
OpenCL-based Remote Offloading Framework for Trusted Mobile Cloud
Computing

Heungsik Eom, Pierre St Juste, Renato Figueiredo
Advanced Computing and Information Systems Laboratory

Electrical and Computer Engineering
University of Florida, Gainesville, Florida, USA

{hseom, pstjuste, renato}@acis.ufl.edu

Omesh Tickoo, Ramesh Illikkal, Ravishankar Iyer
Intel Corporation

2111 N.E. 25th Avenue
Hillsboro, Oregon, USA

{omesh.tickoo, ramesh.g.illikkal, ravishankar.iyer}@intel.com

Abstract—OpenCL has emerged as the open standard for
parallel programming for heterogeneous platforms enabling
a uniform framework to discover, program, and distribute
parallel workloads to the diverse set of compute units in the
hardware. For that reason, there have been efforts exploring
the advantages of parallelism from the OpenCL framework
by offloading GPGPU workloads within an HPC cluster envi-
ronment. In this paper, we present an OpenCL-based remote
offloading framework designed for mobile platforms by shifting
the motivation and advantages of using the OpenCL framework
for the HPC cluster environment into mobile cloud computing
where OpenCL workloads can be exported from a mobile
node to the cloud. Furthermore, our offloading framework
handles service discovery, access control, and data privacy
by building the framework on top of a social peer-to-peer
virtual private network, SocialVPN. We developed a prototype
implementation and deployed it into local- and wide-area
environments to evaluate the performance improvement and
energy implications of the proposed offloading framework. Our
results show that, depending on the complexity of the workload
and the amount of data transfer, the proposed architecture can
achieve more energy efficient performance by offloading than
executing locally.

Keywords-Mobile device, OpenCL, heterogeneity, paral-
lelism, virtual private networks, energy consumption

I. INTRODUCTION

Heterogeneity is now the norm in commodity computing
systems where platforms possess a mix of computing units
such as CPUs, GPU, and other specialized accelerators.
OpenCL has therefore emerged as the open standard for
parallel programming for these heterogeneous platforms.
By providing a common standard along with the necessary
toolchain, OpenCL enables a uniform framework to discover,
program, and distribute parallel workloads to the diverse
set of compute units in the hardware. Graphics process-
ing units (GPUs), in particular, have reached the extended
coverage due to their rapidly expanding use in general
purpose computing (GPGPU) with parallel programming
of the OpenCL standard. For that reason, there have been
efforts exploring the advantages of parallelism from the
OpenCL framework by offloading GPGPU workloads within
an HPC cluster environment [1], [2]. The primary motivation

for offloading within a cluster is for more efficient utilization
of resources by allowing multiple compute nodes to share the
same GPU for general purpose computing. These researchers
clearly demonstrate that OpenCL (and CUDA)-based remote
offloading is a viable option which saves power through
more efficient sharing of heterogeneous compute units over
the network despite the communication overheads.
In our work, we shift this motivation from the HPC

cluster environment to mobile platforms by considering a
different perspective to this expanding body of research
by adapting the OpenCL offloading approach to a mobile
cloud computing scenario. Since previous works focused
mainly on offloading OpenCL workloads in HPC cluster
environments with high bandwidth and low latency between
the nodes, it was easy to realize and assess the advantages.
However, the advantages are not as clear in the mobile cloud
computing scenario where OpenCL workloads are sent over
the wide area on network links with much lower bandwidth
and higher latencies than cluster environments. Moreover,
since workloads are traversing untrusted networks in the
wide-area, a layer of network encryption is necessary to
ensure privacy and some level of the trust of the results
from the remote compute node.
This paper presents an OpenCL-based remote offloading

framework designed specifically for mobile cloud computing
where OpenCL workloads can be exported from a mobile
node (i.e. an Android device) to the cloud (i.e. an Amazon
EC2 instance with GPU access). This remote offloading
framework consists of the following components: 1) a cus-
tomized RPC system with optimizations for network tasking
and data marshalling, 2) a service discovery mechanism
which selects the compute node with the lowest latency,
and 3) a virtual private networking layer which provides
transparent network encryption without any modification at
the application layer. Our system is implemented as a wrap-
per library around the OpenCL API; thus allowing trans-
parent integration of the OpenCL API with our framework
without any code modification. The offloading framework
also makes it possible for the developer to dynamically
discover accelerators located on remote computing nodes

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $26.00 © 2013 IEEE

DOI 10.1109/.42

240

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.42

240

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.42

240

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.42

240

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.42

240

2013 International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/ICPADS.2013.43

240

(i.e. in the cloud), virtualize these accelerators as if they
would be regular accelerators located on-board the local
mobile device, and then seamlessly offload computation to
the virtual accelerators.
An additional contribution of this work is a distributed

method of resource management which handles service
discovery, access control, and data privacy. Past mobile
offloading solutions have not investigated a service discovery
mechanism and they assume the static availability of remote
computing nodes with fixed endpoints. Instead, we advocate
a dynamic approach where eligible compute nodes are
discovered at runtime, allowing for a more flexible design.
We achieved this by using IP multicast-based discovery so
that the system periodically locates compute nodes available
within their networks.
Furthermore, our approach supports accessing resources

beyond the local private network, broadening the accessi-
bility to trusted compute nodes across the Internet and the
cloud. In fact, previous offloading research has focused on
sending workloads only to resources within private local area
networks where there is some guarantee that the data is con-
tained within the network. This is accomplished by utilizing
a social peer-to-peer virtual private network, SocialVPN [3].
The use of a peer-to-peer VPN with social features has
several benefits. First of all, by providing virtual private
IP addresses only to social peers, the endpoints discovered
through the VPN are deemed trustworthy by the user - creat-
ing a Social Area Networks. Secondly, the IP layer security
ensures data privacy and frees us from having to handle the
cumbersome tasks of cryptographic key management, and
socket layer encryption. Through SocialVPN, the state and
functions (called kernels in OpenCL) necessary for remote
execution are sent privately and the results are authenticated
and verified at the virtual networking layer.
Finally, we investigate the conditions when offloading

is more beneficial than local processing by strategically
selecting four types of workloads: 1) low state transfer and
low computation intensity, 2) low state transfer and high
computation intensity, 3) high state transfer and low compu-
tation intensity, 4) high state transfer and high computation
intensity. Our experiments show that it is more beneficial to
offload computation in cases of high computation intensity,
but in case of low computation intensity it is not always
efficient (depending on network conditions) to perform re-
mote offloading. We demonstrate the feasibility of offloading
workloads to the cloud; with matrix multiplication and N-
body physics simulation offloading showing improvements
in execution time and battery performance by over 50% in
network conditions representative of a 4G mobile connec-
tion. Therefore, although not all types of workloads benefit
from our hardware layer heterogeneous offloading; there
clearly exist a class of applications that can leverage this
approach.
The rest of the paper is outlined as follows. In Section II,

Figure 1. Private networking and node selection. Alice’s phone is part
of a SocialVPN network consisting of three eligible offloading targets.
SocialVPN is a P2PVPN which provides direct, end-to-end encryption.
Bob’s desktop is the best candidate for offloading because it has higher
bandwidth than the Amazon EC2 cloud node and higher processing
capabilities than Alice’s laptop.

we describe the motivation on our work. Section III provides
various components and their functions in our design. We
present an analysis of our prototype implementation and the
experimental results in Section IV. Finally, we conclude the
paper and explore future avenues for our work in Section V.

II. MOTIVATION

In this section, we describe a scenario that motivates our
approach. Figure 1 gives a general idea of one example
deployment scenario. Alice connects her smartphone to a
virtual private network (VPN) consisting of her laptop, Bob’s
desktop, and her virtual machine running on Amazon EC2.
Since each of these devices is running SocialVPN [3],
they automatically join the same virtual private network
creating a pool of trusted resources in a Social Device
Network. With this secure IP layer consisting of trusted
peers, our framework is able to use IP multicasting over
the VPN to discover nodes that are available for computa-
tion offloading. During the discovery process, our system
records the characteristics of each node in the network such
as bandwidth, latency, and processing capabilities. When
an application decides to offload some computation, our
framework dynamically determines the best node to use as
the remote offloading target. In many cases, for example,
if the bandwidth or remote processing capabilities are not
adequate, our framework may decide to simply run the
workload locally.
By linking to our library, the developer can transparently

access remote resources available via the SocialVPN, in-
cluding GPUs running on computing resources which is
more powerful than a mobile device. For example, if the
mobile device is connected to a virtual network consisting

241241241241241241

Figure 2. The overall system architecture.

of an Amazon EC2 GPU instance, and the workstation
of the mobile user, our extensions to the OpenCL frame-
work will automatically select the best candidate based on
available device capabilities and network conditions as the
target compute node for remote execution. Also, the use
of SocialVPN ensures that the computation is offloaded
securely to socially trusted nodes. This enhancement occurs
transparently to the developer and the user requiring only
code recompilation. We perform various experiments in our
analysis to demonstrate the feasibility of this integration.
The goal of our design is to provide an intuitive of-

floading framework that developers can integrate into their
application using well-adopted programming concepts. We
aim to extend the umbrella of heterogeneous computing to
include devices beyond the physical host platform. Currently,
many software developers utilize the OpenCL framework
to exploit on-board heterogeneous platforms. Popular soft-
ware projects, such as OpenCV and OpenSSL, are re-
implementing major portions of their functions to run on the
OpenCL platform [4]. Mobile SoC platforms, based on pro-
cessors such as ARM and Intel, are also starting to provide
OpenCL support on their architecture. The latest version of
the OpenCL specification allows for devices beyond CPUs
and GPUs to be accessed through the API. There is also
an industry momentum building up behind OpenCL with
the formation of new industry foundations to foster fast
adoption [5]. These considerations point to OpenCL API as
the emerging de facto standard for heterogeneous computing.

III. OFFLOADING FRAMEWORK

Our overall architecture consists of five main modules:
integration with the OpenCL API, RPC-based offloading
mechanism, runtime scheduler, decentralized resource dis-
covery feature, and trusted, private IP communication layer.
The overall system architecture is shown in Figure 2.

A. Transparent OpenCL API Integration

Since OpenCL is an open standard currently supported by
most of the major device manufacturers, we chose not to de-
viate from their API in order to minimize the learning curve
for developers. Latest revisions of the OpenCL specification
are extending the coverage to enable integration of a large

pool of heterogeneous hardwares under the API. Because
OpenCL is also a hardware level offloading framework,
it provides various functions that we can leverage in our
system. The OpenCL API possesses these set of features:
device discovery and enumeration, device selection and
customization, buffer management, job offload and status
queries. With these features, the application developer has
full control on the use of specific accelerators necessary
to optimize their application performance. Here we explain
how we extend each functionality to support remote offload-
ing.

Discovery and Enumeration. In the initialization phase
of the interface, the developer queries the platform for on-
board OpenCL-capable accelerators. The OpenCL frame-
work returns a list of accessible compute devices located on-
board the device along with their capabilities (e.g. graphics
cards, video decoders, cryptographic devices). We extend
this portion of the API by allowing the developer to discover
other OpenCL-enabled accelerators located on remote nodes
over the network. Hence, when the developer performs this
query on a mobile device, it may discover not just the mobile
GPU but also another GPU running on the cloud, as long
as they are part of the same virtual private network.
Selection and Configuration. In the standard OpenCL

framework, once presented with a list of devices, the devel-
oper selects one or more targets for computation offloading.
This selection is usually based on the characteristics of
each particular device, (e.g. number of compute units of the
accelerator, maximum number of work items, architecture,
latency and so on). By extending the discovery process
to include remote OpenCL devices over the network, this
selection and configuration process can become cumbersome
to the developer. Thus, our system can present just one
virtual device handle which represents the best offloading
node according to network conditions. Our analysis shows
that bandwidth and latency have the most impact on the
performance.
Workload State Transfer. Having selected a device, the

next phase is the actual offloading of the data and code
necessary to run remotely. The function to be executed
(called a kernel) is first sent either as C99 source code
or an LLVM-based intermediate language. Once transferred,
the code is compiled for the target accelerator. In order to
execute the kernel on the accelerator, the necessary state
has to be transferred to the device regardless of whether it
is local or remote. If the device resides on the host platform,
the task of buffer management simply involves copying
data from main memory to local storage accessible by the
accelerator. However if the workload is being offloaded to
a remote accelerator, then the buffers have to be managed
slightly differently. First, the data has to be marshalled and
copied into the networking stacks buffers then transported
over the network to the appropriate remote host. The data is
then copied from the remote hosts networking stack unto the

242242242242242242

accelerators own local storage. Upon completion, the output
buffers are copied back from the GPUs local memory to the
mobile devices memory over the network.
Resource and Failure Management. The final phase

of the OpenCL API is the ability to discover errors and
release its state and resources in a graceful manner. Each
function has its error parameter which keeps the developer
aware of the proper execution of the remote job. If an
error occurs due to an issue with the source code, or the
workload configuration, or any other hardware issues, an
appropriate error code is returned to the developer. In return,
the developer can release the various resources (e.g. buffers,
device handles) that are associated with the job. Once again,
we extend this functionality to support network failures
as well. In case of a disconnection, the appropriate error
code is returned to the developer who then performs the
necessary actions to clean up the state belonging to the job.
On the server, the necessary clean-up is taken as well by our
framework. Our decision to utilize the OpenCL framework
for computation offloading in mobile devices allows us
to leverage all of the functionalities already in place for
offloading computation locally from the CPU to an on-board
hardware accelerator.

B. RPC-based Computation Offloading

In order to support offloading on the remote node, we
create an RPC-based service which handles offloading re-
quests received over the virtual private network. In our
first attempt, we utilized SunRPC to provide the remote
procedure calling interface, serialization, and networking
capabilities. However, SunRPC provides many extra features
that were not necessarily efficient (for example, the use of
a portmapper daemon to discover the listening port of the
RPC service). SunRPC also initiates a new TCP connection
for each function call which incurs extra delay and poorer
network performance. In contrast, our design uses a single
TCP connection per offloading job thus achieving lower
latencies. By running an RPC service which exposes the
OpenCL API over the network, we provide a computation
offloading design that is lightweight in terms of argument
serialization and buffer management. Other approaches [2]
rely on more sophisticated communication primitives such
as MPI which require extra processing and memory resulting
in poor battery performance.

C. Runtime Scheduling

As previously mentioned, our enhanced OpenCL frame-
work provides developers with a list of accelerators (both
local and remote) to select as offload targets. However,
some applications developers may not want to bother with
the task of figuring out which devices would make a good
candidate for local versus remote offloading. Our framework
includes a simple scheduler that can use latency to determine
dynamically if a workload should be offloaded or run locally.

The default behavior is to offload the computation to the
node with the lowest latency. This is an overly simplistic
model which can be extended to consider various different
properties. In the future, we plan on supporting a more com-
plex set of conditions along with heuristics which optimizes
for better battery performance. The scope of this paper is
to differentiate which scenario is ideal for our offloading
framework; our analysis provides a base to develop a more
sophisticated scheduler moving forward.

D. Decentralized Resource Discovery

Current mobile offloading solutions rely on a centralized
service to provide this resource discovery capability. A
key differentiation of our approach is our decentralized IP
multicast-based service discovery subsystem. Because we
deploy our system on top of SocialVPN which enables
IP-multicasting over the Internet, we are able to leverage
existing LAN-based service discovery techniques. The dis-
covery process works in the following manner: the client
periodically polls the network for eligible offloading nodes
by sending a UDP datagram to the multicast IP address.
The SocialVPN router distributes the IP packet to every
node in the private network. The RPC-based service de-
scribed earlier has a UDP listening thread that waits for
service discovery request and responds to the request with
its computing capabilities using the requests unicast IP
address. The requester waits for a certain amount of time and
accumulates all the replies that it receives within that time
window. The requestor records their latency, bandwidth, and
processing capabilities and provides that to the scheduler.
The scheduler then determines which node will provide the
best performance and selects that node as the offloading can-
didate. Figure 3 depicts the decentralized multicast service
discovery.

E. Trusted Communication via VPN

The virtual networking component addresses two key
challenges of remote workload offloading – privacy and peer
discovery – while supporting unmodified TCP/IP applica-
tions to offload computation to remote accelerators. In order
to augment computing capabilities of the mobile platforms,
it is important to find trusted nodes that are not just in the
same local area network, but also geographically-dispersed
peers, and to do so dynamically and transparently to the
mobile application. SocialVPN ensures that peers anywhere
on the Internet appear to be on the same virtual LAN and
end-to-end encrypted peer-to-peer tunnels are abstracted as
virtual IP links among peers. By leveraging SocialVPN as
a trusted peer-to-peer messaging substrate, we are able to
use the Berkeley sockets networking interface to offload our
workload without any direct linking to SocialVPN itself.
Most peer-to-peer systems require integration with a P2P
library as well as a learning curve for learning its API.
Because SocialVPN provides virtual private IP addresses

243243243243243243

Figure 3. Decentralized multicast service discovery. 1) The mobile device sends on IP multicast packet to the SocialVPN software router running on the
local device. The SocialVPN router forwards the multicast packet to each device in private network who are running the SocialVPN software router locally.
2) Each remote endpoint sends back a unicast UDP packet to the mobile device. Each response also contains the accelerator’s computing capabilities. Our
system records the latency and computing capabilities which allow the scheduler to determine the best offloading node.

to peers instead of P2P addresses, it supports unmodified
applications.

IV. EVALUATION

In this section, we evaluate the implementation of the
OpenCL-based remote offloading framework for mobile
platforms in terms of the performance improvement and
energy consumption for mobile devices through real de-
ployment over local- and wide-area environments. We first
examine the overhead of adopting SocialVPN to the secure
communication between the client and the server since
SocialVPN utilizes its own encryption and IP tunneling.
Then, we characterize the benefits and costs of our remote
offloading framework through a series of experiments using
various OpenCL workloads.

A. Experimental Setup

In order to evaluate our remote offloading framework
under a variety of possible use case scenarios, we setup the
experiment using various hardware and network configura-
tions. First of all, our hardware setup consists of a client
and three server types. For the mobile client, we utilized
an Android tablet, Samsung GalaxyTab 10.1 equipped with
1GHz dual-core processor and 1GB RAM, and running
Android 3.1. One of the servers is a workstation with an Intel
3.0 GHz Core2 Duo processor running Ubuntu 12.04 with
8GB RAM. Second server has same features as first server,
but it is equipped with an Nvidia Geforce GT 640 GPU with
2GB RAM. Last configuration for the server is an Amazon
EC2 GPU instance with 16 vCPUs, 22.5GB RAM, and
two Nvidia Tesla GPUs running Ubuntu 12.04. We ran our
experiments on the different networks: 1) a LAN within the
lab with an average bandwidth of 6.5MB and 10ms latency,
2) the campus wireless network with an average bandwidth

of 2.5MB and 15ms latency, 3) the Internet connection to
Amazon EC2 with an average bandwidth of 0.17MB and
74ms latency.
We utilized OpenCL SDK code samples provided by

AMD APP SDK [6] and Nvidia [7] as the offloaded
workloads to measure the efficacy and the cost of our
remote offloading framework. We selected four workloads
each with different characteristics. Sobelfilter is an image
processing workload for edge detection, we classify it as
a high state transfer and low computation workload. The
second workload is an Hidden-Markov model workload,
a popular statistical tools for modeling sequences as well
as machine learning; this represents a low state transfer
and high computation workload. We also tested a matrix
multiplication as one of the workloads because it is a
common operation for scientific computing. Finally, an N-
body Physics workload which is a common mathematical
simulation method for modeling astronomical objects; this
is considered a high state transfer and high computation
workload. These workloads provide some insight into which
use cases best fit our mobile cloud offloading scenario
through our OpenCL-based offloading framework.

B. Overhead of SocialVPN

In our remote offloading framework, SocialVPN enables
mobile devices and remote resources to securely commu-
nicate which incurs some overhead due to encryption and
tunneling. In this section, we investigate the overhead of
SocialVPN with respect to the performance and energy con-
sumption. In order to measure the overhead of SocalVPN,
we have conducted the LAN experiments in which the client
offloads an OpenCL workload (Sobelfilter) to the server both
with and without SocialVPN. As shown in Figure 4 and 5,

244244244244244244

Figure 4. Execution time with and without SocialVPN.

Figure 5. Energy consumption with and without SocialVPN.

as the image size increases, the execution time and energy
consumption also increase. In the case of 480×270 of image,
for instance, offloading with SocialVPN takes 0.05 seconds
more than without SocialVPN while it takes 0.6s more to
offload 1920×1080 image which means that the overhead
ranges from 2.8% to 5.6%. In Figure 5, we also observed
the overhead ranging from 2.6% to 8.1% in terms of energy
consumption.

C. Performance and Energy Consumption Analysis

As mentioned above, we have utilized three types of
servers for the different servers computing capabilities: CPU
only-installed server, GPU-installed server and Amazon EC2
GPU cluster instance. For various network configurations,
we used a local area network in which the client and the
server directly connect via a wireless router, and a wide
area network using campus network and traffic shaping. For
Sobelfilter and matrix multiplication, we varied the image
and matrix sizes to measure the impact of the amount of
data transfer and computation. Also, Sobelfilter and matrix
multiplication require 7 and 8 of one-time argument setups
through the API called clSetKernelArgs which causes ad-
ditional overhead to setup the extra arguments for kernel
executions, respectively. For hidden Markov model, the
different number of states is used to vary the size of input;
however, the kernel execution is repeated 100 times each
requiring 10 of argument setup calls (i.e. total 1000 of

argument setup calls) which make the hidden Markov model
workload most communication-intensive. In contrast with
other workloads, however, N-body physics varies the number
of the iterations that the kernel is executed on the server with
a same data set processed for each iteration. Thus, regardless
of the number of iterations, the size of input and output data
is identical, but as the number of iterations increases, the
number of argument setup calls proportionally increases.
Performance. We observed a few cases where offloading

is faster than local processing for Sobelfilter as shown
Figure 6(a). For image sizes with dimensions 1440×810
and 1920×1080, OpenCL-based offloading in a LAN envi-
ronment has better performance than local processing, since
the server has relatively low latency to the mobile client,
and more powerful computing capabilities. On the other
hand, when the workload is offloaded over the wide-area
to Amazon EC2 GPU VM instance, the total execution
time takes longer than local processing. In the wide-area
scenario, the low bandwidth and high latency adversely im-
pacts the execution for a low computation workload such as
Sobelfilter. For smaller image sizes, however, 480×270 and
960×540, local processing is always faster than offloading
because the small gain from offloading to more powerful
compute node is easily offset by the data transfer overhead.
For matrix multiplication, in all the cases except for

160×320 of matrix size, it is evident that offloading is
much faster than local processing showing the speed-up
which ranges from 1.2X to 9.2X in Figure 6(b). In fact, the
computation for matrix multiplication has higher complexity
than Sobelfilter (the computation complexity for matrix
multiplication is O(n3) while Sobelfilter is O(n2)), which
means that matrix multiplication is able to gain more from
offloading to the remote server. Similarly as in the case of the
small image size (i.e. 480×270) for Sobelfilter, offloading
the small size of matrix multiplication (i.e. 160×320) is
slower than local processing.
Interestingly, in the case of hidden Markov model in Fig-

ure 6(c), the worst performance is shown when the workload
is offloaded to Amazon EC2. In order to execute hidden
Markov model, the kernel is repeatedly executed requiring
additional communication for each iteration. Consequently,
offloading to Amazon EC2, which has the highest latency
among our experimental setup, takes the longest time. In
addition, N-body physics structured with the same program-
flow as hidden Markov model presents the similar pattern
of the performance. Offloading to Amazon EC2 has worse
performance than offloading to other server due to the high
latency between the client and the server, but faster than
local processing which means that it is still more beneficial
to offloading to Amazon EC2 than local processing if no
local peer is available.
Energy Consumption. To profile energy consumption

of the mobile device we used PowerTutor [8] which is an
application for the variants of Android devices that displays

245245245245245245

(a) Sobelfilter (b) Matrix Multiplication

(c) Hidden Markov Model (d) N-body Physics

Figure 6. Execution time with various server setup

the power consumed by major components such as CPU,
network interface, LCD display, and GPS receiver. Every
experiment is repeated 5 times and the results presented in
the paper are the averaged values. Note that even though
some cases for Sobelfilter showed the benefits from of-
floading in terms of the total execution time, offloading
consumes more energy than local processing as shown in
Figure 7(a). This different result comes from the discrepancy
in the amount of power consumed by CPU and the Wi-
Fi networking card. According to our measurement data
profiled by PowerTutor, while CPU consumes 200∼220mW
per second in active mode, the Wi-Fi networking card
consumes about 710∼720mW per second in high power
mode. For that reason, it is possible that offloading consumes
more energy than local processing, even though offloading
is faster than local processing. However, in matrix multipli-
cation and N-body physics which result in high speed-up
by offloading, it is also observed that offloading also saves
energy consumption as shown in Figure 7(b) and (d).

V. RELATED WORKS

The research community has been investigating different
methods to offload computation for decades; however, re-
mote execution to the cloud has created new opportunities
to explore novel offloading solutions. In this section, we
discuss the most recent proposals for mobile computation
offloading.

Application Partitioning. This approach involves select-
ing portions of an application to execute remotely through
the use of a static or dynamic scheduler. In Spectra [9],
developers identify functions in the application that can be
offloaded to a remote server over RPC. By monitoring the
CPU, file I/O, and bandwidth, Spectra decides at runtime
which portions of the application should run locally or
remotely. MAUI [10] takes a similar approach but alleviates
the process by using many of the programming features in
the .NET platform such as method attributes, and the Reflec-
tion API. Through the .NET Framework’s virtual machine,
MAUI is able to dynamically serialize and ship remotable
methods and data to a server proxy, thus leveraging the
server’s superior processing capabilities while saving energy
on the mobile device. Cuckoo [11] takes a slightly modified
approach by focusing more on integrating with the Eclipse
IDE; however, it requires developers to implement both local
and remote versions of their functionality, whereas MAUI
only requires annotations from developers. Our approach
may be classified as application partitioning similar to
Cuckoo because developers are required to re-implement
portions of their code for the OpenCL runtime environment;
however, the developer does not have to worry about the
complications of shipping the workload to the remote device.
Thread Migration. The source code modification re-

quired for most partitioning schemes can preclude adoption

246246246246246246

(a) Sobelfilter (b) Matrix Multiplication

(c) Hidden Markov Model (d) N-body Physics

Figure 7. Energy consumption with various server setup

by many applications; thread and process migration, on
the other hand, can be achieved without any source code
modification. CloneCloud [12] achieves this by employing
thread migration in the Dalvik Java Virtual Machine (JVM)
by transferring all of the thread state (thread stack, necessary
heap objects and registers) to the remote virtual machine.
When the remote thread completes, the results are merged
back with the local Dalvik JVM memory stack. The au-
thors of COMET [13] developed a similar thread migration
technique by doing application VM synchronization through
a distributed shared memory (DSM) model. Our proposed
solution does not require any thread stack or heap synchro-
nization because the OpenCL framework requires explicit
declaration of input and output buffers for remote kernel
execution.
Application Migration. While the previous thread migra-

tion techniques can be technically challenging to implement
since they require memory synchronization between the
remote thread and other threads running locally, Application
migration does not have such requirements. Hung et al. [14]
describes an application migration design that leverages the
onResume and onPause events of an Android application
as the markers for process migration. The onPause event
occurs when a user switches to another application. The
Android system requires that application states are stored
on persistent storage in case the operating system decides

to shutdown in the case of low memory situation. Hence,
Hung et al. creates a solution which uses the onPause event
to force the application to save its state. The state is then
copied to a cloned VM running on the cloud and resumed
there until completion, then transferred back. Our design
automatically handles the state transfers between the local
and remote devices without relying on specific Android-
based events.
Distributed Offloading Framework. Various recent ap-

proaches have focused on a totally different model requiring
more effort from the developers. Proposals such as Mobile
MapReduce (MMR) [15], Sonora [16], and Serendipity [17]
all expose a distributed offloading framework for developers
to adopt. For example, MMR is a MapReduce system
optimized for the constrained networking conditions of
mobile devices by taking into account bandwidth and latency
for efficient mobile device performance. Sonora exposes a
distributed stream-based programming model which handles
workload distribution and failures in a mobile network.
Serendipity provides an offloading framework for intermit-
tently connected mobile devices and does not rely on cloud
services. Our approach can also be classified as a dis-
tributed offloading framework; however, instead of defining
the system from scratch, we reuse the workload offloading
paradigms of the OpenCL framework which provides more
familiar and widely supported interfaces for developers.

247247247247247247

VI. CONCLUSION

In this paper, we proposed the OpenCL-based remote
offloading framework for mobile platforms through So-
cialVPN. We implemented the prototype of our remote
offloading framework on the mobile platforms running An-
droid OS and built the dynamic resource discovery mecha-
nism in which the mobile user is allowed to dynamically and
transparently discover the resources through IP multicasting
on top of SocialVPN. Also, we characterized the benefits
and the costs of our framework in terms of total execution
time and energy consumption through real deployment of
the prototype in local- and wide-area networks. According to
our evaluation, depending on the complexity of the workload
and the amount of data transfer, the proposed architecture
can achieve more energy efficient performance by offload-
ing than executing locally. In fact, in the case of matrix
multiplication which is the computation-intensive workload,
offloading shows up to 9.2X speedup depending on the
matrix size, server’s computing capabilities and network
conditions while it saves energy consumption up to 76.8%.
We currently seek to real mobile applications suitable to

obtain the benefits from our remote workload offloading
framework such as face or voice recognition. With fault
tolerant design, it is also possible that mobile devices
switch offloading to other available resources in the case
of computing node failure.

ACKNOWLEDGEMENT

This material is based upon work supported in part by
the National Science Foundation under Grant No. 0910812,
0758596, 0855031, and 1265341. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-
Ortı́, “rcuda: Reducing the number of gpu-based accelerators
in high performance clusters.” in In proceeding of Inter-
national Conference on High Performance Computing and
Simulation(HPCS), 2010, pp. 224–231.

[2] S. Xiao, P. Balaji, J. Dinan, Q. Zhu, R. Thakur, S. Coghlan,
H. Lin, G. Wen, J. Hong, and W. chun Feng, “Transparent
accelerator migration in a virtualized gpu environment.” in
In proceeding of IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing(CCGRID). IEEE/ACM,
2012, pp. 124–131.

[3] P. S. Juste, D. Wolinsky, P. O. Boykin, M. Covington, and
R. Figueiredo, “Socialvpn: Enabling wide-area collaboration
with integrated social and overlay networks.” Computer Net-
works, vol. 54, no. 12, pp. 1926–1938, 2010.

[4] “Opencl module introduction in opencv,”
http://docs.opencv.org/modules/ocl/doc/introduction.html.

[5] “Heterogeneous system architecture foundation,”
http://hsafoundation.com.

[6] “Accelerated parallel processing(app) sdk
with opencl 1.2 support.” [Online].
Available: http://developer.amd.com/tools/heterogeneous-
computing/amd-accelerated-parallel-processing-app-sdk/

[7] “Nvidia opencl sdk code samples.” [Online]. Available:
http://developer.nvidia.com/opencl

[8] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and
automatic battery behavior based power model generation
for smartphones.” in In proceeding of International Confer-
ence on Hardware/Software Codesign and System Synthe-
sis(CODES+ISSS). ACM, 2010, pp. 105–114.

[9] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing per-
formance, energy, and quality in pervasive computing.” in
In proceeding of International Conference on Distributed
Computing Systems(ICDCS), 2002, pp. 217–226.

[10] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Ch, and P. Bahl, “Maui: making smartphones
last longer with code offload.” in In proceeding of Inter-
national Conference on Mobile Systems, Applications and
Services(MobiSys). ACM, 2010, pp. 49–62.

[11] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo:
A computation offloading framework for smartphones.”
in In proceeding of International Conference on Mobile
Computing, Applications and Services(MobiCASE), vol. 76.
Springer, 2010, pp. 59–79.

[12] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and
cloud.” in In proceeding of the European Conference on
Computer Systems(EuroSys), 2011, pp. 301–314.

[13] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao,
and X. Chen, “Comet: code offload by migrating execution
transparently,” in In proceeding of of 10th USENIX conference
on Operating Systems Design and Implementation(OSDI).
ACM, 2012, pp. 93–106.

[14] S. H. Hung, C. S. Shih, J. P. Shieh, C. P. Lee, and Y. H.
Huang, “Executing mobile applications on the cloud: Frame-
work and issues.” Computers and Mathematics with Applica-
tions, vol. 63, no. 2, pp. 573–587, 2012.

[15] M. A. Hassan and S. Chen, “Mobile mapreduce: Minimizing
response time of computing intensive mobile applications.”
in In proceeding of International Conference on Mobile
Computing, Applications and Services(MobiCASE), vol. 95.
Springer, 2011, pp. 41–59.

[16] F. Yang, Z. Qian, X. Chen, I. Beschastnikh, L. Zhuang,
L. Zhou, and G. Shen, “Sonora: A platform for continuous
mobile-cloud computing.” in In Technical Report, Microsoft
Research Asia, 2012.

[17] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura,
“Serendipity: enabling remote computing among intermit-
tently connected mobile devices.” in In proceeding of ACM
International Symposium on Mobile Ad Hoc Networking and
Computing(MobiHoc). ACM, 2012, pp. 145–154.

248248248248248248

