
qTLB: Looking inside the Look-aside buffer

Omesh Tickoo1, Hari Kannan2, Vineet Chadha3, Ramesh Illikkal1,
Ravi Iyer1, and Donald Newell1

1 Intel Corporation, 2111 NE 25th Ave., Hillsboro OR, USA,

1 Stanford University, Stanford CA, USA,
1 University of Florida, Gainesville FL, USA,

Abstract. Rapid evolution of multi-core platforms is putting additional stress
on shared processor resources like TLB. TLBs have mostly been private
resources for the application running on the core, due to the constant flushing of
entries on context switches. Recent technologies like virtualization enable
independent execution of software domains leading to performance issues
because of interesting dynamics at the shared hardware resources. The advent
of TLB tagging with application and VM identifiers, however, increases the
lifespan of these resources. In this paper, we demonstrate that TLB tagging and
refraining from flushing the hypervisor TLB entries during a VM context
switch can lead to considerable performance benefits. We show that it is
possible to improve the TLB performance of an important application by
protecting its TLB entries from the interference of other low priority
VMs/applications and providing differentiated service. We present our QoS
architecture framework for TLB (qTLB) and show its benefits.

1 Introduction

CMP architectures are increasingly used for server and workload consolidation [8] [9].
Industry trend is moving towards sharing the on-die and off-die platform resources
across multiple heterogeneous applications or VMs running simultaneously on
multiple cores of CMP systems. The success of CMP platforms depends not only on
the number of cores but also heavily on the other platform resources (cache, memory,
etc) available and their efficient usage. Traditionally, processor and platform
architectures have been designed to perform well while running a single application.
However, with the evolving software use models, CMP platforms are being geared
towards running multiple applications simultaneously. The rapid deployment of
virtualization [11] [6] as a means to consolidate multiple applications on a platform is
a prime example. When these disparate applications run simultaneously on CMP
architectures, the quality of service (QoS) that the platform provides to each
individual application will be non-deterministic (or chaotic) because it depends
heavily on the behavior of the other simultaneously running workloads. As expected,
recent studies [11] [16] [6] have indicated that contention for critical platform
resources (e.g. cache, memory, I/O) is the primary cause for this lack of determinism.
In this work we focus on the impact of virtualization on another major processor
resource: translation look-aside buffer (TLB).

In order to design efficient virtualized systems on a CMP platform, the key
challenge is to understand how micro-architectural features impact the performance of
workloads in such environments. Recent studies [3] [2] show that significant
performance overhead can be attributed to increased cache and TLB misses. TLBs are
used to reduce the overhead of address translations in paging systems such as the x86.
The TLB semantics mandate almost complete TLB flushes after context switches, in
order to maintain consistency. While previous studies have relied on measurements to
assess the performance impact of virtualization of existing workloads and systems, it
is important to understand the impact of this new use model in the context of
upcoming processor features like TLB tagging.

Typically, in a virtualized environment, process switches between different
virtual machines (VMs) lead to complete TLB flushes. In typical consolidation
environments, VM switching is often a very frequent event. Even though VMs in a
virtualized environment are often scheduled based on different schedulers (such as
BVT, SEDF in Xen) [11], the fun5damental problem of performance degradation due
to TLB flushing on a context switch remains the same due to uncontrolled assignment
and removal of TLB resources for applications running in different virtual machines.
In fact, the TLB flushing behavior during frequent VM switches mitigates the
advantage of faster address translations [2]. Our experimental results with SPEC CPU
2000 benchmarks support this argument. In the past, TLBs have been tagged with a
global bit to prevent flushing of global pages such as shared libraries and kernel data
structures. In some of the current system architectures, context switch overhead can
be reduced by tagging TLB entries with address-space identifiers (ASID). A tag based
on the virtual machine’s ID (VMID) could be further used to improve I/O
performance for virtual machines. New processor architectures, with hardware
virtualization support, incorporate features such as virtual-processor identifiers
(VPID) to tag entries in the TLB [4] [10]. This level of tagging increases the longevity
of TLB entries, and mitigates the performance penalty currently incurred on context
switches.

Recent studies on shared resource management have either advocated the
need for fair distribution between threads and applications, or unfair distribution with
the purpose of improving overall system performance. The work presented here aims
to extend these concepts to TLBs with a goal of improving the performance of an
individual application at the cost of the potential detriment of others, with guidance
from the operating environment. This is motivated by usage models such as server
consolidation where service level agreements motivate the degree of performance
differentiation [15] desired for some applications. Since the relative importance of the
deployed applications is best managed by the operating software environment, we
experiment with software-guided priorities (e.g. assigned by server administrators) to
efficiently manage hardware resources. We compare the use of software-guided
priorities (qTLB - QoS-aware TLBs) against non QoS-aware schemes. We also
present the effect of scaling the TLB sizes (instruction and data), on application
performance. Our full system simulation infrastructure is supplemented with detailed
performance models for the caches and TLBs with QoS tuning knobs to be used by
the system soft-ware. To our knowledge, this is the first study using full-system
simulation to evaluate quality of service for TLBs using virtualized workloads for a
CMP platform.

2. ANALYSIS METHODOLOGY

In this section, we present an overview of our full system simulation analysis
methodology. We choose to employ Xen VMM for workload characterization
because it is a de-facto para-virtualized (split I/O) open source VMM. In our test
framework we ported Xen VMM to run on a full system simulation environment. To
identify the hardware TLB entries belonging to different VMs we needed to pass the
VM information for each specific memory access to the hardware modules. We
accomplished this by modifying the Xen hypervisor to provide this information on
each context switch.

The Xen virtualized environment includes the Xen hypervisor, the service
domain (Dom0) with its O/S kernel and applications, and a guest, “user” domain
(DomU) with its O/S kernel and applications (Figure 1). This environment allows us
to characterize different applications for workload characterization. The DomU guest
uses a front end driver to communicate with a backend driver inside Dom0, which
controls the I/O devices.

To evaluate the TLB dynamics in virtualized environments, we need an
experimental framework that allows us visibility into both the hardware system
architecture and the software stack. We chose SoftSDV[17] simulator for our studies.
In the past, SoftSDV has been deployed to measure hardware resource usage under
virtualized execution environments [19]. The simulation setup is shown in Figure 1.
The execution-driven simulation environment combines functional and performance
models of the platform. For this study, we chose to abstract the processor performance
model and focus on detailed TLB models with QoS support to enable the coverage of
multiple phases and a long execution period of the workload.

SoftSDV Full System Simulator

Guest Domain
(Dom-U)

Service Domain
(Dom-0)

Simulated Physical Machine
Proc Memory IO

Xen Hypervisor

Virtual Machine

Proc Memory

Virtual Machine

Proc Memory IO

XenoLinux XenoLinux

IO
backend IO DriversApplication IO

Front end

Physical Machine

Proc MemoryMemory IO

A

B

C

SoftSDV Full System Simulator

Guest Domain
(Dom-U)

Service Domain
(Dom-0)

Simulated Physical Machine
Proc Memory IO

Xen Hypervisor

Virtual Machine

Proc Memory

Virtual Machine

Proc Memory IO

XenoLinux XenoLinux

IO
backend IO DriversApplication IO

Front end

Physical Machine

Proc MemoryMemory IO

A

B

C

Execution
Driven

Simulation

Virtualization
workload

Platform
Functional
Simulation

Abstract
Processor model

Cache
model

TLB
model

QoS Manager

Instruction
Trace

HW Arch.
Events

Execution
Driven

Simulation

Virtualization
workload

Platform
Functional
Simulation

Abstract
Processor model

Cache
model

TLB
model

QoS Manager

Instruction
Trace

HW Arch.
Events

HW Arch.
Events

Figure 1: Full system simulation environment Figure 2: Execution Driven Simulation
Includes: profiling methodology:
(A) Xen Virtual Environment virtualization workload,
(B) SoftSDV Simulator functional simulation mode &
(C) Physical Machine. performance simulation mode

Figure 2 summarizes the profiling methodology and the tools we used. The
following sections describe the individual steps in detail; these include (1) Full system
simulation with virtualized workload, and (2) Performance simulation with QoS
services. The SoftSDV simulation framework was extended to support TLB QoS [19].
The simulation environment provides us with the capability of changing the
underlying hardware architecture to evaluate architecture enhancements and their
impact on workload performance. We tagged the TLB entries with their
corresponding VMIDs, and added TLB QoS by enhancing the replacement algorithm.
Our environment supported monitoring of TLB resources per VM, enforcement of
QoS at the TLB level and an interface for software to communicate information about
the currently running VM and individual VM priorities.

We calculated TLB utilizations while concurrently running applications in a
virtualized environment. Figure 2 shows the QoS management module used to
communicate with the abstract TLB model to provide QoS services. We employed a
simple LRU based TLB replacement policy to evaluate the performance of various
applications. QoS analysis is performed by using application level priorities to
determine the percentage of TLB flushing and reservations. In addition, we
considered the locality and working sets of the benchmarks for evaluation of our
prototype. Section 3 discusses our proposed architecture in detail.

3. QOS-AWARE ARCHITECTURE

We propose a layered QoS architecture that implements static and dynamic QoS
policies. Our proposed QoS-aware TLB architecture consists of three primary layers:
priority enforcement, pri-ority assignment and priority classification.

The priority classification layer is responsible for identifying and providing e
QoS information i.e. priority levels of each running application (e.g. 0 for high and 1
for low) and the associated targets/constraints. As shown in Figure 3, this layer
requires support in the execution environment (either OS or hypervisor) as well as the
processor architecture. Operationally, support (in the form of a QoS API) is required
for the user or administrator to supply the required QoS in-formation to the execution
environment. The support in the execution environment is the ability to maintain the
QoS information in the thread state and the ability to save and restore it in the process
architectural state when the thread is scheduled to run. The support in the processor is
essentially a new control register called Platform QoS Register (PQR) needed to
maintain the QoS information for the run time. The execution environment sets the
PQR with the platform priority level of the currently running application. When static
QoS assignments are used, different priority levels can be directly mapped to various
resource utilization thresholds. In contrast, maintaining a pre-defined target
performance level of an application during run-time entails the need for dynamic QoS
strategies. The PQR register will be used to convey the mapping of priority levels into
resource thresholds (for static QoS) and the mapping of priority levels to tar-
gets/constraints (in case of dynamic QoS). For priority assignment, resource targets
are used for QoS level mapping, and to indicate the TLB occupancy thresholds for
each priority level. In this paper, we only used static QoS policies.

Figure 3 illustrates the priority enforcement layer in the architecture and
shows the components involved. The inputs to the enforcement layer are the tagged
memory accesses and the QoS re-source table. As shown in Figure 4, each line in the
TLB is tagged with a priority level in order to keep track of the current TLB space
utilization per priority level. The QoS resource table uses this information to store the
TLB utilization per priority level. This is done simply by incrementing the resource
usage when a new line is allocated in the TLB and decrementing the resource usage
when a replacement or eviction occurs.

Platform QOS
Register

Priority
Level

Resource
Targets

Memory
Accesses

Tagged Memory
Accesses

Static
QoS

policies

QoS API

Application User/
Admin

OS / VMM

Core

QoS Resources
TLB

QoS
Enforcement

Module

QoS Resource
Table

ThresholdUtilization

P
rio

rit
y

C
la

ss
ifi

ca
tio

n
P

rio
rit

y
A

ss
ig

nm
en

t
P

rio
rit

y
E

nf
or

ce
m

en
t

Platform QOS
Register

Priority
Level

Resource
Targets

Memory
Accesses

Tagged Memory
Accesses

Static
QoS

policies

QoS API

Application User/
Admin

OS / VMM

Core

QoS Resources
TLB

QoS
Enforcement

Module

QoS Resource
Table

ThresholdUtilization

P
rio

rit
y

C
la

ss
ifi

ca
tio

n
P

rio
rit

y
C

la
ss

ifi
ca

tio
n

P
rio

rit
y

A
ss

ig
nm

en
t

P
rio

rit
y

A
ss

ig
nm

en
t

P
rio

rit
y

E
nf

or
ce

m
en

t
P

rio
rit

y
E

nf
or

ce
m

en
t

Figure 3: QoS Architecture for TLB Resources.

The static QoS policy is implemented by modifying the TLB replacement
policy to be QoS aware. For each priority level, the utilization and the static QoS
thresholds are available (in the QoS Resource Table - QRT) on a per priority level
basis. If utilization of a priority level is lower than the specified threshold, then the
replacement policy works in normal mode using the base policy (like LRU). When
the utilization reaches the static QoS threshold, the QoS based replacement policy
overrides the LRU policy to ensure that a victim is found within the same priority
level (thus keeping the utilization for the priority level constant).

4. EXPERIMENTS AND RESULTS

The goal of our experiments is to study the impact of various TLB configurations on
virtualized workload performance. Keeping in mind that different applications have
different working set sizes, our experiments are designed to evaluate the interaction
between different applications at the TLB level. We also investigate the effect on
individual applications due to different TLB QoS management policies in virtualized
systems.

In following sections, we present the data TLB (DTLB) and instruction TLB
(ITLB) study results. It is important to evaluate the performance of ITLB and DTLB
separately because TLB access dynamics vary for data and instructions. We will first
focus on the DTLB.

QoSAware
Replacement

Algorithm

QoS Resource TableQoS Enabled TLB
ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority Level

QoSAware
Replacement

Algorithm

QoS Resource TableQoS Enabled TLB
ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationCoS

VirtVirt PhyPhy ClassClassStateState

QoSAware
Replacement

Algorithm

QoS Resource TableQoS Enabled TLB
ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority Level

QoSAware
Replacement

Algorithm

QoS Resource TableQoS Enabled TLB
ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationCoS ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority LevelThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationCoS

VirtVirt PhyPhy ClassClassStateState

Figure 4: QoS-Enabled TLB Enforcement

4.1. Data TLB

We evaluated DTLB performance of different workloads comprising the
CPU 2000 benchmark suite. The results show that in virtualized environments, per-
application TLB resource requirements vary both with the application under
consideration, and the set of other applications running concurrently. In scenarios of
applications running concurrently on different VMs, different QoS mechanisms are
needed to achieve the desired performance for high priority applications.

Figure 5: Relative Change in data TLB miss rate with changing TLB size.

To understand the TLB requirements for different applications, we broadly

categorize the workloads on the basis of their working set sizes (Figure 5). Depending
on the working set profile and data access locality, applications can fall into TLB
friendly or TLB un-friendly categories. For description purposes we will categorize
them into highly friendly, medium friendly and minimal friendly.

Highly TLB Friendly: These applications are characterized by a high degree of
temporal and spatial locality. The applications tend to benefit highly with increased

TLB resources. The more you give the better the performance is. Of the SPEC CPU
2000 workloads we studied parser and gcc show this behavior of TLB locality.

Medium TLB friendly: The applications in this category show localization over a
long range of memory addresses. Thus, while performance gains are evident at lower
TLB sizes, increasing the TLB sizes leads to proportional decrease of the TLB miss
count. Figure 5 illustrates this behavior for the swim benchmark.

Minimal TLB friendly: The working set for these applications exhibits a high degree
of randomness in terms of addresses accessed. Therefore, TLB scaling has very little
or no impact on the performance of such applications. From the SPEC CPU 2000
suite, ammp and art (Figure 5) exhibit such behavior.

Next we will look into simultaneous execution of workloads and the impact
of VMID tagging.

4.2. Impact of VM Tagging (VMID)

In current virtualization environments, a context switch from one VM to another leads
to a complete TLB flush and subsequent repopulation of the TLBs from a clean state.
Major processor manufacturers are employing TLB tagging with VMIDs in their new
processor offerings. Tagging the TLB entries with global VMIDs and subsequently
avoiding the flushing of these entries on a VM context switch will potentially improve
the TLB performance considerably. The results from our experiments with VMID
tagging are shown in Figure 6. We observe that depending on the nature of
applications, significant reductions in DTLB miss count can be obtained by tagging
the TLB lines with VMIDs which prevents flushing of the hypervisor mappings on
context switches. Note that the graphs in Figure 6 show the percentage change in the
miss count and not the absolute values of the miss count. In terms of absolute values,
the miss count (or misses per instruction - MPI) of different workloads vary widely
from each other depending on the nature of the individual workloads. But it can be
observed that at small number of TLB entries, the impact of VMID is not that
significant. As we increase the number of TLB entries, combinations with lower
DTLB utilization benefit from tagging. This is due to the fact that a destructive
application running after the context switch wipes the TLB out before the VM is
scheduled again. One solution to this problem is to reduce the interference from the
destructive VM through QoS as shown in the next section.

4.3. Impact of DTLB QoS

Our next step is to understand the TLB level interactions between multiple
applications with different working set sizes and the effect of TLB QoS on
performance. In our simulation setup, two different applications are run under the
Xen virtualization environment with one workload running in Domain-0 and another
one in a dedicated virtual machine. The TLB footprint obtained for Domain-0 is

influenced by the combination of the test workload running in Domain-0 and other
Xen related processes running in the administrative domain. To understand the effect
of TLB QoS on an individual workload performance, we assign higher priority to the
workload running in the isolated VM. The exact QoS metrics are tunable and are
described in detail below. We use VMIDs to tag the TLB entries for QoS enforcement
purposes. In the graphs presented below, we plot the miss ratios for high priority
applications with changing occupancy limits for the lower priority application. The
miss counts are plotted relative to the miss count when no QoS is enforced. Table 1
shows the different TLB configurations analyzed.

Figure 6: DTLB performance impact of VMID tagging

Consider a scenario where the high priority application exhibits

characteristics of highly TLB friendly workload. Since, the applications benefit from
being allocated more entries in the TLB, restricting the background app will provide
considerable performance improvement. This is more significant when the TLB size
is small. Better management of the TLB can provide better results for the important
application in this scenario. We will look at two sets of results to demonstrate this
behavior. The first set of results (Figure 7) uses SWIM as the background process. It
may be noted that the highly TLB friendly applications gcc and parser benefit highly
from the increased TLB resources provided by TLB QoS. On the other hand, art and
ammp which are minimal TLB friendly get minimal benefit out of TLB QoS.

Another important observation is that the VMID tagging benefits dwarfed by
the excessive TLB resource utilization are now moderated by employing TLB QoS.

Table 1: TLB configurations supported
System Scenarios TLB Semantics

Legacy
System

TLBs are flushed on each context switch.

VMID tagging
(No application TLB QoS)

VMID tagging and TLB entries are not flushed on VM
switches. LRU is used to replace the TLB entries across

VMs.

X%
(preferential

Resource allocation)

VMID tagging with QoS Aware replacement. Low
priority application gets at most X% of the TLB capacity.

X= 40, 30, 20, 10, 0 (examples)

Performance Impact of VMID Tagging

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

64 128 256 512
TLB Size

Change in Miss Ratio

swim
parser
gcc
ammp
art1
mesa

PARSER DTLB performance - SWIM
background

0%

20%

40%
60%

80%

100%

120%

64 128 256 512

TLB Size

R
el

at
iv

e
M

is
s

C
ou

nt

Legacy
VPID
40%
30%
20%
10%
0%

GCC DTLB performance - SWIM background

0%

20%

40%

60%

80%

100%

120%

64 128 256 512

TLB Size

Re
la

tiv
e

M
is

s
Co

un
t

Legacy
VPID
40%
30%
20%
10%
0%

Figure 7.a: Miss Rates for parser in swim
vs. parser (parser has higher priority)

Figure 7.b: Miss Rates for gcc in swim vs.
gcc (gcc has higher priority)

ART DTLB performance - SWIM background

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

64 128 256 512

TLB Size

Re
la

tiv
e

M
is

s
Co

un
t

Legacy
VPID
40%
30%
20%
10%
0%

AMMP DTLB performance - SWIM background

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

64 128 256 512

TLB Size

Re
la

tiv
e

M
is

s
C

ou
nt

Legacy
VPID
40%
30%
20%
10%
0%

Figure 7.c: Miss Rates for art in swim vs.
art (art has higher priority)

Figure 7.d: Miss Rates for ammp in swim vs.
ammp (ammp has higher priority)

Figure 7: Impact of VMID and TLB QoS on various applications with SWIM in
background

SWIM DTLB performance - ART background

0%

20%

40%

60%

80%

100%

120%

64 128 256 512

TLB Size

R
el

at
iv

e
M

is
s

C
ou

nt

Legacy
VPID
40%
30%
20%
10%
0%

Figure 8: Miss Rates for swim in art vs. swim (swim has higher priority)

 It should be noted that the impact of TLB QoS depends both on the
foreground as well as on the background application. Results with art as a
background application are shown in Figure 8. Since art is less TLB intensive than

swim, the impact of art on the foreground application is considerably less. This results
in better QoS results even with smaller TLB sizes. The art vs swim plot shows that
TLB QoS is needed to ensure that the a minimum number of entries must necessarily
stay dedicated for the high priority application. The performance gains for swim
reduce after a minimum TLB size of 128 entries is reached or when the TLB QoS
mechanism ensures a minimum level of allocation for swim.

4.4. ITLB QoS

Locality behavior of instructions is different than that of data. Applications typically
have small code working sets that fit into smaller TLBs. They also exhibit a high
degree of locality. Instruction TLB behavior with TLB scaling is shown in Figure 9.
We note that with increase in the size of the TLB, relative miss ratio decreases and is
almost constant after size of 128. We infer that an ITLB size of 128 entries is
sufficient to incorporate almost all possible address translations during the TLB stage,
hence reducing the performance penalty.

ITLB performance with scaling

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

64 128 256 512

TLB Size

R
el

at
iv

e
M

is
s

Co
un

t (
B

as
e

=
64

 e
nt

ri
es

)

swim
mesa
art
ammp
gcc
parser

SWIM ITLB performance- ART background

0%

20%

40%

60%

80%

100%

120%

64 128 256 512

ITLB Size

R
el

at
iv

e
M

is
s

C
ou

nt Legacy
VPID"
40%
30%
20%
10%
0%

Figure 9: ITLB Scaling Impact Figure 10: ITLB Miss Rates for swim in

art vs. swim (swim has higher priority)

Intuitively, we expect that most applications will have a fairly smaller
instruction working set when compared with the data working set. Our experimental
results support this intuition. Consequently, to improve the ITLB hit rates for higher
priority applications in heterogeneous operating environments, we can either increase
the size of ITLBs to a minimum acceptable level (128 entries for high priority VM
from Figure 9), or tune the QoS factor to achieve equivalent capacity for the high
priority application. It should also be noted that VMID tagging alone works well with
all TLB sizes.

As Figure 10 shows, high gains are obtained at moderate ITLB sizes and
moderate capacity restrictions for low priority applications. In fact, ITLB size of 128
entries and a QoS factor close to 0.5 ensuring fair distribution of the ITLB provides
close to maximum performance boost. QoS tuning beyond this point does not produce
proportionate results.

This type of behavior was observed in all the studied workloads leading us to
conclude that providing ITLB QoS in virtualized systems is less application sensitive
than the DTLB QoS and may amount to ensuring a fair TLB distribution in most
cases.

5. CONCLUSION AND FUTURE WORK

Virtualization and multi-core architectures are two complementary upcoming
paradigms that throw open interesting workloads and applications scenarios. In this
paper we analyzed the TLB level interactions of different applications operating in
virtualized settings. Our execution driven simulation based results show that
modifications to default TLB management policies are needed for efficient operation
in such settings. We show that using VMIDs to avoid flushing the global (VMM)
entries from TLBs on VM context switches leads to significant drops in TLB miss
rates.
 We also investigated the effect of prioritizing the applications and providing
QoS in terms of TLB capacity. Our investigations show that different applications
display different TLB related behaviors depending on the working set sizes and
access locality. Running multiple applications within different virtual machines raises
interesting TLB sharing scenarios. In such conditions, our experiments show that an
administrator can potentially provide a preferential performance boost to high priority
applications using TLB QoS. The knowledge of application working-set sizes and
access locality can be used to determine the QoS factors needed for a targeted TLB
miss count.

We are investigating how QoS services will affect TLB coherence protocols
in context of performance and overhead. We are currently in the process of designing
a dynamic TLB QoS policy that tunes the QoS factor during run-time to achieve a
guaranteed minimum performance level for high priority applications. We are also
investigating hardware and software enhancements for architecting QoS aware multi-
core platforms.

References

[1] A. Foong, J. Fung, and D. Newell, “An In-Depth Analysis of the Impact of Processor
Affinity on Network Performance”, Proceeding of IEEE Int’l Conf. Networks, IEEE Press,
2004.

[2] A. Menon, A. Cox, W. Zwaenepoel, “Optimizing Network Virtualization in Xen”, 2006
USENIX Annual Technical Conference.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache contention on a
chip multiprocessor architecture”, In Proc. 11th International Symposium on High
Performance Computer Architecture (HPCA), Feb, 2005

[4] G. Neiger, A. Santoni, F. Leung, D. Rodgers and R. Uhlig. Intel Virtualization Technology:
Hardware Support for Efficient Processor Virtualization. Intel Technology Journal, August
2006.

[5] H. Kannan, F. Guo, L. Zhao, R. Illikkal, Ravi Iyer, D. Newell, Y. Solihin and C. Kozyrakis,
“From Chaos to QoS: Case Studies in CMP Resource Management,” 2nd Workshop on
Design, Architecture and Simulation of CMP platforms (dasCMP/ MICRO), Dec 2006.

[6] Intel Virtualization. Technology Specification for the IA-32 Intel Architecture, April 2005.
[7] L. Hsu, S. Reinhardt, R. Iyer and S. Makineni, “Communist, Utilitarian, and Capitalist

Cache Policies on CMPs: Caches as a Shared Resource“, 15th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Sept 2006.

[8] Kyle J. Nesbit, et al, “Fair Queuing Memory Systems”, MICRO 2006.
[9] Michael R Marty, and Mark D. Hill. Virtual hierarchies to support server consolidation. In

proceedings of ISCA 2007.
[10] “Pacifica – Next Generation Architecture for Efficient Virtual Machines”.

http://developer.amd.com/assets/WinHEC 2005_Pacifica_Virtualization.pdf (Accessed
April 2007).

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I Pratt, and
A Warfield, “Xen and the Art of Virtualization”, Proceedings of the ACM symposium on
operating systems principles, Oct 2003.

[12] R. Illikkal, R. Iyer, Don Newell, “Micro-Architectural Anatomy of a Commercial TCP/IP
Stack”, 7th IEEE Annual Workshop on Workload Characterization (WWC-7), Oct. 2004.

[13] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms,”
18th Annual International Conference on Supercomputing (ICS’04), July 2004.

[14] R. Iyer, “On Modeling and Analyzing Cache Hierarchies using CASPER”, 11th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS'03).

[15] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu and S.
Reinhardt, “QoS Policies and Architecture for Cache/Memory in CMP Platforms,” ACM
SIGMETRICS 2007.

[16] R. P. Goldberg, “Survey of virtual machine research,” IEEE Computer, 34—45, 1974.
[17] R. Uhlig, R. Fishtein, O. Gershon, I Hirsh and H. Wang, “SoftSDV: A Presilicon Software

Development Environment for the IA-64 Architecture. Intel Technology Journal. Q4, 1999.
(http://www.intel.com/ technology/itjf).

[18] S. Makineni and R. Iyer, “Performance Characterization of TCP/IP Packet Processing in
Commercial Server Workloads”, 6th IEEE Workshop on Workload Characterization, Oct
2003.

[19] Vineet Chadha, Ramesh Illikkal, Jaideep Moses, Ravi Iyer, Donald Newell, Renato J.
Figueiredo. I/O Processing in a Virtualized Platform: A Simulation-Driven approach. In
proceedings of VEE, San Diego, June 2007.

