriateness of
adopting machine learning techniques to the scheduler of our
mobile offloading framework with respect to the complexity
to construct the predictor and ability to capture dynamic
characteristics of mobile environments.

III. ADAPTIVE SCHEDULING CHALLENGE FOR REMOTE
OFFLOADING FRAMEWORK

In this section, we describe the baseline mobile offload-
ing framework on which we build the runtime scheduler
based on machine learning techniques. Then, we conduct
experiments to highlight the potential advantages of adaptive
offloading mechanisms.

A. Mobile Offloading Framework
OpenCL is the open standard for parallel programming of

heterogeneous systems, which are increasingly found in per-
sonal computers, servers and mobile devices. By offloading
computations to more powerful computing elements such
as Graphics Processing Units (GPUs) or special hardware
accelerators (e.g. SSL accelerators or FPGA) at the hardware
layer, it is possible to improve the performance for a wide
range of applications from gaming and entertainment to
scientific and medical software [5]. The offloading mecha-
nism considered in this study leverages the OpenCL API to
support the remote offloading over the network. As such, the
framework inherits the ability of heterogeneous computing
of the OpenCL standard. The key idea of the OpenCL-based
remote offloading framework (Figure 1) is to integrate the
OpenCL API with an RPC-based service through an API
wrapper library which has an identical name and signature
as the original OpenCL API.
When an application invokes an OpenCL API, the API

wrapper library captures this API call, and a runtime sched-
uler makes a decision on offloading or local execution. If the
scheduler decides to offload the call, it marshalls arguments
for the API and invokes an RPC call associated with the
API. Finally, a function is executed on the remote server,
and the result is sent back to the mobile client. On the other

Table I
AVERAGE AND STANDARD DEVIATION OF NETWORK LATENCY AND
BANDWIDTH FOR LOCAL AND WIDE AREA NETWORKS INCLUDING

AMAZON EC2.

LAN Campus network Amazon EC2
Latency Avg. Stdev. Avg. Stdev. Avg. Stdev.
(ms) 10.833 2.684 15.465 4.189 74.036 17.737

Bandwidth Avg. Stdev. Avg. Stdev. Avg. Stdev.
(MB) 6.523 0.177 2.461 0.238 0.178 0.023

hand, if the function should be executed locally, the wrapper
library calls the local OpenCL API and the execution result
is returned to the application directly.
For an RPC service, we have developed a light-weight

marshalling and remote procedure call layer for our offload-
ing framework. By running our own RPC-based service,
we provide a workload offloading design that is efficient
in terms of argument serialization and buffer management.

B. Offloading Performance

In this subsection, we demonstrate the need for support
from adaptive runtime schedulers by conducting an experi-
ment in which we deploy our offloading framework subject
to various network configurations and collect measurements
to show the performance disparity between different network
configurations.
In the experiments, we utilized an Android tabletPC

equipped with 1GHz dual-core processor and 1GB RAM
as a mobile client. In order to observe the impact of
different network conditions on the offloading performance,
we deployed a remote server equipped with GeForce GT
640 graphics card into three different network configura-
tions: local area network, campus network, and Amazon
EC2 instance. In the local area network, we connected the
mobile client and the remote server through a wireless router
supporting 802.11 b/g/n network standard. The campus
network is used to represent a wide area network in which
the mobile client and the remote server are involved in
different networks: the mobile client connects to the campus
wireless router and the server connects to the laboratory in-
ternal router. They communicate each other through multiple
routers in the campus. We used an Amazon EC2 GPU cluster
as another option for the remote server located in a wide
area network, but for more restricted network condition than
the campus network. Table I summarizes the average and
standard deviation of latency and bandwidth of the network
configurations that we setup for the experiments.
The benchmarks used in the experiment are Sobelfilter,

floating-point matrix multiplication, Hidden Markov Model,
and N-body physics provided by AMD APP SDK [14]
and Nvidia [15] sample code. These execution kernels are
used by a variety of applications in areas such as image
processing, physics simulation, and mathematical modeling.
Figure 2 shows the offloading performance in terms of

191919

(a) Performance for Sobelfilter with different network config-
urations

(b) Performance differences between different workloads

Figure 2. Comparison of total execution time for four OpenCL workloads
with various servers and network setup

the execution time compared to the case of local processing
according to the data size and network configurations for
four OpenCL execution kernels. As shown in Figure 2(a),
for Sobelfilter, we observed that different network conditions
result in significantly different offloading performance. Par-
ticularly, offloading to the remote server located in a local
area network has better performance than local processing.
In contrast, offloading to the remote servers located in
the campus network and Amazon EC2 instance, where we
have more restricted network conditions than a local area
network, takes longer time than local processing. Figure 2(b)
shows the performance difference among various execution
workloads due to different computational requirements of
workloads even though they process or offload the similar
size of data ranging from 3.49MB to 3.74MB. For So-
belfilter, offloading to the GPU server located in LAN is
only more beneficial than local processing. On the other
hand, offloading floating-point matrix multiplication has
always better performance than local processing in our setup
due to heavier computational requirement of floating-point

Figure 3. The structure of Machine Learning-based runtime scheduler

matrix multiplication. In fact, the computation complexity
for floating-point matrix multiplication is O(n3) while that
for Sobelfilter is O(n2).
It is also worth noting that, for Hidden Markov Model,

offloading to Amazon EC2 instance shows the worst per-
formance among other cases. This is because that Hidden
Markov Model requires extra communications between the
mobile client and the remote server to setup additional
arguments for workload execution. Packets are exchanged
at higher latencies in the Amazon EC2 setup compared with
a local area network, which causes performance degradation
since our offloading framework requires that each RPC call
is acknowledged with a response from the remote server.
Consequently, offloading to Amazon EC2 GPU instance,
which has the highest latency among our experimental
setups, takes the longest time. These results show that there
is variation in offloading performance between different
network conditions and execution workloads. Accordingly,
proper scheduling can have a significant impact on the
offloading performance, and remote offloading framework
requires the support from the runtime scheduler.

IV. MACHINE LEARNING-BASED RUNTIME SCHEDULER
FOR MOBILE OFFLOADING FRAMEWORK

In order to apply machine learning techniques to any
decision-making problems, it is first required to select a
subset of relevant attributes. These need to comprehensively
represent a set of problem instances in terms of internal
and external conditions which have an effect on making
a decision. In this section, we describe the attributes of
machine learning techniques considered in this paper, and
how the proposed scheduler can extract these attributes.
Then, using this subset of attributes, we investigate the
scheduling accuracy of machine learning techniques using
a dataset collected from experimental data using benchmark
executions. By taking the text-based dataset as an input, we
can train the classifier of various machine learning algo-
rithms and examine the accuracy of the trained classifiers.
Figure 3 illustrates the structure of our machine learning-
based runtime scheduler and how it generates and uses the
subset of attributes to make a decision for remote offloading
framework.

202020

A. Selection of Machine Learning Attributes

Since offloading performance can vary as a function
of network conditions, the size of data to be processed,
and computational requirements, the scheduler has to take
these factors into account to make an accurate decision on
offloading or local processing. We focus on four features
to establish the subset of attributes which is the represen-
tation of the scheduling problem for the remote offloading
framework: (1)computation amount of the workload, (2)size
of data, (3)network bandwidth, and (4)additional communi-
cation between the mobile client and the remote server to
setup extra arguments.
Local execution time(tlocal execution): We regard the time
for a workload to be executed in the mobile client locally
as the computation amount. There are a variety of methods
to measure the computation amount of the execution, such
as counting the number of assembly instructions or loop
iterations, some of which require additional assistance from
the special hardware or compiler. Instead, in the proposed
approach, runtime measurements are taken by the offloading
framework as it executes the workload with the given data
locally, and the scheduler profiles the execution time for the
workload.
Size of data to be transferred(dtransfer): In addition to
the computation cost of a workload depending on the size of
the data, the data size also affects the communication cost to
transfer the data from the mobile client to the remote server.
In our OpenCL-based remote offloading framework, the
APIs for buffer management such as clEnqueueWriteBuffer
and clEnqueueReadBuffer are used to profile the size of data
to be transferred.
Network bandwidth(BW): We integrate the network band-
width measurement into the offloading framework so that it
is able to measure network bandwidth between the mobile
client and the remote server during runtime. In our imple-
mentation, network bandwidth is simply measured by the
size of probing packets divided by the elapsed time to send
those packets [16].
Number of the invocations for argument setup(nargset):
We count the number of the invocations of the specific
OpenCL API called clSetkernelArgs, which causes addi-
tional communication overhead between the client and the
server to setup the extra arguments for kernel executions
in addition to the primary data setup. The reason why we
distinguish communications between main data transfer and
additional arguments setup is that, though the latter incurs
minor amount of data, it can cause significant communica-
tion costs due to protocol round-trip messages between the
client and the server.
Note that, rather than considering the local execution

time, the size of data transfer, and network bandwidth
as individual attributes separately, we use Computation-to-
Communication ratio in which three features are merged into

Figure 4. Offloading scheduling accuracy of various machine learning
algorithms. The scheduling accuracy from the test dataset(30% of 640
dataset instances).

one attribute as Equation 1.

CtoC = tlocal execution / tdata transfer

= tlocal execution / (dtransfer / BW)
(1)

where tdata transfer is the time for data transfer. Thus, in
our work, computation-to-communication ratio is a compos-
ite measurement which combines three dynamic features
into one parameter. As a result, the proposed machine
learning-based classifier accepts two attributes: computation-
to-communication ratio(CtoC) and the number of invoca-
tions of clSetKernelArgs(nargset) to make a decision on
scheduling a new workload (i.e. local processing or remote
offloading).

B. Scheduling Accuracy of Machine Learning Techniques
In this subsection, we investigate the scheduling accu-

racy of the machine learning-based scheduler for remote
offloading framework. First of all, by running the OpenCL-
based offloading framework into the experimental setup
with various network configurations, execution kernels, and
data sizes, we gathered a total of 640 data instances to
train and test the classifiers of various machine learning
algorithms. Each data instance means one execution of the
offloading framework, and consists of dtransfer, BW, and
nargset. Next, we aggregate collected data instances to create
the training and test datasets, each consisting of a 3-tuple,
{CtoC, nargset ; label}, with two attributes explained in
the previous section and the label which is a decision on
offload or local. Then we labeled each data instance by
comparing offloading performance to the local execution
in terms of the execution time. For example, if offloading
Sobelfilter with a 1920×1080 image into a machine with a
GPU in LAN takes a shorter time than local processing, the
instance is labeled as offload. In our collected dataset, 65%
of instances are labeled as offload. Note that it is possible

212121

to use another performance metric: mobile device’s energy
consumption, such that each instance can be labeled based
on energy consumption between remote offloading and local
processing. Lastly, we separated the collected dataset with
70% of them for the training dataset and the rest for the test
dataset, so they have the identical distribution for instance
properties.
Using the training dataset, we trained the classifiers of

various categories of machine learning algorithms such as
Decision Tree, Bayesian Networks, Instance-Based Learn-
ing, and Perceptron-Based Learning. In the training phase,
Weka takes the text-based training dataset as the input and
automatically generates the classifier associated with each
machine learning algorithm. Once each classifier is trained,
we tested the accuracy of the trained classifier with the test
dataset by observing whether the trained classifier labels
each instance in the test dataset correctly or not.
Figure 4 shows the scheduling accuracy of various ma-

chine learning algorithms. In this evaluation, the scheduling
accuracy is calculated through the number of the correct
decisions made by the classifier out of the test dataset.
We observed that two Instance-Based Learning classifiers
performed the most accurate prediction, showing greater
than 90% of the scheduling accuracy. The basis for the
classification of Instance-Based Learning is the instances
database, where previously seen instances are stored. Instead
of building the explicit classifier as other machine learn-
ing algorithms, Instance-Based Learning compares a new
problem instance with the stored instances in the database
to select k most similar instances from the database and
votes the majority of the selected instances to predict the
label of the new problem instance. k set to 1 (IB1) and 3
(IB3) as higher values showed the same performance. The
classification of probabilistic machine learning techniques
such as Bayesian Networks is based on the statistics of
attributes of the previous instances such as the mean and
the variance values. Thus it is possible that probability-based
machine learning algorithms overlook the edge of previously
seen instances, which causes the performance degradation
for the prediction problem. In fact, Naive Bayes has the
worst performance among machine learning algorithms used
for the evaluation, showing 64.4% scheduling accuracy.

V. PERFORMANCE EVALUATION FOR OFFLINE
SCHEDULER

In this section, using the classifiers from various machine
learning algorithms, we implement an offline offloading
scheduler and evaluate the performance and penalty of the
offline runtime schedulers.

A. Experimental Setup
Based on scheduling performance and algorithm complex-

ity, we selected three machine learning algorithms: Ran-
domTree, Instance-Based Learning and Rule-Based Learn-

ing, and built them onto our remote offloading framework
for the offline runtime scheduler. For RandomTree, we used
the classifier that Weka generated using the training dataset
described in Section IV.B. Total depth of the tree is 101 and
the scheduling accuracy simulated through Weka is 89.5%.
Though we do not need any classifier for Instance-Based
Learning algorithm, it is required to define the similarity
between a new problem instance and previously stored
instances in the database. To do this, we used Euclidean
distance, which is common to measure the similarity for
Instance-Based Learning [17]. The closer the distance be-
tween instances is, the more similar they are. We stored
the training dataset with 448 instances to build the database
for the Instance-Based Learning algorithm. For simplicity,
we use k=1 for Instance-Based Learning algorithm. For
Rule-Based Learning, we establish a simple rule based
on computation-to-communication ratio threshold, in which
the scheduler decides to offload the mobile computation
only if computation-to-communication ratio is higher than
the threshold. Based on our observation, it is most likely
that the benefits from offloading are more promising when
computation-to-communication ratio is higher than 1.5. For
that reason, we setup the threshold with 1.5 and 3.
Also, we emulate various network configurations in which

the client and the server connect directly through a wireless
router, but have 9 different network bandwidths ranging from
6.5MB/s to 0.3MB/s controlled by Traffic Control (TC) [18].
TC is a network tool which provides functionalities to
control network traffic by prioritizing network resources and
using concepts of traffic classification, queue disciplines and
quality of service (QoS). While setting different network
bandwidths, we ran our offloading framework with four
benchmark kernels 720 times (9 network bandwidths × 4
kernels × 4 data sizes × 5 repeats for average) per each
offline scheduler.

B. Performance Comparison
Figure 5 shows the scheduling accuracy for various

machine learning algorithms with four benchmark kernels.
Similarly as the result shown in Figure 4, we observed that
Instance-Based Learning has the most accurate scheduling
performance among various schedulers showing 92% of
the scheduling accuracy. Even though in matrix multipli-
cation and Hidden Markov Model, other machine learning
algorithms have better performance than Instance- Based
Learning, Instance-Based Learning shows the best perfor-
mance on average. It is also observed that, even though
the schedulers based on Rule-Based Learning algorithm
consider only one attribute, computation-to-communication
ratio, they have better performance than RandomTree. An
interpretation is that the computation-to-communication ra-
tio is a more dominant attribute than the number of argument
setup, nargset. Interestingly, for N-body physics, all machine
learning algorithms show the perfect scheduling accuracy. It

222222

Figure 5. Scheduling accuracy of the offline schedulers using various
machine learning algorithms. For performance comparison, we also added
two simple scheduling policies, all offload and all local which are not
machine learning algorithms.

is because that computation-to-communication ratio for N-
body physics is extremely high in our experimental setup so
that it is easy for the scheduler to differentiate the conditions
where offloading or the local execution for N-body physics
is more beneficial than the other. In fact, offloading N-
body physics always had better performance that the local
execution in our setup.

Figure 6(a) and (b) present the penalty for various
schedulers normalized to the case of the oracle scheduler
which always makes the right decision to offload or run
locally as Equation 2.

penaltynormalized

= (execution timeML − execution timeoracle)

/execution timeoracle (2)

where execution timeML and execution timeoracle are the
processing times of the workload scheduled by the ma-
chine learning-based scheduler and the oracle scheduler,
respectively. For the penalty in terms of energy consump-
tion, execution timeML and execution timeoracle should be
replaced with the mobile device’s energy consumption to
execute or offload the workload scheduled by each scheduler.
In our evaluation, the penalty implies the extra costs that
the mobile device or user has to pay additionally over the
oracle scheduler when the machine learning-based scheduler
makes a wrong decision. To profile energy consumption of
the mobile device, we used PowerTutor [19] which is an
application for the variants of Android devices that displays
the power consumed by major components such as CPU,
network interface, LCD display, and GPS receiver.
As you can see, the Instance-Based Learning scheduler

has the smallest penalty in terms of the execution time
because it has the highest scheduling accuracy. For energy
consumption, moreover, the Instance-Based Learning sched-
uler has a fairly small penalty compared with Rule-Based
Learning scheduler. Note that, for Sobelfilter, the penalty in
terms of both the execution time and energy consumption

(a) Execution time

(b) Energy consumption

Figure 6. Penalty normalized to the oracle scheduler in terms of the
execution time and energy consumption

is lower than other execution kernels, because the gap of
the execution time and energy consumption for Sobelfilter
between offloading and the local execution is relatively
small. Therefore, the penalty for Sobelfilter is less significant
than the cases of other execution kernels when the scheduler
makes a wrong decision on offloading or the local execution.

VI. ONLINE RUNTIME SCHEDULER
In the previous section, we demonstrated the offline

runtime offloading scheduler based on various machine
learning algorithms by illustrating the scheduling accuracy
and the penalty with regard to the execution time and energy
consumption of the mobile platforms. In this section, we
explore the potential possibility and benefits of an online
runtime scheduler for mobile offloading framework in which
the online scheduler can be trained through the previous ex-
periences automatically and adapt to the dynamic situation.

A. Implementation of the Online Offloading Scheduler
We first implemented the prototype of the online runtime

scheduler based on the Instance-Based Learning algorithm
for the mobile offloading framework. The reason why we

232323

Figure 7. The ability to adapt dynamic network conditions for the online
offloading scheduler

chose the Instance-Based Learning algorithm for the online
runtime scheduler is due to the simplicity of the algorithm
and the ability to quickly apply newly seen data to its
future decisions. Usually, other machine learning algorithms
such as neural networks or linear regression have its own
the classification model and it is required to be completely
modified when a new instance data is added to the training
dataset. However, Instance-Based Learning simply stores the
new instance to the training dataset, and the new instance is
used to predict a next coming problem instance along with
previous stored instances. In addition to its simplicity, in
our evaluation for the offline offloading scheduler, Instance-
Based Learning showed the best performance among various
machine learning algorithms we used for the evaluation.
The following is the scheduling process of our prototype

of the online scheduler. Once the application starts, the
online scheduler executes the application locally at once to
figure out the information which is required for profiling the
workload such as the local execution time, the size of data,
or the number of the invocations for argument setup. Then,
the scheduler enters the training phase by unconditionally
offloading the execution to the remote server N times,
and each case is labeled according to the performance
comparison between offloading and the local execution. The
labeled instance is stored into the training database. For
our prototype, we set N with 16. After the training phase,
the scheduler starts the scheduling process by measuring
the Euclidean distance between a new scheduling problem
and the instances stored in the training database. When
offloading is scheduled, the scheduler offloads the workload
and measures the execution time for offloading. If offloading
takes shorter than the local execution, then that instance is
added to the training database as offload. On the other hand,
it is stored as local.
To update the training database, the scheduler keeps

adding the new instance to the database without removing
any previous stored instance until the database is full. Only
if the database is full, the oldest instance will be replaced

with the new one. For our implementation, we try to find the
optimal number of instances for the database which covers as
many cases as possible, but takes reasonably small memory
space (less than 1MB) and time (less than 0.01sec) to
schedule a new problem. We chose 5,000 instances database
which requires only 0.1MB of memory. This memory usage
occupies only less than 0.0007% of typical memory sizes of
contemporary mobile devices (e.g 16GB or 32GB). Also,
even though it takes 5∼6msec to measure the Euclidean
distance of the new scheduling problem with 5,000 in-
stances, we believe that instance generalization or clustering
techniques for the database such as [20], [21] can help the
scheduler significantly reduce the measurement time.

B. Evaluation for the Online Scheduler
In order to evaluate the prototype of our online scheduler,

we conducted an experiment in which we change network
conditions and observe how well the scheduler learns and
adapts to dynamic network conditions. In this experiment,
the client and the remote server are directly connected
through a wireless router and we controlled the network
bandwidth between them using TC. Also, we used Sobelfil-
ter for the offloaded execution kernel. Figure 7 shows the
ability to adapt the online scheduler to dynamic network
conditions.
During the training phase, we setup different network

conditions where the scheduler is trained with three net-
work bandwidths: 6.5MB/s, 1MB/s, and 0.5MB/s. After the
training phase, the scheduler makes a decision on offloading
or the local execution in six different network bandwidths as
shown in Figure 7. As you can observe, the scheduler makes
the correct decisions in dynamic network conditions except
for 17th, 32nd, and 36th trial. These incorrect decisions are
because network bandwidth is changed after the scheduler
makes a decision. As a result, the actual cost for data transfer
is different with what the scheduler predicts. Furthermore,
even at the unseen conditions in the training phase such as
3MB/s or 0.3MB/s, the scheduler works correctly by making
right decisions. Consequently, we observed the possibility
and the potential benefits of machine learning-based online
offloading scheduler in this experiment.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed machine learning-based run-

time scheduler for mobile offloading framework. Before
addressing the scheduling problem of the mobile offloading
framework, we showed the performance variance between
different network conditions and workload characteristics by
deploying the OpenCL-based offloading framework into a
local and wide area network. By running various machine
learning algorithms, we also showed the feasibility of adopt-
ing machine learning techniques into the scheduler problem
for mobile offloading framework. In addition, we imple-
mented an offline offloading scheduler using the classifiers

242424

of RandomTree, Instance-Based Learning, and Rule-Based
Learning. In the evaluation, the scheduler based on Instance-
Based Learning performed 7% better than RandomTree and
3% better than Rule-Based Learning. Finally, using Instance-
Based Learning, we demonstrated the potential benefits and
the ability of the online offloading scheduler to adapt into
dynamic network conditions.
As the future work, we can extend the online offloading

scheduler by considering the scenario where multiple remote
servers are available. By integrating the functionality to
enumerate computing capabilities and network conditions
for multiple servers, the scheduler can make a decision on
not only offloading or the local execution, but also which
remote server is the best to offload the mobile executions.

ACKNOWLEDGMENT

This material is based upon work supported in part by
the National Science Foundation under Grant No. 0910812,
0758596, 0855031, and 1265341. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] T. Soyata, H. Ba, W. Heinzelman, M. Kwon, and J. Shi,
“Accelerating mobile cloud computing: A survey,” in Commu-
nication Infrastructures for Cloud Computing. IGI Global,
2013.

[2] H. Eom, P. S. Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and
R. Iyer, “Snarf: A social networking-inspired accelerator re-
moting framework.” in In proceeding of Workshop on Mobile
Cloud Computing(MCC). ACM, 2012, pp. 29–34.

[3] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Ch, and P. Bahl, “Maui: making smartphones
last longer with code offload.” in In proceeding of Inter-
national Conference on Mobile Systems, Applications and
Services(MobiSys). ACM, 2010, pp. 49–62.

[4] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo:
A computation offloading framework for smartphones.”
in In proceeding of International Conference on Mobile
Computing, Applications and Services(MobiCASE), vol. 76.
Springer, 2010, pp. 59–79.

[5] “The open standard for parallel programming
of heterogeneous systems.” [Online]. Available:
http://www.khronos.org/opencl/

[6] “Weka: Data mining software in java.” [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/

[7] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Miloji-
cic, “Adaptive offloading inference for delivering applications
in pervasive computing environments.” in In proceeding of
International Conference on Pervasive Computing and Com-
munications(PerCom), 2003, pp. 107–114.

[8] S. Imai and C. A. Varela, “Light-weight adaptive task offload-
ing from smartphone to nearby computational resources.”
in In proceeding of Symposium on Research in Applied
Computation(RACS). ACM, 2011, pp. 146–152.

[9] D. Kovachev and P. Klamma, “Framework for computation
offloading in mobile cloud computing.” International Journal
of Interactive Multimedia and Artificial Intelligence, vol. 1,
no. 7, pp. 6–15, 2012.

[10] W. Alsalih, S. Akl, and H. Hassanein, “Energy-aware
task scheduling: Towards enabling mobile computing over
manets.” in In proceeding of IEEE International Parallel and
Distributed Processing Symposium(IPDPS). IEEE, 2005, pp.
242.1–.

[11] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-
cores: A machine learning based approach.” in In proceeding
of SIGPLAN Symposium on Principles and Practice of Par-
allel Programming(PPoPP). ACM, 2009, pp. 75–84.

[12] J. L. Berral, I. nigo Goiri, R. Rou, F. Julià, J. Guitart,
R. Gavaldà, and J. Torres, “Towards energy-aware scheduling
in data centers using machine learning.” in In proceeding of
International Conference on Energy-Efficient Computing and
Networking(e-Energy). ACM, 2010, pp. 215–224.

[13] J. Li, X. Ma, K. Singh, M. Schulz, B. R. de Supinski, and
S. A. McKee, “Machine learning based online performance
prediction for runtime parallelization and task scheduling.”
in In proceeding of International Symposium on Performance
Analysis of Systems and Software(ISPASS). IEEE, 2009, pp.
89–100.

[14] “Accelerated parallel processing(app) sdk
with opencl 1.2 support.” [Online].
Available: http://developer.amd.com/tools/heterogeneous-
computing/amd-accelerated-parallel-processing-app-sdk/

[15] “Nvidia opencl sdk code samples.” [Online]. Available:
http://developer.nvidia.com/opencl

[16] C. Kozierok, The TCP/IP Guide: A Comprehensive, Illus-
trated Internet Protocols Reference. No Starch Press, 2005.

[17] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based
learning algorithms,” Journal of Machine Learning, vol. 6,
no. 1, pp. 37–66, 1991.

[18] W. Almesberger, “Linux network traffic control – implemen-
tation overview.” 1999.

[19] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and
automatic battery behavior based power model generation
for smartphones.” in In proceeding of International Confer-
ence on Hardware/Software Codesign and System Synthe-
sis(CODES+ISSS). ACM, 2010, pp. 105–114.

[20] P. Domingos, “Rule induction and instance-based learning
a unified approach,” in In proceeding of International Joint
Conference on Artificial Intelligence(IJCAI). Morgan Kauf-
mann Publishers Inc., 1995, pp. 1226–1232.

[21] C. L. Chang, “Finding prototypes for nearest neighbor clas-
sifiers,” IEEE Transaction on Computers, vol. 23, no. 11, pp.
1179–1184, 1974.

252525

