On Randomizing the Sending Times in TCP and
other Window Based Algorithms

K. Chandrayana, S. Ramakrishnan, B. Sikdar, S. Kalyanaraman, A. Balan, O. Tickoo
Department of ECSE, Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract— Current implementations of TCP suffer from
serious performance problems like unfairness to flows with
higher round trip times (RTTs), synchronization and phase
effects in flows and correlated losses leading to throughput
degradations under a wide range of scenarios. In this pa-
per we propose a solution to these issues by randomizing
the packet sending times at TCP sources (called Randomized
TCP). Specifically, we space successive packet transmissions
with a time interval A = RTT(1 + z)/cwnd, where z is a
zero mean random number drawn from an Uniform distri-
bution. We find that an Uniform distribution on U[—1, 1]
is optimal with respect to metrics like throughput, fairness,
timeouts, losses and de-synchronization. We show that the
scheme is better than Paced as well as TCP Reno in a large
number of scenarios. The proposed scheme is also fair
with TCP Reno. We show through simple simulations that
Randomized TCP reduces phase effects and synchronization
even when multiplexed with TCP Reno. Also, we extend ran-
domization to other window based schemes like the Binomial
schemes and show that fairness to TCP Reno increases dra-
matically.

Keywords—TCP, flow synchronization, fairness, phase ef-
fects

I. INTRODUCTION

Current TCP implementations have been known to suf-
fer from a number of phenomena which limit their effec-
tiveness and degrade performance, the primary amongst
them being: synchronizations of congestion windows and
the loss instances [12], [14], [15] causing alternate over-
loading and underloading of the bottleneck; phase effects
wherein a certain section of flows face recurrent losses [7];
unfairness to flows with higher RTTs [6]; delays and losses
due to the bursty nature of TCP traffic [15], [2]. Synchro-
nization among flows causes the network to be underuti-
lized and also increases latency and the drops for the end
user. Two reasons can be attributed to this problem; (1)
the sliding window flow control of the TCP, which pro-
duces bursts of packets and (2) the Drop Tail queue at the
bottleneck, which drops all packets when the buffer is full
[9].

Supported in part by ARO contract DAAD 19-00-1-0559 and NSF
contract ANI 9806660

Random Early Drop or RED [8], tries to solve the prob-
lem of full queues and flow synchronization by dropping
packet probabilistically if the queue length is above some
threshold. Thus RED tries to distribute the losses over a
period of time instead of dropping packets all together and
as such prevents burst losses. However, it was shown in
[11] that the number of consecutive drops is higher with
RED than Tail Drop, suggesting RED might not help as
anticipated with the synchronization of flows.

TCP Pacing was proposed in [15] to solve the problem
of bursty losses by pacing the packet transmission times
at the sender. In [2], authors evaluate the effectiveness
of TCP pacing in removing synchronization. The authors
show that pacing reduces synchronization with long flows
and also improves fairness and throughput. However, in
the case of short flows pacing gets synchronized, causing
larger latency. Also, they show that pacing cannot compete
fairly when placed together with TCP Reno flows.

In short, reducing synchronization and phase effects
holds the key to better performance. The basic idea behind
our scheme is that introducing randomization into the sys-
tem breaks synchronization. In this paper, we propose a
modification to TCP, called Randomized TCP, where the
packet sending times are randomized to break synchro-
nization and improve performance. This solution is dis-
tributed and has just a single parameter to be configured,
which makes it very attractive from an implementation
point of view. Specifically, packets are sent after an inter-
val of RT'T(1 + z)/cwnd, where cwnd is the congestion
window in packets and x is a random number drawn from
an Uniform distribution on [—1, I]. We call I the random-
ization interval.

In this paper, we investigate the optimal setting of the
randomization interval and find that given a small num-
ber of flows (> 5) at the bottleneck, a Uniform distribu-
tion on [—1,1] is the best. We investigate the extent to
which this scheme can deliver on its goals of reducing syn-
chronization and improving throughput, fairness, reducing
timeouts etc. We find that Randomized TCP performs as
well or better than Paced and TCP Reno, independent of
the capacity and buffer size at the bottleneck and for both

short and long flows. We also show that Randomized TCP
reduces phase effects and synchronization even when mul-
tiplexed with TCP Reno flows.

Randomizing the sending times results in extra delay
causing the RTT to artificially increase. This causes Ran-
domized TCP to be beaten down when competing with
TCP Reno. We analytically characterize the increased
RTT and make the window increase factor in Randomized
TCP proportional to the square of the ratio of the changed
RTT to the real RTT. This allows Randomized TCP to
compete fairly with TCP Reno and is verified through sim-
ulations.

In addition to looking at the effects of randomization
on TCP derived congestion control schemes, we also in-
vestigate its effects on other families of congestion con-
trol policies. Slowly varying congestion control schemes
like Binomial schemes were reported to be unfair to TCP
with drop tail queues [3]. We show that by incorporat-
ing randomization in these schemes, we show that fairness
increases dramatically.

In short, the main contributions of this paper are as fol-
lows:

« Proposed and investigated the randomization of sending
times in TCP

o Demonstrated improvements in de-synchronization,
throughput and fairness and reduction of phase effects due
to randomization

o Modified the window increase parameter to allow Ran-
domized and Normal TCP to compete fairly

« Considerably improved fairness of binomial schemes
even with drop tail queues

The rest of the paper examines the Randomized TCP
in detail. In Section II we discuss TCP pacing and the
previous work in this area. Section III discusses the Ran-
domized TCP scheme, the intuitive reasons as to why it
works and the evaluation of an optimal randomization in-
terval. Section IV describes the implementation details,
performance metrics and the simulation setup. Compari-
son of the performance of Randomized TCP, Paced TCP
and TCP Reno is described in Section V while Section
V-D compares the performance of Randomized Binomial
schemes. Finally we present the conclusions and future
work in Section VI.

II. BACKGROUND AND RELATED WORK

Rate based schemes, in contrast to window based
schemes, send out packets at regular intervals thus avoid-
ing burst transmissions. Since rate based schemes loosely
observe the packet conservation principle they can at times
be less responsive to network congestion. TCP Pacing [15]
is a hybrid approach between window based schemes and

rate based schemes. In pacing, packets to be sent in a win-
dow are spaced by A = RTT/cwnd. This spacing of
packets avoids back to back transmissions and hence re-
moves the burstiness of TCP.

Pacing was first suggested in [15] as a correction for the
compression of ACKs due to cross traffic. Since then the
concept of pacing has been applied to slow-start, after a
packet loss and after an idling time in case of web traffic.
For details on TCP pacing, we refer the reader to [2] and
the references therein. In [2] it is shown that with long
flows Paced TCP removes synchronization, improves fair-
ness over TCP Reno and achieves the same throughput as
TCP Reno. However, in presence of short flows the au-
thors show that Pacing gets synchronized causing larger
latencies. Also, the authors show that when Paced TCP
competes against TCP Reno, it gets an unfair share of the
bandwidth.

A modified version of pacing is also evaluated in [10].
The authors their define the spacing interval as cwﬁﬁzv,
where V is the tunable parameter, which controls the ag-
gressiveness of the pacing. However, the effect of this
scheme on the synchronization flows is not investigated.
They observe that with bulk data transfer the modified
pacing shows results similar to TCP Reno. However, for
a web-like load model, the modified paced TCP exhibits
lower packet loss than TCP and also the average transfer
latencies are lower. The authors, however do not discuss
the parameter setting for V and it’s effect on the pacing
scheme. Also, they do not consider the case where TCP
Reno and Paced TCP are multiplexed on the same link.

III. RANDOMIZED TCP

Randomized TCP is similar to Paced TCP in that it
“paces” packet transmissions but instead of spacing the
transmissions equally, we add or subtract a random inter-
val to the packet sending times at TCP sources. Packet
transmissions are scheduled at intervals of £LL (1 +),
where x follows the Uniform Distribution on [—1, I]. Evi-
dently, I has to be between 0 and 1. A packet is transmitted
at the expiry of the timer, if the window allows a packet to
be sent. If not, upon reception of an ACK, we schedule the
packet transmission with a random delay of %y, where
y is U(0,1). Setting I to 0 reduces Randomized TCP to
Paced TCP. We study the optimal setting of I through sim-
ulations in Section V-A.

Randomizing the sending times results in extra delays
causing the RTT to increase artificially. This causes Ran-
domized TCP to get beaten down when competing with
TCP Reno. It is well known that TCP’s throughput is di-
rectly proportional to the square root of the window in-

crease parameter and inversely proportional to RTT [13].

Fig. 1. Topology used in the simulation.

To allow Randomized TCP to compete fairly with Normal
TCP, we analytically characterize the increased RTT and
make the increase factor in TCP proportional to the square
of the ratio of the changed RTT to the real RTT. For details
of the derivation we refer the reader to the Appendix. This
allows Randomized TCP to compete fairly with TCP Reno
and is verified through simulations.

In Paced TCP packets from each source reach the bot-
tleneck at an uniform rate which can lead to near perfect
interleaving. Such situations can cause all sources to lose
packets thereby resulting in all the sources decreasing their
windows together, resulting in synchronization. But with
randomization, the rate is not uniform at the bottleneck and
packets from flows are dropped after differing times due to
the extra delay incurred due to randomization. This means
that sources decrease their windows at different times and
hence the periods of increase and decrease are not as syn-
chronized as in Paced TCP. Also due to non-uniform rate
a single source may lose two packets while some other
source may not lose packets at all for the time being. So the
congestion epochs for different flows get out of sync and
the network utilization is higher. But the nice property that
comes because of randomization is that the source which
has lost packets once is very less likely to lose again (this
may not be the case with deterministic TCP for some pa-
rameter settings [7]), thereby ensuring that over a larger
time scale the rate distribution is fair. We also note that the
probability of two packets coming nearly back to back is
significant only when the window size is large. This means
that the probability of multiple packet drops will be very
low if the window size is small, thereby reducing timeouts.

IV. IMPLEMENTATION AND SIMULATION SETUP

We have implemented Randomized TCP in the network
simulator ns. For our implementation, we used the conges-
tion control and loss recovery mechanisms of TCP Reno
and thus Randomized TCP has the usual slow-start and
fast recover and retransmit mechanisms. For the simula-
tions reported in this paper, we disabled the delayed ac-
knowledgments option.

Figure 1 shows the topology used in the simulations.

The access links were configured at a rate 4 times greater
than that of the bottleneck link. All the links use Drop Tail
queues unless otherwise specified. Default settings for the
simulations are a round-trip time of 100ms, a bottleneck
bandwidth of 4Mbps and a buffer of 25 packets. The max-
imum advertised window is set sufficiently high so that it
does not constrain the actual window. We use a maximum
segment size of 500 bytes.

We evaluate the performance of randomized TCP for
the following set of metrics: average throughput, fairness,
drop rates, timeouts, latency and synchronization. We
characterize fairness using the modified Jain’s fairness in-
dex, [5], [2]. Jain’s fairness index is defined as

(X . RTT;)?

S = ST, @ RTTP)

(D

where z; is the throughput of the ‘" flow, RT'T} is the
round-trip time of flow ¢ and n is the number of competing
flows.

To study the synchronization of flows we use the co-
variance between the congestion window of two compet-
ing flows. Flows would be synchronized if their windows
increase and decrease simultaneously. In this case both
flows’ windows (say w; and ws) would be above or below
their mean values at any time ¢, i.e. (w1 (t) —wy) (w2 (t) —
wo) > 0. So the cross-covariance coefficient of synchro-
nized flows would be positive. In the case where the flows
are totally out of sync, (wi(t) — un)(wa(t) — we) < 0,
since when one flow has a large window, the other would
have a smaller window and vice versa. So the cross-
covariance coefficient of out of sync flows would be nega-
tive. This shows that the larger the cross covariance coef-
ficient the more synchronized the flows are and vice versa.

V. RESULTS

In this section we present the simulation results. We
first, observe the effect of bottleneck bandwidth, buffer
sizes and RTTs on our tunable parameter, the randomiza-
tion interval [in section V-A. Using these simulations we
propose a value of the interval for optimal performance.

We then evaluate the performance of Randomized TCP
with both bulk and short transfers. For bulk transfers
we consider two cases, (a) when all the flows have the
same RTT and (b) when each flow has a different RTT
and the results are reported in Section V-B. Randomized
TCP’s performance for Web like transfers is investigated
in sectionV-C. For this case we vary the transfer load from
10 packets to 2500 packets. We also calculate the degree
of synchronization, using Covariance Coefficients, of Ran-
domized TCP for both Bulk and short data transfer. We,
also evaluate Reno and Paced TCP for each of these cases

M‘\
— 3Mbps ——

e 4 Mbps
0,08~ ~-- 5Mbps B
— 6 Mbps
e 10 Mbps

0.06 - —

Rates

0,02+

800 T 1

— 3Mbps

4Mbps
~-= 5Mbps
o 6Mbps | g
+—s 10Mbps

— 3Mbps
= 4 Mbps
5 Mbps
-~ 5Mbps
- 10 Mbps

Z a0 f"v‘\\\\\‘:

""""" -1 300 -

Randon

(a) Losses

Randomi

(c) Timeouts

Fig. 2. Losses, Throughput and Timeouts for 30 flows as a function of randomization interval, for different values of bottleneck

bandwidth.

and compare the performace against that of Randomized
TCP.

In Section V-E, we investigate the interaction between
Randomized TCP and Reno, for fairness, throughput,
losses, timeouts and phase effects. We also study the fair-
ness properties of Randomized Binomial competing with
Randomized TCP.

A. Effect of Randomization Interval

The randomization interval has a significant impact on
the performance of Randomized TCP, and hence its char-
acterization is of utmost importance. In this section we
study the effect of change in bottleneck bandwidth, buffer
size, number of flows and round-trip times on throughput,
number of losses, timeouts as a function of the random-
ization interval. Through these simulations we obtain the
optimal value of randomization interval.

A.1 Different Bottleneck Bandwidth

Figures 2 (a, b and c) plots the loss rates, timeouts and
the throughput, respectively, for a setup of 30 flows as a
function of randomization interval. The buffer size is lim-
ited to one-fourth the delay bandwidth product. It can be
seen that as the randomization interval increase to 1, the
loss rates and the timeouts drops, while the throughput in-
creases or remains almost the same. Figures 3 (a, b and c)
show similar plots for losses, timeouts and throughput for
a set of 50 competing flows. Again it can be seen again that
a randomization interval value of 1 is the best for almost
all the cases. However, in case of a bottleneck of 3Mbps,
the optimal value seems to be around 0.9. This is because
the fairshare of each flow is less than 2 packets (Bandwidth
delay product for 50 flows and 3 Mbps is 75 and with one
fourth buffer size, the fair share for each flow is less than
2).

A.2 Different Buffer Sizes

In order to evaluate the effect of buffer sizes, we vary the
buffer size at the bottleneck from one-fourth of bandwidth
delay product to one bandwidth delay product. Again, we

plot the losses, throughput and timeouts for 30 flows as
a function of randomization interval. Figure 4 show the
effect of buffer size.

A.3 Different RTT

In this simulation setup we varied the RTT of every flow
from 80ms to 120ms, i.e., every flow had a unique RTT
in between 80ms and 120ms. Again, we plot the losses,
throughput and timeouts for 30 and 50 flows as a function
of randomization interval. Figures 5 show the effect of
varying RTT.

From the above simulations it is evident that for mod-
erate to large number of flows, a higher value of random-
ization interval results in increased throughput and lower
losses and timeouts. From the Figures 5 we can conclude
that a randomization interval value of 1 suits almost all
the simulation values. Randomization interval of 1 means
that inter-packet time intervals can lie anywhere between 0
and 2rtt/cwnd. This means that packets are randomized
the most and this results in more scope for breaking of
synchronization, thereby resulting in better performance.
If the number of flows is decreased to a very small num-
ber, then a larger randomization interval would cause more
variance and the best randomization interval would intu-
itively be less than one. Indeed for less than 5 flows in
the bottleneck we observed a lower value of randomiza-
tion interval as the optimum. But since any bottleneck in
the Internet has typically more than 5 flows, we use this
interval in all our subsequent simulations.

B. Bulk Data Transfer
B.1 Multiple Flows

Figure 6 plots the throughput, loss rate and the num-
ber of timeouts for Reno, Paced and Randomized TCP.
Though Reno, Paced and Randomized have the same
throughput the losses are more for Paced. This is be-
cause in slow start, Pacing delays the congestion signal
and hence looses a larger number of packets. Also, it is to
be noted that throughput for Randomized is slightly worse

02 T 02 2000 .
— 3 Mbps
— 3Mbps
4 Mbps T .| P
- SMbps || | eemee 4Mbps
-~ 6Mbps ~-= 5Mbps
0.15 10 Mbps — 0.16 — 3Mbps - 1500 [~ +— 6Mbps. —
R 4 Mbps +—s 10Mbps
z - 5 Mbps z
4 S 0041 -~ 6 Mbps i B
g = —-- 10 Mbps £
3 = =
&0l 5 5 1000
3 5 3
ST g]
E 00 “
005 ... 7 300
o 0.08 1~ =
0.06 /\/\/\/\/\’;
0 | . | . I . I . | . 0 | | I |
0 05 1 0 0.2 0.4 0.6 0.8 1 0 02 04 0.6 08 1
Randomization Interval Randomization Interval Randomization Interval

Fig. 3. Losses, Throughput and Timeouts for 50 flows as a function of randomization interval, for different values of bottleneck

bandwidth.

0.08

________ 0128

0.07

"é.‘.
. 2 0126
4 b
2 2
= £
T TN— 2 0124
- £ -
S g
005 Tl A
e 0.122
0.04 . 0.12 L L

T T 700 T T T T T

-= 025
050
10 650

600

Number of Timeouts

450

400 . | . I . I . |

0.4

Randomization Interval

Randomization Interval

06

Randomization Interval

(a) Losses (b) Throughput (c) Timeouts
Fig. 4. Losses, Throughput and Timeouts for 30 flows as a function of randomization interval, for different values of bottleneck
bandwidth.
0.2 T 02 T T T 900 T T T T T T
0.16— soor]
2_ 0.16 - - é
0141 z g
< Zon- - < 700~ -
ST T N o E« ‘:
T E 0.12 — ;
0.1
600 |= -
0,08 01 | /Vv\\
7\
0.06 . | . P e e E P D ettt e 500 . I . I . I . I .
0 05 1 0.2 04 0.6 08 1 0 0.2 0.4 0.6 08 1
Randomization Interval Randomization Interval Randomization Interval
(a) Losses (b) Throughput (c) Timeouts

Fig. 5. Losses, Throughput and Timeouts for 30, 50 flows as a
varies from 80ms-120ms, the bottleneck bandwidth is 4Mbps

than that of Pacing and Reno for flows less than 5. How-
ever, as the number of flows increase Randomized tends to
do the best of the lot.

B.2 Synchronization in Multiple Flow Bulk Data Transfer

We ran separate simulations with 2, 3, 10 and 25 flows
of Reno, Paced and Randomized TCP and calculated pair-
wise covariance coefficients. The bottleneck bandwidth
was 4Mbps and all the flows had a same round-trip time of

function of randomization interval, for varying RTT. The RTT
and the buffer size is 25 packets.

0.1 seconds. The simulation was run for 1000 seconds and
the congestion window for each flow was sampled using a
sample interval of 0.1 seconds, i.e.,the congestion window
was sampled once every RTT. This sample set was then
used to calculate the pairwise covariance coefficients. The
buffer was kept at one fourth the bandwidth delay product.

In our first simulation with 2 flows, we varied the bottle-
neck bandwidth from 3Mbps to 5 Mbps while keeping the
buffer fixed at 25 packets. Table I shows the covariance co-

0.8

0.05

0.6

04

Throughput (in Mbps)

02

Number of Flows

(a) Losses

0 . | R . | . |

Number of Flows

(b) Throughput

1000

00|~ L=~ Randomize:

0 I . | . | .
0 10 20 30 40 50

Number of Flows

(c) Timeouts

Number of Flows

(d) Fairness

Losses, Throughput, Timeouts and fairness with Bulk Data transfer , each flow having same RTT.

Fig. 6.
Bandwidth | Reno Paced | Randomized
3 Mbps 0.4254 | -0.4124 0.1721
4 Mbps 0.3152 | -0.1839 0.1604
5 Mbps 0.6700 | -0.3302 0.0799
TABLE I

COMPARISON OF COVARIANCE COEFFICIENT FOR A TWO
FLOWS FOR TCP RENO, PACED AND RANDOMIZED.

efficients for each of the flows. It can be inferred, that the
synchronization in Reno increases as the bottleneck band-
width increases. However, Paced and Randomized TCP
keep the synchronization low. Paced TCP in fact is out
of phase synchronized. Also, it is interesting to note that
while the synchronization increases in Reno with increase
in bottleneck bandwidth, it remains constant or decreases
with Paced and Randomized. Negative values of covari-
ance coefficient show that Paced TCP is out of phase syn-
chronized.

In our second simulation with 3 flows, we kept the bot-
tleneck bandwidth constant while varying the simulation
time. Covariance coefficient values are tabulated in the
table II. Again, it is evident that Reno is the most synchro-
nized and Paced TCP is out of phase synchronized. Ran-
domization interval of 1, is not optimized for small flows

Flow Pair | Reno Paced | Randomized
(1,2) 0.5183 | -0.1454 0.2525
(1,3) 0.5416 | -0.1537 0.1422
(1,4) 0.3492 | -0.1833 0.1535

TABLE II

COMPARISON OF COVARIANCE COEFFICIENT FOR A THREE
FLOWS FOR TCP RENO, PACED AND RANDOMIZED.

(flows [t 5) and hence pacing out performs randomized
TCP here, though both are able to break synchronization.

Figures 7(a) and 7(b and c) plot the pairwise covariance
coefficients for 10 and 25 flows. (Since the graphs for 25
flows are not visible on one graph we plot it in two. Fig
7(b) plots the covariance for Reno and Random and 7(c)
plot it for Random and Paced.) The y axis of the graph
plots the covariance coefficient against the pair of flows
on X axis, i.e., each unit of x axis corresponds to a pair
of flows, starting in the order (1,2), (1,3), ..., (2,3)
Again, both Paced and Randomized TCP break synchro-
nization while Reno is highly synchronized. Also, as the
number of flows start increasing, Randomized TCP starts
to get better than Paced TCP.

02 T T T T —— 7

i i it i i i
085 i i i ;

015

ll

[. P R |
100 150 200 01

n 1 n n 1 n
0 50 100 150 200 250 300

Flow Pairs Flow Pairs Flow Pairs

(a) 10 flows (b) 25 flows (c) 25 flows

Fig. 7. Covariance coefficients for (a) Reno, Paced and Randomized (b) Reno and Randomized, (c¢) Paced and Randomized

Number of Flows

(a) Throughput

2000 T

Number of Flows

(b) Fairness

1000 I

Number of Timeouts

Number of Flows

(c) Loss Rates

Number of Flows

(d) Timeouts

Fig. 8. Throughput, Fairness, Loss Rates and Timeouts for a set of flows where each flow has a different RTT.

B.3 Multiple Flows with Different Round Trip Times

To study the performance of Randomized TCP with dif-
ferent RTT values for flows, we varied the RTT of each
flow. The flow RTT’s were in between 80ms - 120ms.
Figure 8 shows the throughput, fairness, loss rates and
timeouts as the number of flows are increased from 10 to
50. Randomized TCP is the most fair, also the through-
put achieved is marginally higher for Randomized TCP.
However, it is interesting to note that Pacing also achieves
almost the same performance as Randomized TCP. TCP
Reno, maintains its bias against flows with longer RTT
(TCP throughput is inversely proportional to the RTT),
which is shown by the fairness graph. Because of this bias,
Reno’s fairness curve is lowest. In [1], the authors contend
that bias of TCP against longer RTT flows is considerably
reduced with RED gateways due to uniform distribution of

losses over time. The similarity of our simulation result to
this indicates that randomization succeeds in distributing
losses over time (to a certain extent), thereby decreasing
TCP’s bias towards long flows. Also, the different RTT
value for each flow, de-synchronizes the TCP Reno flows.

C. Short Flows

In this section we present the performance of Random-
ized TCP for short flows. Short flows are defined as flows
who have a small amount of data to be transferred. This
is more representative of Web transfers. In this simula-
tion we used a bottleneck link of 4Mbps with a round-trip
time of 0.1 seconds. The buffer was fixed at one fourth
the delay-bandwidth product. 25 flows were always main-
tained in the network. As soon, as any flow finishes a new
flow initiates transfers. We varied the the workload from

Latency (in seconds)

o . . | . .
0 50 100 150 200

Flow Size (in packets)

(a) Short Workloads

i L L L L L L L L L L
0 500 1000 1500 2000 2500 3000

Flow Size (in packets)

(b) Moderate Workloads

Fig. 9. Latencies for Reno, Paced and Randomized for short and moderate Web like Workloads

10 packets to 2500 packets. Figure 9 (a and b) plot the
latencies for Reno, Paced and Randomized TCP. For very
short flows, i.e. for a workload of 10 packets to 200 pack-
ets, TCP Reno performs the best while Pacing performs
the worst. Randomized TCP’s performance though bet-
ter than Pacing is not as good as Reno’s. This can be at-
tributed to the randomness which has been introduced in
pacing intervals. Because of this randomization, Random-
ized TCP breaks ties and achieves better performance than
Paced. Reno however, sends packets in bursts and is able
to complete most of the transfers in the slow start. For
workloads greater than 200 packets, Reno still performs
the best, though the difference in the latencies for Reno
and Randomized reduce as the workload increases. For
Pacing, new flows starting in the slow start saturate the
network. Due to late congestion signals in Pacing, many
flows, even those who are in congestion avoidance, simul-
taneously drop packets thus severely diminishing Paced
TCP’s performance [2]. Reno performs better because
Reno flows send packets in clusters, a burst from a par-
ticular flow in slow start has only local effect; it does not
effect all flows [2].

Figure 10 plots the covariance coefficients for Paced and
Randomized TCP. In Paced TCP packets reach the bot-
tleneck at an uniform rate with near perfect interleaving.
This causes all sources to lose packets, thereby resulting
in all the sources cutting down their windows together, and
hence higher covariance. But with randomization, the rate
is not uniform at the bottleneck and packets from flows
are dropped after differing times due to the extra delay
incurred due to randomization. This means that sources
decrease their windows at different times and hence the
periods of increase and decrease are not as synchronized
as in paced, resulting in a decreased covariance coefficient
between the flows.

This explains the lower covariance coefficient values for
Randomized as compared to Paced TCP.

Covariance Coefficients

I I I
> 50 100 150 200 250 300

Flow Pairs

Fig. 10. Covariance coefficients for Paced and Randomized
TCP for a transfer of 2500 packets.

D. Binomial Congestion Control Algorithms

Binomial congestion control algorithm was proposed in
[3] for streaming audio and video applications. In [3], the
authors show that these algorithms beat down TCP when
sharing a drop-tail gateway and hence suggest the use of
RED gateways to maintain fairness. This unfairness is due
to unequal distribution of drops amongst these flows. This
behavior is seen in figure 11 a) and c). When we incor-
porate randomization into binomial schemes as well and
make it compete against randomized TCP, we see a marked
improvement in fairness as in figure 11 b) and d), due
to the by now familiar reasons of de-synchronization and
more uniform distribution of losses. However if Random-
ized binomial scheme competes against normal TCP, then
fairness improves as compared with figure 11 a) and c) but
is worse than figure 11 b) and d, which is expected. The
last set of graphs can be accessed in tech report [4] and
have not been included here due to space considerations.

E. Interaction of Randomized TCP with TCP Reno

In this section we will look at the effects of multiplexing
Normal TCP and Randomized TCP on the same link. In
[2], the authors show that Paced TCP gets beaten down by
Normal TCP, when multiplexed on the same link. This is
because a single paced connection is more likely to have at
least one of its packets encounter severe congestion when
multiplexed with a bursty connection [2]. This problem is
the same as a source’s packets getting synchronized with

80 H-

Congestion Window

YL . . | . I 1 .
() 20 40 60 80 100

Simulation Time (seconds)

(a) IIAD with Reno

100 T T T T T

80 H- E

Congestion Window

: | | |
o 20 40 60 80 100

Simulation Time (in seconds)

(c) SQRT with Reno

100 T 9

80 — —

Congestion Window

a0 H i =

20 A E i i i H

i . i . [I : |
[20 40 60 80 100

Simulation Time (in seconds)

(b) TAD with Random

100 T T T T T

80 (- —

Congestion Window

| L !
o 20 40 60 80 100

Simulation Time (in

(d) SQRT with Random

seconds)

Fig. 11. Performance of Binomial Congestion Control Algorithms with Randomization

TCP Type | Throughput | Losses | Timeouts
Reno 480.21 118 6
Paced 351.86 202 28
TABLE III

COMPARISON OF THROUGHPUT (IN PKTS/SEC), LOSSES
AND TIMEOUTS FOR TCP RENO AND PACED.

the buffer overflow event.Hence that flow faces a dispro-
portionate number of losses and hence a lower through-
put [7]. This effect is reproduced in our simulations as is
shown in Table III.

When Randomized TCP is multiplexed with Normal
TCP, the fairness improves considerably as is seen in Table
IV. This is primarily due to two reasons
o Modifying the increase factor to account for the extra
delay due to randomization
« Removal of synchronization of the source to buffer over-
flow events, thereby ensuring equitable distribution of
drops

F. Reduction of Phase effects

In [7] the authors show that phase effects can cause
a source to get synchronized and lose a huge number of
packets and get a very low throughput. The authors also
note that an appropriate randomization included in the de-
lay would reduce the phase effects. We performed simu-

TCP Type | Throughput | Losses | Timeouts
Reno 389.31 162 22
Random 408.92 210 32
TABLE IV

COMPARISON OF THROUGHPUT (IN PKTS/SEC), LOSSES
AND TIMEOUTS FOR TCP RENO AND RANDOM.

lations with one shorter RTT source(60 ms) and another
longer RTT source(80 ms) and for differing capacities.
We find that when both are normal TCPs, phase effects ex-
ist as expected. But even if we randomize one source (in
this case, the shorter source), we find that phase effects are
considerably reduced as seen in Table V. This means that
even incremental deployment of Randomized TCPs would
benefit the entire group of users.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a modification to the TCP,
called Randomized TCP. In this scheme, we space suc-
cessive packet transmissions with a time interval A =
RTT(1+ x)/cwnd, where x is a zero mean random num-
ber drawn from an Uniform distribution. We showed that
Randomized TCP reduces the synchronization and phase
effects prevalent with current implementations of TCP as
well as in Paced TCP. Multiplexing of Randomized TCP
with TCP Reno helps in breaking synchronization and in-
creasing fairness. Consequently, it has high incentives for

Capacity: 2Mbps

RTT Type | Throughput | Losses | Time-
pkts/sec outs
Long Reno 119.81 684 176
Short Reno 298.93 581 34
Long Reno 166.11 320 52
Short | Random 196.3 353 43
Capacity: 3Mbps
RTT Type Throughput | Losses | Time-
pkts/sec outs
Long Reno 208.05 558 64
Short Reno 408.42 251 28
Long Reno 241.64 253 43
Short | Random 300.08 316 29
TABLE V

PHASE EFFECTS WITH AND WITHOUT RANDOMIZATION.

depolyment.

We also showed through simulations that, with both
bulk and short transfers, Randomized TCP had almost the
same throughput as Paced or TCP Reno. For a set of con-
nections with different RTTs it was shown that amongst
Paced, Reno and Randomized TCPs, Randomized TCP
had the best fairness, throughput and least drop rates and
timeouts. One can argue from here that Randomized TCP
ameliorates the bias of TCP Reno operating with Drop Tail
queues on connections with larger RTTs. Additionally,
when Randomized TCP is extended to other congestion
control algorithms, viz., the Binomial congestion control
scheme, there is a huge improvement in fairness, when
competing with Reno.

REFERENCES

[1] A. A. Abouzeid and S. Roy , “Analytic Understanding of RED
Gateways with Multiple Competing TCP Flows”, Proceedings of
IEEE GLOBECOM, November 2000.

[2] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the per-
formance of TCP pacing,” Proceedings of IEEE INFOCOM, pp.
1157-1165, Tel-Aviv, Israel, March 2000.

[3] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Al-
gorithms”, Proc. IEEE INFOCOM Conf., Anchorage, AK, April
2001.

[4] K. Chandrayana et. al, “On Randomizing the Sending Times in
TCP and other window based algorithms”, RPI ECSE Networks
Laboratory Technical Report, ECSE-NET-2001-1, July 2001

[5] D-M. Chiu abd R. Jain, “Analysis of increase and decrease algo-
rithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1-14, June 1989.

[6] S. Floyd, “Connections with multiple congested gateways in
packet-switched networks Part 1: One-way traffic,” Computer
Communication Review, vol.21, no.5, pp. 30-47, Oct 1991.

[71 S. Floyd and V. Jacobson, “On traffic phase effects in packet-

10

switched gateways,” Internetworking: Research and Experience,
vol. 3, no. 3, pp. 115-156, September 1992.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for
TCP congestion avoidance,” IEEE/ACM Transactions on Network-
ing vol. 1, no. 4, pp. 397-413, August 1993.

[9] E.Hashem, “Analysis of random drop for gateway congestion con-
trol,” Report LCS TR-465, p. 103, Laboratory for Computer Sci-
ence, MIT, Cambridge, MA, 1989.

[10] J. Ke and C. Williason, “Towards a Rate Based TCP Protocol for
the Web”, Proceedings of MASCOTS, San Francisco, CA, August
2000.

[11] M. May, T. Bonald and J.-C. Bolot, “Analytic evaluation of RED
performance,” Proceedings of IEEE INFOCOM, pp. 1415-1424,
Tel-Aviv, Israel, March 2000.

[12] J. Mogul, “Observing TCP dynamics in real networks,” Proceed-
ings of ACM SIGCOMM, pp. 305-317, Baltimore, MD, August
1992.

[13] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP
Reno performance: A simple model and its empirical validation,”
IEEE/ACM Trans. on Networking, vol. 8, no. 2, pp. 133-145, April
2000.

[14] S. Shenker, L. Zhang and D. Clark, “Some observations on the dy-
namics of a congestion control algorithm,” ACM Computer Com-
munications Review, vol 20, no. 4, pp. 30-39, October 1990.

[15] L. Zhang, S. Shenker, and D. Clark, “Observations on the dy-
namics of a congestion control algorithm: The effects of two-way
traffic,” Proceedings of ACM SIGCOMM, pp. 133-147, Zurich,
Switzerland, September 1991.

APPENDIX

Consider a Randomized TCP connection with a constant
window size of w. Let the real RTT for the connection be a
constant denoted by R. Each packet is sent after a time eual
to R(1 + z)/w where z is a Uniform random variable be-
tween [—1I, I] (The optimal value of this interval is shown
to be 1 in section V-A, but presently we treat it more gen-
erally). Let the first packet be sent at time ¢ = 0. Then
the timer for the w + 1* packet of the connection will be
scheduled at time, say ¢, such that

t1 = R(1+ 1 > @) (2)
Wi

where x; is the random value for the i** packet in the win-
dow. The ;s are independent and identically distributed.
The effective RTT of the flow is the given by the time when
(w + 1)* packet is sent. In the absence of random varia-
tions in real RTT, the ACK for the first packet comes ex-
actly after time R. If)" | z; > Othen ¢; > R and we will
send the (w + 1)™ packet at time #;. Else, the (w + 1)
packet will be sent after a random time %ty after the ack
arrival, where y is drawn from an uniform distribution on
[0.1].

Thus the effective RTT can be expressed as

B R(l + 1 E;'Uzl sz) w.p. P{E%"zl T > 0}
RTTeff - { R(l + JZZ) Ww.p. P{Eiuzl z; < 0}
(3)

where w. p. is short for “with probability”. Then, the mean
effective RTT, RTT s, can be expressed as

RTT,;; = {RO+ - BY o] (Y > 0}
=1 =1

P{zu}:mz > 0} + {R(l +
=1

g |<

)} P < 0}

where y is the mean of y equal to I/2. Since z; follows
an Uniform distribution around zero, its easy to see that
P{>iliz;i >0 =P{3>iZ,z; <0} =0.5.

Assuming that the window size is sufficiently large to
invoke the the Central Limit Theorem we get

w

> xi~ N(0,07) 5)

=1

where
2 6
o =wx — (6)

The pdf of }_;” ; z; conditioned on >~} ; z; > 0 can be
found out to be twice that of the gaussian pdf multiplied
by the Unit step function. From this we can derive the
conditional mean as

i i 2uwI?
BIY o | (w2 0)] =/ 5 M
1=1 1

=

Plugging these back into the equation for RTTs, we
obtain

—_ 1 2wl? T
RTTeff:R-i—%(- +§) 3)

For Randomized TCP with increase parameter « and ef-
fective mean RTT, RT'T . ¢, the throughput is proportional

Vo
to RTTeff" To make the throughput same as that of TCP

R L _ _ RIT.y
eno (with« = 1 and RTT = R), weseta = 2 for
randomized TCP. In the real implementation, since win-
dow value changes with time, RTT' s changes with time
and so we change the value of « also with time

11

