

ABSTRACT
Data centers are increasingly employing virtualization and
consolidation as a means to support a large number of disparate
applications running simultaneously on server platforms. However,
server platforms are still being designed and evaluated based on
performance modeling of a single highly parallel application or a
set of homogenous workloads running simultaneously. Since most
future datacenters are expected to employ server virtualization, this
paper takes a look at the challenges of modeling virtual machine
(VM) performance on a datacenter server. Based on vConsolidate
(a server virtualization benchmark) and latest multi-core servers,
we show that the VM modeling challenge requires addressing three
key problems: (a) modeling the contention of visible resources
(cores, memory capacity, I/O devices, etc), (b) modeling the
contention of invisible resources (shared microarchitecture
resources, shared cache, shared memory bandwidth, etc) and (c)
modeling overheads of virtual machine monitor (or hypervisor)
implementation. We take a first step to addressing this problem by
describing a VM performance modeling approach and performing a
detailed case study based on the vConsolidate benchmark. We
conclude by outlining outstanding problems for future work.

Keywords
Virtualization, Consolidation, CMP, servers, performance analysis,
measurement, modeling.

1. INTRODUCTION
Traditionally, server platforms have been designed and evaluated
based on individual parallel applications or benchmarks (TPC-C,
TPC-E, TPC-W, SPECjbb, SPECjappserver, etc) as the focus.
Developing the performance analysis capability for such
commercial server workloads was by itself a significant challenge
since the benchmarks had complex behaviors, required multiple
client/server systems and were difficult to run on full-system
simulators. However, industry and academic researchers coped
with this problem by developing scaled-down execution-driven
simulations [31] for these workloads, by trace-driven simulations
[2, 11, 12, 24] where possible and also by developing analytical
models driven by measurement/simulation experiments. Now, the
recent emergence of virtualization introduces another level of
complexity to the problem of server modeling and performance
analysis. As datacenters rapidly adopt virtualization as a means to
consolidate multiple applications on a server, it becomes critical
that the performance behavior of virtual machines is well
understood. In addition, it also becomes important that we develop
the ability to estimate virtual machine performance on a datacenter

server. In this paper, we discuss the challenges to virtual machine
performance estimation and introduce potential approaches for
appropriate metrics and modeling techniques for this purpose.
The first challenge of virtualization was addressing the lack of a
virtualization benchmark that can be used for consistent and
repeatable server performance analysis. Recently, there have been
specific industry benchmarks that have been developed (VMmark
[29], vConsolidate [4]) to address this issue. In addition, there is
also a SPEC committee [31] that is working on defining its first
virtualization benchmark expected to release sometime in the
future. In this paper, we focus our case studies on vConsolidate to
show the challenges and the potential approach of server
virtualization modeling.
The key considerations when modeling the performance of virtual
machines (VMs) can be summarized as follows:
(a) VM performance is not only dependent on its own
characteristics, but also dependent on the interference caused by
the other virtual machines running on the same platform with it.
We need a method to capture the effect of these interactions.
(b) The above interference can affect the use of (i) shared resources
(e.g. core, memory capacity) that are visible to the operating
system or virtual machine monitor directly or through performance
counters and (ii) shared resources (cache space, memory
bandwidth, etc) that are invisible to the operating system since they
are transparent resources managed by the hardware. The modeling
approach needs to be aware of both visible and invisible resource
interference.
(c) the specifics of virtualization technology (both hardware
virtualization and software virtualization) and the scheduling
disciplines adopted by the virtual machine monitor could be quite
different on any given platform. The modeling approach needs to
take into account the virtualization technology as well as the
scheduling heuristics required.
In this paper, we will expand primarily on the resource interference
effects and describe how a modeling approach can potentially take
into account both visible and invisible resource contention effects
on performance. Specifically, the contributions of this paper are as
follows:
(i) Using a virtualization/consolidation benchmark, we will show
how VM performance depends heavily on visible & invisible
resource interference caused by other VMs.
(ii) We will describe offline and online monitoring techniques
needed to accurately characterize the behavior of multiple VMs
sharing resources.
(iii) We will describe a potential modeling approach that employs
either online or offline monitoring mechanisms to estimate the
performance of the virtual machine.
(iv) We will outline a detailed list of next steps required to achieve
a complete model for VM performance estimation.

Modeling Virtual Machine Performance: Challenges and Approaches

 Omesh Tickoo Ravi Iyer Ramesh Illikkal Don Newell
 Intel Corporation Intel Corporation Intel Corporation Intel Corporation

omesh.tickoo@intel.com ravishankar.iyer@intel.com ramesh.g.illikkal@intel.com donald.newell@intel.com

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Workload

Single O/S

Server

Workload 1

Guest OS

Server

Workload 2

Guest OS

Workload 3

Guest OS

VMM or Hypervisor

(a) From Dedicated Workloads to Consolidated Workloads (b) VM Performance Scenarios

0

20

40

60

80

100

120

JBB Alone JBB + JBB Same Cache JBB + JBB Same Core JBB + JBB Same Core
Simultaneous Threads

VM Configurations

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

0

20

40

60

80

100

120

JBB Alone JBB + Sys Same Cache JBB + Sys Same Core JBB + Sys Same Core
Simultaneous Threads

VM Configurations

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

(c) SpecJBB Performance (1 copy vs 2 copies) (d) SpecJBB Performance (Alone vs with Sysbench)

Figure 1: Performance Effects of Virtualization and Consolidation on CMP Servers

2. PLATFORM OVERVIEW
Our measurement-based evaluation was conducted on an dual-
socket Intel server platform that has two processor sockets (Intel
Xeon series) and is populated with 16GB of memory. Within each
processor socket, there are 4 cores running at 3 GHz. Each pair of
cores share a 4MB cache, adding up to a total of 8MB on each
socket. Figure 3 illustrates this measurement platform
configuration. On this platform, we run vConsolidate on top of Xen
3.3. Commonly available tools with Xen such as sar, xentop, xm
info, xentrace have been used to get details such as cpu usage from
each VM. To get architectural metrics such as CPI (cycles per
instruction) and MPI (misses per instruction) we used a tool that
reads CPU performance counters. To measure the per-thread
contention effects we used a similar set-up as above with the latest
Nehalem based processors offering multithreading capability.

In this paper, we study the implications of server consolidation
by employing a recent server consolidation benchmark called
vConsolidate [4]. The vConsolidate (vCon) benchmark consists of
four key virtual machines (VMs): (a) a compute intensive
workload/application, (b) a database workload, (c) a web server
workload, and (d) a mail server workload. To emulate a real world
environment, an idle virtual machine was also added to the mix.
The compute intensive VM runs a modified version of
SPECjbb2005 [17]. Typically SPECjbb2005 is a cpu intensive
workload that consumes as much cpu as it possibly can. However,
in vConsolidate environment, SPECjbb has been modified to
consume roughly 75% of the cpu or so, by inserting in random
sleeps every few milliseconds. The database virtual machine runs
Sysbench [19], which is an OLTP workload executing transactions

either a MySQL or a MSSQL database. The web server VM runs
Webbench [22] which uses either the Apache webserver or the
Microsoft IIS webserver. The mail server virtual machine runs
Microsoft Exchange workload that executes transactions on
Outlook with 500 users logged in simultaneously.
3. VM Performance EFFECTS
One of the key challenges when modeling the performance of
virtual machines is that the application no longer has platform
resources dedicated solely for its consumption. Figure 1(a)
illustrates the transition from a dedicated execution (where one
application used to run on a server previously) to a shared
execution (where multiple guest OSes or VMs now run on the same
server). Figure 1(b) illustrates a typical server platform with
multiple cores and the following four scenarios for the execution of
a virtual machine (say VM1) with two virtual cpus (v0 and v1):
(a) VM1 runs in dedicated mode with v0 running on c0 and v1
running c2. Since c0 and c2 have last-level caches of their own,
these two virtual cpus do not share cache resources.
(b) VM1 runs in shared mode with VM2 running on sibling cores
(virtual cpus of these VMs share cache). This causes cache
contention between the VMs and affects performance.
(c) VM1 runs in shared mode with VM2 scheduled to run on the
same core (time sliced scheduling). This causes core as well as
cache contention between the two VMs and affects performance.
(d) VM1 runs in shared mode with VM2 scheduled to run on the
same core but on simultaneous threads made possible by
hyperthreading [30]. This causes core contention (because of
thread contention within the core for shared pipeline resources) as

LLC LLC

VM1 v0 VM1 v1

LLC LLC

VM1 v0 VM1 v1
VM2 v0 VM2 v1

LLC LLC

VM1 v0
VM2 v0 VM2 v1

VM1 v1

LLC LLC

VM1 v0
VM2 v0 VM2 v1

VM1 v1

well as cache contention between the two VMs and affects
performance.

To measure the performance in various scenarios, we ran
experiments using virtual machines within the vConsolidate
benchmark (specifically SPECjbb and Sysbench). We chose
SPECjbb as VM1 as well as VM2 to collect the data shown in
Figure 1(c). We also chose SPECjbb as VM1 and Sysbench as
VM2 for the data collected in Figure 1(d). The first three
configurations (illustrated in Figure 1b) were collected on a Core 2
Duo – based server platform with two cores on each die sharing a
last-level cache. The performance effect of the last configuration
(effect of sharing simultaneous threads) was measured on the latest
Intel Nehalem-based server platform since the Core 2 Duo
processor does not support threads, whereas future platforms are
expected to.
As shown in the Figure 1(c) and Figure 1(d), the performance of
the virtual machine is significantly affected by the sharing of cache
and core resources. The performance can drop by as much as 20 to
30% due to cache contention alone. The performance further drops
by another 30% when sharing cores. The performance can
deteriorate further by ~25% when SMT threads are being
simultaneously used on the same core. Overall, the performance of
a virtual machine can vary from its performance during dedicated
execution to its performance when running with other virtual
machines either on a sibling core, a sibling thread, the same core or
even the same thread. It should be noted that some of these
resources are visible (e.g. core) and some are invisible (cache
space, pipeline resources shared by simultaneous threads). Overall,
the combined performance effect can be as high as 3X reduction
due to resource contention. In addition, the performance depends
on which virtual machine monitor you use.

4. VM PERFORMANCE MODELING APPROACHES
In the previous subsection, we showed how virtual machine
performance can be significantly affected by resource contention
with other virtual machine running along with it. In order to model
the VM performance, it is important to accurately characterize all
shared resource contention effects in the platform. In this section,
we will describe how this can be achieved for two modeling
modes:
(a) Offline modeling: This assumes that the workload performance
can be measured on several platform configurations alone as well
as pairwise with other virtual machines. It also assumes that the
workload (each VM at a minimum) can be traced to run through
core and cache simulators to collect behavioral information. Here,
the intent is to fully calibrate a model in order to predict the
performance of a virtual machine on a future server architecture or
configuration.
(b) Online modeling: This assumes that no offline analysis is
available and the characterization of the VM performance effects
needs to be done online (on production servers with perhaps some
brief initial runs on test configurations within the datacenter). Here,
the intent is to develop a model that will predict the performance of
a VM on a different platform (if it was migrated to that platform
within the datacenter).

In addition, it is important to consider the following key visible and
invisible resources that will be contended for:
(a) Visible Resources: Platform resources that are currently
exposed (or visible) to the OS/VMM include core, memory

capacity and potential I/O devices. In this paper we focus primarily
on core usage since that is a dominant factor out of these three.
(b) Invisible Resources: Platform resources that are currently
transparent (or invisible) to the OS/VMM include shared cache
space and core pipeline resources. In other words, the cache space
occupied by one VM or another cannot be monitored today by an
OS/VMM. Similarly, the pipeline resources used by one thread
(running one VM) versus another thread (running another VM)
cannot be observed today. The effect of cache and core contention
(i.e. misses per instruction (MPI) and instructions per cycle (IPC)
can however be obtained through performance monitoring
counters).
The proposed approach for the VM modeling effort is the resource
estimation of a virtual platform architecture that each virtual
machine ends up with when running on a physical server platform.
A virtual platform architecture (VPA) is defined as the set of
resources used by (or solely made available to) the virtual machine
of interest. The VPA resources include key resources such as
number of cores, the core frequency and utilization, the cache
space at each level and the memory frequency and bandwidth. In
this paper, we focus on a VPA proof of concept that consists of one
visible resource (the core) and one invisible resource (shared last-
level cache space). In other words, the estimated VPA will produce
(a) the number of cores and core utilization that a VM is given, (b)
the cache space that a VM is given. Once the VPA core usage and
the cache usage are available, the problem of estimating the
performance of the virtual machine is mapped back to the simple
problem of estimating the performance of a application running on
a dedicated platform (with VPA as the dedicated platform).

A. VPA Core Utilization Estimation
Since the core is a visible resource, the VMM can easily track the
VPA core utilization on the platform for every VMM. The cost of
tracking the core utilization is negligible and provides an accurate
accounting. However, in order to predict the core utilization on a
different platform configuration, a simplistic approach to start with
is as follows:
(i) Monitor a VM’s core utilization when running alone (VMx-
Alone-Util)

 In an offline mode, this requires running the VM by itself
on a platform and monitoring the core utilization using
performance counters.

 In an online mode, this requires monitoring the VM core
utilization and keeping track of the maximum core
utilization (especially when no other VM is running).

(ii) Predict a VM’s core utilization on a different consolidated
platform by scaling down the above VMx core utilization by the
ratio of number of available physical CPUs over the total
utilization of all VMs on the target platform (VMx-Cons-Util)

This simple model allows for reasonable estimation of the VPA
core utilization of a VM. In the future, we plan to extend this
simple model by taking VMM scheduling heuristics into account.

 Table 1: SPECjbb VPA Core Utilization

specJBB 4MB 2MB 1MB
Estimated 115% 124% 126%
Measured 122% 124% 121%
Error (%) -5.58 0.39 3.91

For the vConsolidate measurement, we applied the estimation
model to platforms configured with different cache sizes (1MB,
2MB, 4MB) as described earlier. We also instrumented the Xen
VMM to measure the actual utilization of the SPECjbb virtual
machine and compare it to the estimated utilization. Table 1 shows
the utilization (in %) as well as the accuracy (computed as relative
error). For example, the estimated utilization is 1.15 cores (115%
utilization) for a 4MB configuration, whereas the measured
utilization is 1.22 cores (122%) for the same configuration. With
such a simplistic model, we find that the error is around 6% or less.
The error is, in part, attributed to software scheduling that is not
considered in the model above.

B. VPA Cache Space Estimation
Since the shared last-level cache is an invisible resource and cannot
be directly monitored by OS/VMMs, we propose the following
approach to estimating VPA cache space (per VM) as follows:

(a) Profile the execution of a VM by capturing the percentage
of time it runs with other VMs on sibling cores (sharing the
same cache).

 One approach to this is to instrument the VMM at
schedule/deschedule points to keep track of where a VM
was running. However, this is useful only in hindsight for
understanding the performance effects of other VMs in a
platform configuration already established.

 In order to predict the performance on a future platform
configuration (with different VMs), it is possible to
statistically approximate the percentage of time that a
VM runs with other VMs.

 P(VMx+VMy) = VMyUtil _
 (VMallCons-Util – VMxCons-Util)

Table 2: Execution Probability of VMs running cores

sharing a L2 Cache with SPECjbb

 specJBB sysbench webbench MMB Domain-0
4MB 18% 38% 32% 3% 9%
2MB 37% 19% 31% 3% 10%
1MB 36% 17% 32% 4% 12%

Table 2 presents the fraction of SPECjbb VM’s execution time that
it spends running with another virtual machine contending on a
shared cache. For example, a SPECjbb virtual cpu runs with a
SysBench virtual cpu sharing the same shared cache for an
estimated 38% of its overall execution in the platform
configuration with 4MB of shared cache. On the other hand, it
spends an estimated 18% of its overall execution time running with
the other SPECjbb virtual cpu in the same configuration. It should
be noted that we have validated these fractions (and found them to
be within 2% error) by profiling the execution of vConsolidate on
Xen.
(b) Estimate the pairwise VPA cache space for a VM when it
runs with another sibling VM (assuming two CPUs sharing a
cache)
 In the offline mode, it is possible to capture a trace for each

VM and then run every pair of traces (for different VMs)
through a shared cache model to create a table of VPA cache
space usage per VM.

 In the online mode, it is not possible today to monitor the
cache space usage directly. However, proposals like [24] that
provide accurate cache space monitoring in future
architectures might address this problem in the future. Instead,

the VMM can monitor the effect of cache interference by
keeping track of the misses per instruction (collected through
performance counters) as a function of the other VMs running
on sibling cores. Even here, it is required that this estimation
be done on a test configuration where all pairs of VMs are run
simultaneously and measured.

Figure 2 shows the effect on normalized MPIs (cache Misses-per-
Instruction) of SPECjbb and sysbench from pairwise workload
runs. The normalization is done with respect to the MPI values
when the workload was running alone. As shown in Figure 2, for a
4MB cache configuration, one SPECjbb virtual CPU’s MPI
increases by as much as 62% when running with another SPECjbb
virtual CPU, whereas it increases by 58% and 34% when running
with Sysbench and Webbench virtual CPUs respectively.

0

0.5

1

1.5

2

2.5

3

specJBB Sysbench

Workload
No

rm
al

iz
ed

 M
et

ri
c Alone

Pairwise with MMB
Pairwise with specJBB
Pairwise with Sysbench
Pairwise with Webbench
Consolidated

Figure 2: MPI Increase in Pairwise/Consolidated

Execution
(c) Estimate the consolidated VPA cache space that is a
weighted average of the pairwise VPA cache space (with
weights being the fraction of execution time).

Table 3: Overall Cache Contention Effect for Consolidation

Est. MPI Measur. MPI
specJBB 0.0077 0.0085
sysbench 0.0041 0.0043

Table 3 shows that the estimated MPI (for SPECjbb and sysbench)
comes reasonably close to the measured MPI during consolidation.
The cache contention effect can also be translated to prediction of
effective cache size by looking up the cache size based on offline
MPI profiling experiments. For example, Figure 3 shows the MPI
of SPECjbb running alone and in consolidated mode as a function
of cache size. By looking up the miss rate curve (for 4MB), we can
find the effective cache size (~3.5MB).
 (c) Use the estimated MPI to derive the CPI for the virtual
machine
The cache contention effects can now be translated into estimated
CPI values (cycles per instruction) for each virtual machine in the
consolidated environment using the performance data and based on
the VMA core utilization. Due to space constraints we skip the
exact procedure here. Table 4 shows that the estimated CPI values
match the measured values with low error (~5%).

Table 4: CPI Estimation for SPECjbb
SPECjbb Single VM specJBB in vCon

Estimated CPI 1.549 2.231
Measured CPI 1.543 2.234

 (d) Estimate performance loss from cache contention (as a
multiplier) as follows:

CacheContentionPerfMultiplier = VMx-Alone-CPI
 VMx-Cons-CPI

The factor calculated above represents the performance loss due to
cache contention.

SPECjbb MPI

0

0.005

0.01

0.015

0.02

0.025

0.03

4MB 2MB 1MB

Share Cache Size

M
P

I Running Alone
Running in vCon

Figure 3: SPECjbb cache occupancy analysis

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented the VM performance modeling
challenges and highlighted that visible and invisible resource
interference cause a significant performance degradation and need
to be considered when modeling VM performance. We then
proposed VPA estimation as an approach to modeling VM
performance. Using a case study of vConsolidate (a server
virtualization benchmark), we showed that VPA core and cache
usage estimation is possible with offline models. With online
models, only VPA core usage estimation is possible and cache
usage estimation needs to be approximated as cache performance
effects.

Future work in this area is as follows. We plan to extend the
VPA modeling approach to include other resources (core pipeline
resources, memory bandwidth, etc). We also plan to test out the
modeling approach on a wider set of configurations and put
together a analytical model that can be calibrated for this purpose.
Last but not least, we would also like to study other virtualization
benchmarks and VMMs to ensure that this approach proves valid
for a wider range of workload and VMM implementations.

REFERENCES
[1] Amazon Elastic Compute Cloud (EC2),

http://www.amazon.com/ec2/
[2] R. Iyer, et al, “Datacenter-on-Chip Architectures,” Intel

Technology Journal, 2007.
[3] P. Barham, et al. Xen and the Art of Virtualization. In Proc. of

the ACM Symposium on Operating Systems Principles
(SOSP), Oct 2003.

[4] J. P. Casazza, M. Greenfield, K. Shi, Redefining Server
Performance Characterization for Virtualization Benchmarking,
Intel Technology Journal, Volume 10, Issue 03

[5] D. Chandra, F. Guo, et al. Predicting inter-thread cache
contention on a chip multiprocessor architecture”, 11th High
Performance Computer Architecture (HPCA), Feb 2005.

[6] Google App Engine, http://appengine.google.com
[7] HP Utility Computing,

http://h71028.www7.hp.com/enterprise/cache/308072-0-0-0-121.html
[8] Intel Xeon 5400 Series,

ftp://download.intel.com/products/processor/xeon/dc54kprodbrief.pdf
[9] Intel Virtualization Technology Specification for the IA-32

Intel Architecture, April 2005
http://www.intel.com/technology/platformtechnology/virtualization/

[10] Intel Corporation, “World’s first quad-core processors for desktop
and mainstream processors,” http://www.intel.com/quad-core/

[11] R. Iyer. CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms. 18th Annual International
Conference on Supercomputing (ICS’04), July 2004.

[12] R. Iyer, L. Zhao, et al., “QoS Policies and Architecture for
Cache/Memory in CMP Platforms”, the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), June 2007

[13] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proc. of
13th Int’l Conf. on Parallel Arch. & Complication
Techniques(PACT), Sept 2004.

[14] Microsoft Live Mesh, http://www.mesh.com
[15] P. Ranganathan and N. Jouppi. Enterprise IT Trends and

Implications on Architecture Research. In Proc. of the 11th
International Symposium on High Performance Computer
Architecture (HPCA), Feb 2005

[16] M. Rosenblum, T. Garfinkel. Virtual Machine Monitors:
Current Technology and Future Trends. IEEE Trans on
Computers, 2005.

[17] SPECjbb2005, http://www.spec.org/jbb2005/
[18] Sun network.com (Sun Grid), http://www.network.com
[19] Sysbench http://sysbench.sourceforge.net/
[20] Twenty Experts Define Cloud Computing,

http://cloudcomputing.syscon.com/read/612375_p.htm .
[21] R. Uhlig, et al., “Intel Virtualization Technology,” IEEE

Computer, 2005
[22] Webbench http://cs.uccs.edu/~cs526/webbench/webbench.htm
[23] Xen: The Xen Virtual Machine Monitor.

http://www.cl.cam.ac.uk/Research/SRG/netos/xen/architecture.html
[24] L. Zhao et.al CacheScouts: Fine-Grain Monitoring of Shared

Caches in CMP Platforms, PACT 2007
[25] L. Cherkasova and R. Gardner,”Measuring CPU Overhead for I/O

Processing in the Xen Virtual Machine Monitor,” Proceedings of
the USENIX Annual Technical Conference, April 2005.

[26] N. Enright Jerger, et al, “Evaluation of Server Consolidation
Workloads for Multi-core Designs,” IISWC-2007

[27] C. A. Waldspurger Memory Resource Management in VMware
ESX Server, Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, Boston, Massachusetts,
USA, December 9–11, 2002.

[28] Microsoft Corporation www.microsoft.com
[29] VMware Vmark
 http://www.vmware.com/products/vmmark/results.html
[30] Intel Hyperthreading Technology.

 http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm

[31] R. A. Hankins, T. A. Diep, M. Annavaram, B. Hirano, H. Eri, H.
Nueckel, and J. P. Shen. Scaling and characterizing database
workloads: Bridging the gap between research and practice. In
Proceedings of the 36th International Symposium on
Microarchitecture. IEEE Computer Society Press.

[31] SPEC, http://www.spec.org

