
  

ABSTRACT 
Data centers are increasingly employing virtualization and 
consolidation as a means to support a large number of disparate 
applications running simultaneously on server platforms. However, 
server platforms are still being designed and evaluated based on 
performance modeling of a single highly parallel application or a 
set of homogenous workloads running simultaneously. Since most 
future datacenters are expected to employ server virtualization, this 
paper takes a look at the challenges of modeling virtual machine 
(VM) performance on a datacenter server. Based on vConsolidate 
(a server virtualization benchmark) and latest multi-core servers, 
we show that the VM modeling challenge requires addressing three 
key problems: (a) modeling the contention of visible resources 
(cores, memory capacity, I/O devices, etc), (b) modeling the 
contention of invisible resources (shared microarchitecture 
resources, shared cache, shared memory bandwidth, etc) and (c) 
modeling overheads of virtual machine monitor (or hypervisor) 
implementation. We take a first step to addressing this problem by 
describing a VM performance modeling approach and performing a 
detailed case study based on the vConsolidate benchmark. We 
conclude by outlining outstanding problems for future work. 
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1. INTRODUCTION 
Traditionally, server platforms have been designed and evaluated 
based on individual parallel applications or benchmarks (TPC-C, 
TPC-E, TPC-W, SPECjbb, SPECjappserver, etc) as the focus. 
Developing the performance analysis capability for such 
commercial server workloads was by itself a significant challenge 
since the benchmarks had complex behaviors, required multiple 
client/server systems and were difficult to run on full-system 
simulators. However, industry and academic researchers coped 
with this problem by developing scaled-down execution-driven 
simulations [31] for these workloads, by trace-driven simulations 
[2, 11, 12, 24] where possible and also by developing analytical 
models driven by measurement/simulation experiments. Now, the 
recent emergence of virtualization introduces another level of 
complexity to the problem of server modeling and performance 
analysis. As datacenters rapidly adopt virtualization as a means to 
consolidate multiple applications on a server, it becomes critical 
that the performance behavior of virtual machines is well 
understood. In addition, it also becomes important that we develop 
the ability to estimate virtual machine performance on a datacenter  

 
 

 
server. In this paper, we discuss the challenges to virtual machine 
performance estimation and introduce potential approaches for 
appropriate metrics and modeling techniques for this purpose. 
The first challenge of virtualization was addressing the lack of a 
virtualization benchmark that can be used for consistent and 
repeatable server performance analysis. Recently, there have been 
specific industry benchmarks that have been developed (VMmark 
[29], vConsolidate [4]) to address this issue. In addition, there is 
also a SPEC committee [31] that is working on defining its first 
virtualization benchmark expected to release sometime in the 
future. In this paper, we focus our case studies on vConsolidate to 
show the challenges and the potential approach of server 
virtualization modeling. 
The key considerations when modeling the performance of virtual 
machines (VMs) can be summarized as follows: 
(a) VM performance is not only dependent on its own 
characteristics, but also dependent on the interference caused by 
the other virtual machines running on the same platform with it. 
We need a method to capture the effect of these interactions. 
(b) The above interference can affect the use of (i) shared resources 
(e.g. core, memory capacity) that are visible to the operating 
system or virtual machine monitor directly or through performance 
counters and (ii) shared resources (cache space, memory 
bandwidth, etc) that are invisible to the operating system since they 
are transparent resources managed by the hardware. The modeling 
approach needs to be aware of both visible and invisible resource 
interference. 
(c) the specifics of virtualization technology (both hardware 
virtualization and software virtualization) and the scheduling 
disciplines adopted by the virtual machine monitor could be quite 
different on any given platform. The modeling approach needs to 
take into account the virtualization technology as well as the 
scheduling heuristics required. 
In this paper, we will expand primarily on the resource interference 
effects and describe how a modeling approach can potentially take 
into account both visible and invisible resource contention effects 
on performance. Specifically, the contributions of this paper are as 
follows:  
(i) Using a virtualization/consolidation benchmark, we will show 
how VM performance depends heavily on visible & invisible 
resource interference caused by other VMs.  
(ii) We will describe offline and online monitoring techniques 
needed to accurately characterize the behavior of multiple VMs 
sharing resources. 
(iii) We will describe a potential modeling approach that employs 
either online or offline monitoring mechanisms to estimate the 
performance of the virtual machine. 
(iv) We will outline a detailed list of next steps required to achieve 
a complete model for VM performance estimation. 
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(a)  From Dedicated Workloads to Consolidated Workloads                                  (b) VM Performance Scenarios 
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(c)  SpecJBB Performance (1 copy vs 2 copies)                                       (d)  SpecJBB Performance (Alone vs with Sysbench) 

Figure 1: Performance Effects of Virtualization and Consolidation on CMP Servers 
 

2.  PLATFORM OVERVIEW 
Our measurement-based evaluation was conducted on an dual-
socket Intel server platform that has two processor sockets (Intel 
Xeon series) and is populated with 16GB of memory. Within each 
processor socket, there are 4 cores running at 3 GHz. Each pair of 
cores share a 4MB cache, adding up to a total of 8MB on each 
socket.  Figure 3 illustrates this measurement platform 
configuration. On this platform, we run vConsolidate on top of Xen 
3.3. Commonly available tools with Xen such as sar, xentop, xm 
info, xentrace have been used to get details  such as cpu usage from 
each VM.  To get architectural metrics such as CPI (cycles per 
instruction) and MPI (misses per instruction) we used a tool that 
reads CPU performance counters. To measure the per-thread 
contention effects we used a similar set-up as above with the latest 
Nehalem based processors offering multithreading capability. 

In this paper, we study the implications of server consolidation 
by employing a recent server consolidation benchmark called 
vConsolidate [4]. The vConsolidate (vCon) benchmark consists of 
four key virtual machines (VMs): (a) a compute intensive 
workload/application, (b) a database workload, (c) a web server 
workload, and (d) a mail server workload. To emulate a real world 
environment, an idle virtual machine was also added to the mix.  
The compute intensive VM runs a modified version of 
SPECjbb2005 [17]. Typically SPECjbb2005 is a cpu intensive 
workload that consumes as much cpu as it possibly can. However, 
in vConsolidate environment, SPECjbb has been modified to 
consume roughly 75% of the cpu or so, by inserting in random 
sleeps every few milliseconds.  The database virtual machine runs 
Sysbench [19], which is an OLTP workload executing transactions  

 
either a MySQL or a MSSQL database. The web server VM runs 
Webbench [22] which uses either the Apache webserver or the 
Microsoft IIS webserver. The mail server virtual machine runs 
Microsoft Exchange workload that executes transactions on 
Outlook with 500 users logged in simultaneously.  
3. VM Performance EFFECTS 
One of the key challenges when modeling the performance of 
virtual machines is that the application no longer has platform 
resources dedicated solely for its consumption. Figure 1(a) 
illustrates the transition from a dedicated execution (where one 
application used to run on a server previously) to a shared 
execution (where multiple guest OSes or VMs now run on the same 
server). Figure 1(b) illustrates a typical server platform with 
multiple cores and the following four scenarios for the execution of 
a virtual machine (say VM1) with two virtual cpus (v0 and v1): 
(a) VM1 runs in dedicated mode with v0 running on c0 and v1 
running c2. Since c0 and c2 have last-level caches of their own, 
these two virtual cpus do not share cache resources.  
(b) VM1 runs in shared mode with VM2 running on sibling cores 
(virtual cpus of these VMs share cache). This causes cache 
contention between the VMs and affects performance. 
(c) VM1 runs in shared mode with VM2 scheduled to run on the 
same core (time sliced scheduling). This causes core as well as 
cache contention between the two VMs and affects performance.  
(d) VM1 runs in shared mode with VM2 scheduled to run on the 
same core but on simultaneous threads made possible by 
hyperthreading [30]. This causes core contention (because of 
thread contention within the core for shared pipeline resources) as 
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well as cache contention between the two VMs and affects 
performance. 

To measure the performance in various scenarios, we ran 
experiments using virtual machines within the vConsolidate 
benchmark (specifically SPECjbb and Sysbench). We chose 
SPECjbb as VM1 as well as VM2 to collect the data shown in 
Figure 1(c). We also chose SPECjbb as VM1 and Sysbench as 
VM2 for the data collected in Figure 1(d). The first three 
configurations (illustrated in Figure 1b) were collected on a Core 2 
Duo – based server platform with two cores on each die sharing a 
last-level cache. The performance effect of the last configuration 
(effect of sharing simultaneous threads) was measured on the latest 
Intel Nehalem-based server platform since the Core 2 Duo 
processor does not support threads, whereas future platforms are 
expected to.  
As shown in the Figure 1(c) and Figure 1(d), the performance of 
the virtual machine is significantly affected by the sharing of cache 
and core resources. The performance can drop by as much as 20 to 
30% due to cache contention alone. The performance further drops 
by another 30% when sharing cores. The performance can 
deteriorate further by ~25% when SMT threads are being 
simultaneously used on the same core. Overall, the performance of 
a virtual machine can vary from its performance during dedicated 
execution to its performance when running with other virtual 
machines either on a sibling core, a sibling thread, the same core or 
even the same thread. It should be noted that some of these 
resources are visible (e.g. core) and some are invisible (cache 
space, pipeline resources shared by simultaneous threads). Overall, 
the combined performance effect can be as high as 3X reduction 
due to resource contention. In addition, the performance depends 
on which virtual machine monitor you use. 

4. VM PERFORMANCE MODELING APPROACHES 
In the previous subsection, we showed how virtual machine 
performance can be significantly affected by resource contention 
with other virtual machine running along with it. In order to model 
the VM performance, it is important to accurately characterize all 
shared resource contention effects in the platform. In this section, 
we will describe how this can be achieved for two modeling 
modes:  
(a) Offline modeling: This assumes that the workload performance 
can be measured on several platform configurations alone as well 
as pairwise with other virtual machines. It also assumes that the 
workload (each VM at a minimum) can be traced to run through 
core and cache simulators to collect behavioral information. Here, 
the intent is to fully calibrate a model in order to predict the 
performance of a virtual machine on a future server architecture or 
configuration. 
(b) Online modeling: This assumes that no offline analysis is 
available and the characterization of the VM performance effects 
needs to be done online (on production servers with perhaps some 
brief initial runs on test configurations within the datacenter). Here, 
the intent is to develop a model that will predict the performance of 
a VM on a different platform (if it was migrated to that platform 
within the datacenter). 
 
In addition, it is important to consider the following key visible and 
invisible resources that will be contended for: 
(a) Visible Resources: Platform resources that are currently 
exposed (or visible) to the OS/VMM include core, memory 

capacity and potential I/O devices. In this paper we focus primarily 
on core usage since that is a dominant factor out of these three. 
(b) Invisible Resources: Platform resources that are currently 
transparent (or invisible) to the OS/VMM include shared cache 
space and core pipeline resources. In other words, the cache space 
occupied by one VM or another cannot be monitored today by an 
OS/VMM. Similarly, the pipeline resources used by one thread 
(running one VM) versus another thread (running another VM) 
cannot be observed today. The effect of cache and core contention 
(i.e. misses per instruction (MPI) and instructions per cycle (IPC) 
can however be obtained through performance monitoring 
counters). 
The proposed approach for the VM modeling effort is the resource 
estimation of a virtual platform architecture that each virtual 
machine ends up with when running on a physical server platform. 
A virtual platform architecture (VPA) is defined as the set of 
resources used by (or solely made available to) the virtual machine 
of interest. The VPA resources include key resources such as 
number of cores, the core frequency and utilization, the cache 
space at each level and the memory frequency and bandwidth. In 
this paper, we focus on a VPA proof of concept that consists of one 
visible resource (the core) and one invisible resource (shared last-
level cache space). In other words, the estimated VPA will produce 
(a) the number of cores and core utilization that a VM is given, (b) 
the cache space that a VM is given. Once the VPA core usage and 
the cache usage are available, the problem of estimating the 
performance of the virtual machine is mapped back to the simple 
problem of estimating the performance of a application running on 
a dedicated platform (with VPA as the dedicated platform). 

A. VPA Core Utilization Estimation 
Since the core is a visible resource, the VMM can easily track the 
VPA core utilization on the platform for every VMM. The cost of 
tracking the core utilization is negligible and provides an accurate 
accounting. However, in order to predict the core utilization on a 
different platform configuration, a simplistic approach to start with 
is as follows: 
(i) Monitor a VM’s core utilization when running alone (VMx-
Alone-Util) 

 In an offline mode, this requires running the VM by itself 
on a platform and monitoring the core utilization using 
performance counters.  

 In an online mode, this requires monitoring the VM core 
utilization and keeping track of the maximum core 
utilization (especially when no other VM is running).  

(ii) Predict a VM’s core utilization on a different consolidated 
platform by scaling down the above VMx core utilization by the 
ratio of number of available physical CPUs over the total 
utilization of all VMs on the target platform (VMx-Cons-Util) 
 

 
 

This simple model allows for reasonable estimation of the VPA 
core utilization of a VM. In the future, we plan to extend this 
simple model by taking VMM scheduling heuristics into account. 

 
 Table 1: SPECjbb VPA Core Utilization 

specJBB 4MB 2MB 1MB
Estimated 115% 124% 126%
Measured 122% 124% 121%
Error (%) -5.58 0.39 3.91  



 
 

 

For the vConsolidate measurement, we applied the estimation 
model to platforms configured with different cache sizes (1MB, 
2MB, 4MB) as described earlier. We also instrumented the Xen 
VMM to measure the actual utilization of the SPECjbb virtual 
machine and compare it to the estimated utilization. Table 1 shows 
the utilization (in %) as well as the accuracy (computed as relative 
error). For example, the estimated utilization is 1.15 cores (115% 
utilization) for a 4MB configuration, whereas the measured 
utilization is 1.22 cores (122%) for the same configuration. With 
such a simplistic model, we find that the error is around 6% or less. 
The error is, in part, attributed to software scheduling that is not 
considered in the model above. 

B. VPA Cache Space Estimation 
Since the shared last-level cache is an invisible resource and cannot 
be directly monitored by OS/VMMs, we propose the following 
approach to estimating VPA cache space (per VM) as follows: 
 
(a) Profile the execution of a VM by capturing the percentage 
of time it runs with other VMs on sibling cores (sharing the 
same cache).  

 One approach to this is to instrument the VMM at 
schedule/deschedule points to keep track of where a VM 
was running. However, this is useful only in hindsight for 
understanding the performance effects of other VMs in a 
platform configuration already established. 

 In order to predict the performance on a future platform 
configuration (with different VMs), it is possible to 
statistically approximate the percentage of time that a 
VM runs with other VMs.  

          P(VMx+VMy) =                       VMyUtil                     _ 
                                         (VMallCons-Util – VMxCons-Util) 

 
Table 2: Execution Probability of VMs running cores 

sharing a L2 Cache with SPECjbb 
 

 specJBB sysbench webbench MMB Domain-0
4MB 18% 38% 32% 3% 9%
2MB 37% 19% 31% 3% 10%
1MB 36% 17% 32% 4% 12%  

 
Table 2 presents the fraction of SPECjbb VM’s execution time that 
it spends running with another virtual machine contending on a 
shared cache. For example, a SPECjbb virtual cpu runs with a 
SysBench virtual cpu sharing the same shared cache for an 
estimated 38% of its overall execution in the platform 
configuration with 4MB of shared cache. On the other hand, it 
spends an estimated 18% of its overall execution time running with 
the other SPECjbb virtual cpu in the same configuration. It should 
be noted that we have validated these fractions (and found them to 
be within 2% error) by profiling the execution of vConsolidate on 
Xen.   
(b) Estimate the pairwise VPA cache space for a VM when it 
runs with another sibling VM (assuming two CPUs sharing a 
cache)  
 In the offline mode, it is possible to capture a trace for each 

VM and then run every pair of traces (for different VMs) 
through a shared cache model to create a table of VPA cache 
space usage per VM.  

 In the online mode, it is not possible today to monitor the 
cache space usage directly. However, proposals like [24] that 
provide accurate cache space monitoring in future 
architectures might address this problem in the future. Instead, 

the VMM can monitor the effect of cache interference by 
keeping track of the misses per instruction (collected through 
performance counters) as a function of the other VMs running 
on sibling cores. Even here, it is required that this estimation 
be done on a test configuration where all pairs of VMs are run 
simultaneously and measured.  

Figure 2 shows the effect on normalized MPIs (cache Misses-per-
Instruction) of SPECjbb and sysbench from pairwise workload 
runs. The normalization is done with respect to the MPI values 
when the workload was running alone. As shown in Figure 2, for a 
4MB cache configuration, one SPECjbb virtual CPU’s MPI 
increases by as much as 62% when running with another SPECjbb 
virtual CPU, whereas it increases by 58% and 34% when running 
with Sysbench and Webbench virtual CPUs respectively.  
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Figure 2: MPI Increase in Pairwise/Consolidated 

Execution 
(c) Estimate the consolidated VPA cache space that is a 
weighted average of the pairwise VPA cache space (with 
weights being the fraction of execution time). 

 
Table 3: Overall Cache Contention Effect for Consolidation 

Est. MPI Measur. MPI
specJBB 0.0077 0.0085
sysbench 0.0041 0.0043  

 
Table 3 shows that the estimated MPI (for SPECjbb and sysbench) 
comes reasonably close to the measured MPI during consolidation. 
The cache contention effect can also be translated to prediction of 
effective cache size by looking up the cache size based on offline 
MPI profiling experiments. For example, Figure 3 shows the MPI 
of SPECjbb running alone and in consolidated mode as a function 
of cache size. By looking up the miss rate curve (for 4MB), we can 
find the effective cache size (~3.5MB). 
 (c) Use the estimated MPI to derive the CPI for the virtual 
machine 
The cache contention effects can now be translated into estimated 
CPI values (cycles per instruction) for each virtual machine in the 
consolidated environment using the performance data and based on 
the VMA core utilization. Due to space constraints we skip the 
exact procedure here. Table 4 shows that the estimated CPI values 
match the measured values with low error (~5%). 

Table 4: CPI Estimation for SPECjbb 
SPECjbb Single VM specJBB in vCon

Estimated CPI 1.549 2.231
Measured CPI 1.543 2.234  

 (d) Estimate performance loss from cache contention (as a 
multiplier) as follows: 

CacheContentionPerfMultiplier =      VMx-Alone-CPI                                              
                        VMx-Cons-CPI 



 
 

 

The factor calculated above represents the performance loss due to 
cache contention. 
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Figure 3: SPECjbb cache occupancy analysis  

5. CONCLUSIONS AND FUTURE WORK 
In this paper we presented the VM performance modeling 
challenges and highlighted that visible and invisible resource 
interference cause a significant performance degradation and need 
to be considered when modeling VM performance. We then 
proposed VPA estimation as an approach to modeling VM 
performance. Using a case study of vConsolidate (a server 
virtualization benchmark), we showed that VPA core and cache 
usage estimation is possible with offline models. With online 
models, only VPA core usage estimation is possible and cache 
usage estimation needs to be approximated as cache performance 
effects.  

Future work in this area is as follows. We plan to extend the 
VPA modeling approach to include other resources (core pipeline 
resources, memory bandwidth, etc). We also plan to test out the 
modeling approach on a wider set of configurations and put 
together a analytical model that can be calibrated for this purpose. 
Last but not least, we would also like to study other virtualization 
benchmarks and VMMs to ensure that this approach proves valid 
for a wider range of workload and VMM implementations. 
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