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Abstract. Rapid evolution of multi-core platforms is putting additional stress 
on shared processor resources like TLB. TLBs have mostly been private 
resources for the application running on the core, due to the constant flushing of 
entries on context switches. Recent technologies like virtualization enable 
independent execution of software domains leading to performance issues 
because of interesting dynamics at the shared hardware resources. The advent 
of TLB tagging with application and VM identifiers, however, increases the 
lifespan of these resources. In this paper, we demonstrate that TLB tagging and 
refraining from flushing the hypervisor TLB entries during a VM context 
switch can lead to considerable performance benefits. We show that it is 
possible to improve the TLB performance of an important application by 
protecting its TLB entries from the interference of other low priority 
VMs/applications and providing differentiated service. We present our QoS 
architecture framework for TLB (qTLB) and show its benefits. 

1   Introduction 

CMP architectures are increasingly used for server and workload consolidation  [8] [9]. 
Industry trend is moving towards sharing the on-die and off-die platform resources 
across multiple heterogeneous applications or VMs running simultaneously on 
multiple cores of CMP systems. The success of CMP platforms depends not only on 
the number of cores but also heavily on the other platform resources (cache, memory, 
etc) available and their efficient usage. Traditionally, processor and platform 
architectures have been designed to perform well while running a single application. 
However, with the evolving software use models, CMP platforms are being geared 
towards running multiple applications simultaneously. The rapid deployment of 
virtualization  [11] [6] as a means to consolidate multiple applications on a platform is 
a prime example. When these disparate applications run simultaneously on CMP 
architectures, the quality of service (QoS) that the platform provides to each 
individual application will be non-deterministic (or chaotic) because it depends 
heavily on the behavior of the other simultaneously running workloads. As expected, 
recent studies  [11] [16] [6] have indicated that contention for critical platform 
resources (e.g. cache, memory, I/O) is the primary cause for this lack of determinism. 
In this work we focus on the impact of virtualization on another major processor 
resource: translation look-aside buffer (TLB). 



In order to design efficient virtualized systems on a CMP platform, the key 
challenge is to understand how micro-architectural features impact the performance of 
workloads in such environments. Recent studies  [3] [2] show that significant 
performance overhead can be attributed to increased cache and TLB misses. TLBs are 
used to reduce the overhead of address translations in paging systems such as the x86. 
The TLB semantics mandate almost complete TLB flushes after context switches, in 
order to maintain consistency. While previous studies have relied on measurements to 
assess the performance impact of virtualization of existing workloads and systems, it 
is important to understand the impact of this new use model in the context of 
upcoming processor features like TLB tagging. 

Typically, in a virtualized environment, process switches between different 
virtual machines (VMs) lead to complete TLB flushes. In typical consolidation 
environments, VM switching is often a very frequent event. Even though VMs in a 
virtualized environment are often scheduled based on different schedulers (such as 
BVT, SEDF in Xen)  [11], the fun5damental problem of performance degradation due 
to TLB flushing on a context switch remains the same due to uncontrolled assignment 
and removal of TLB resources for applications running in different virtual machines. 
In fact, the TLB flushing behavior during frequent VM switches mitigates the 
advantage of faster address translations [2]. Our experimental results with SPEC CPU 
2000 benchmarks support this argument. In the past, TLBs have been tagged with a 
global bit to prevent flushing of global pages such as shared libraries and kernel data 
structures. In some of the current system architectures, context switch overhead can 
be reduced by tagging TLB entries with address-space identifiers (ASID). A tag based 
on the virtual machine’s ID (VMID) could be further used to improve I/O 
performance for virtual machines. New processor architectures, with hardware 
virtualization support, incorporate features such as virtual-processor identifiers 
(VPID) to tag entries in the TLB [4] [10]. This level of tagging increases the longevity 
of TLB entries, and mitigates the performance penalty currently incurred on context 
switches. 

Recent studies on shared resource management have either advocated the 
need for fair distribution between threads and applications, or unfair distribution with 
the purpose of improving overall system performance. The work presented here aims 
to extend these concepts to TLBs with a goal of improving the performance of an 
individual application at the cost of the potential detriment of others, with guidance 
from the operating environment. This is motivated by usage models such as server 
consolidation where service level agreements motivate the degree of performance 
differentiation  [15] desired for some applications. Since the relative importance of the 
deployed applications is best managed by the operating software environment, we 
experiment with software-guided priorities (e.g. assigned by server administrators) to 
efficiently manage hardware resources. We compare the use of software-guided 
priorities (qTLB - QoS-aware TLBs) against non QoS-aware schemes. We also 
present the effect of scaling the TLB sizes (instruction and data), on application 
performance. Our full system simulation infrastructure is supplemented with detailed 
performance models for the caches and TLBs with QoS tuning knobs to be used by 
the system soft-ware. To our knowledge, this is the first study using full-system 
simulation to evaluate quality of service for TLBs using virtualized workloads for a 
CMP platform. 



2. ANALYSIS  METHODOLOGY 

In this section, we present an overview of our full system simulation analysis 
methodology. We choose to employ Xen VMM for workload characterization 
because it is a de-facto para-virtualized (split I/O) open source VMM. In our test 
framework we ported Xen VMM to run on a full system simulation environment. To 
identify the hardware TLB entries belonging to different VMs we needed to pass the 
VM information for each specific memory access to the hardware modules. We 
accomplished this by modifying the Xen hypervisor to provide this information on 
each context switch. 

The Xen virtualized environment includes the Xen hypervisor, the service 
domain (Dom0) with its O/S kernel and applications, and a guest, “user” domain 
(DomU) with its O/S kernel and applications (Figure 1). This environment allows us 
to characterize different applications for workload characterization. The DomU guest 
uses a front end driver to communicate with a backend driver inside Dom0, which 
controls the I/O devices.  

To evaluate the TLB dynamics in virtualized environments, we need an 
experimental framework that allows us visibility into both the hardware system 
architecture and the software stack. We chose SoftSDV[17] simulator for our studies. 
In the past, SoftSDV has been deployed to measure hardware resource usage under 
virtualized execution environments  [19]. The simulation setup is shown in Figure 1. 
The execution-driven simulation environment combines functional and performance 
models of the platform. For this study, we chose to abstract the processor performance 
model and focus on detailed TLB models with QoS support to enable the coverage of 
multiple phases and a long execution period of the workload. 
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Figure 1: Full system simulation environment      Figure 2: Execution Driven Simulation  
Includes:          profiling methodology:  
(A) Xen Virtual Environment      virtualization workload,  
(B) SoftSDV Simulator        functional simulation mode & 
(C) Physical Machine.       performance simulation mode 
 



Figure 2 summarizes the profiling methodology and the tools we used. The 
following sections describe the individual steps in detail; these include (1) Full system 
simulation with virtualized workload, and (2) Performance simulation with QoS 
services. The SoftSDV simulation framework was extended to support TLB QoS [19]. 
The simulation environment provides us with the capability of changing the 
underlying hardware architecture to evaluate architecture enhancements and their 
impact on workload performance. We tagged the TLB entries with their 
corresponding VMIDs, and added TLB QoS by enhancing the replacement algorithm. 
Our environment supported monitoring of TLB resources per VM, enforcement of 
QoS at the TLB level and an interface for software to communicate information about 
the currently running VM and individual VM priorities.  

We calculated TLB utilizations while concurrently running applications in a 
virtualized environment. Figure 2 shows the QoS management module used to 
communicate with the abstract TLB model to provide QoS services. We employed a 
simple LRU based TLB replacement policy to evaluate the performance of various 
applications. QoS analysis is performed by using application level priorities to 
determine the percentage of TLB flushing and reservations. In addition, we 
considered the locality and working sets of the benchmarks for evaluation of our 
prototype. Section 3 discusses our proposed architecture in detail.  

3. QOS-AWARE ARCHITECTURE 

We propose a layered QoS architecture that implements static and dynamic QoS 
policies. Our proposed QoS-aware TLB architecture consists of three primary layers: 
priority enforcement, pri-ority assignment and priority classification.  

The priority classification layer is responsible for identifying and providing e 
QoS information i.e. priority levels of each running application (e.g. 0 for high and 1 
for low) and the associated targets/constraints. As shown in Figure 3, this layer 
requires support in the execution environment (either OS or hypervisor) as well as the 
processor architecture. Operationally, support (in the form of a QoS API) is required 
for the user or administrator to supply the required QoS in-formation to the execution 
environment. The support in the execution environment is the ability to maintain the 
QoS information in the thread state and the ability to save and restore it in the process 
architectural state when the thread is scheduled to run. The support in the processor is 
essentially a new control register called Platform QoS Register (PQR) needed to 
maintain the QoS information for the run time. The execution environment sets the 
PQR with the platform priority level of the currently running application. When static 
QoS assignments are used, different priority levels can be directly mapped to various 
resource utilization thresholds. In contrast, maintaining a pre-defined target 
performance level of an application during run-time entails the need for dynamic QoS 
strategies. The PQR register will be used to convey the mapping of priority levels into 
resource thresholds (for static QoS) and the mapping of priority levels to tar-
gets/constraints (in case of dynamic QoS). For priority assignment, resource targets 
are used for QoS level mapping, and to indicate the TLB occupancy thresholds for 
each priority level.  In this paper, we only used static QoS policies.  



Figure 3 illustrates the priority enforcement layer in the architecture and 
shows the components involved. The inputs to the enforcement layer are the tagged 
memory accesses and the QoS re-source table. As shown in Figure 4, each line in the 
TLB is tagged with a priority level in order to keep track of the current TLB space 
utilization per priority level. The QoS resource table uses this information to store the 
TLB utilization per priority level. This is done simply by incrementing the resource 
usage when a new line is allocated in the TLB and decrementing the resource usage 
when a replacement or eviction occurs.  
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Figure 3: QoS Architecture for TLB Resources. 
 

The static QoS policy is implemented by modifying the TLB replacement 
policy to be QoS aware. For each priority level, the utilization and the static QoS 
thresholds are available (in the QoS Resource Table - QRT) on a per priority level 
basis. If utilization of a priority level is lower than the specified threshold, then the 
replacement policy works in normal mode using the base policy (like LRU). When 
the utilization reaches the static QoS threshold, the QoS based replacement policy 
overrides the LRU policy to ensure that a victim is found within the same priority 
level (thus keeping the utilization for the priority level constant).  

4. EXPERIMENTS AND RESULTS 

The goal of our experiments is to study the impact of various TLB configurations on 
virtualized workload performance. Keeping in mind that different applications have 
different working set sizes, our experiments are designed to evaluate the interaction 
between different applications at the TLB level. We also investigate the effect on 
individual applications due to different TLB QoS management policies in virtualized 
systems. 



In following sections, we present the data TLB (DTLB) and instruction TLB 
(ITLB) study results.  It is important to evaluate the performance of ITLB and DTLB 
separately because TLB access dynamics vary for data and instructions. We will first 
focus on the DTLB.  
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Figure 4: QoS-Enabled TLB Enforcement 

4.1. Data TLB 

We evaluated DTLB performance of different workloads comprising the 
CPU 2000 benchmark suite. The results show that in virtualized environments, per-
application TLB resource requirements vary both with the application under 
consideration, and the set of other applications running concurrently.  In scenarios of 
applications running concurrently on different VMs, different QoS mechanisms are 
needed to achieve the desired performance for high priority applications. 

 
Figure 5: Relative Change in data TLB miss rate with changing TLB size. 

 
To understand the TLB requirements for different applications, we broadly 

categorize the workloads on the basis of their working set sizes (Figure 5). Depending 
on the working set profile and data access locality, applications can fall into TLB 
friendly or TLB un-friendly categories. For description purposes we will categorize 
them into highly friendly, medium friendly and minimal friendly.  
 
Highly TLB Friendly: These applications are characterized by a high degree of 
temporal and spatial locality. The applications tend to benefit highly with increased 



TLB resources. The more you give the better the performance is. Of the SPEC CPU 
2000 workloads we studied parser and gcc show this behavior of TLB locality.  
 
Medium TLB friendly: The applications in this category show localization over a 
long range of memory addresses.  Thus, while performance gains are evident at lower 
TLB sizes, increasing the TLB sizes leads to proportional decrease of the TLB miss 
count. Figure 5 illustrates this behavior for the swim benchmark.  
 
Minimal TLB friendly: The working set for these applications exhibits a high degree 
of randomness in terms of addresses accessed. Therefore, TLB scaling has very little 
or no impact on the performance of such applications. From the SPEC CPU 2000 
suite, ammp and art (Figure 5) exhibit such behavior. 
 

Next we will look into simultaneous execution of workloads and the impact 
of VMID tagging.  

4.2. Impact of VM Tagging (VMID) 

In current virtualization environments, a context switch from one VM to another leads 
to a complete TLB flush and subsequent repopulation of the TLBs from a clean state. 
Major processor manufacturers are employing TLB tagging with VMIDs in their new 
processor offerings. Tagging the TLB entries with global VMIDs and subsequently 
avoiding the flushing of these entries on a VM context switch will potentially improve 
the TLB performance considerably.  The results from our experiments with VMID 
tagging are shown in Figure 6. We observe that depending on the nature of 
applications, significant reductions in DTLB miss count can be obtained by tagging 
the TLB lines with VMIDs which prevents flushing of the hypervisor mappings on 
context switches. Note that the graphs in Figure 6 show the percentage change in the 
miss count and not the absolute values of the miss count. In terms of absolute values, 
the miss count (or misses per instruction - MPI) of different workloads vary widely 
from each other depending on the nature of the individual workloads. But it can be 
observed that at small number of TLB entries, the impact of VMID is not that 
significant. As we increase the number of TLB entries, combinations with lower 
DTLB utilization benefit from tagging. This is due to the fact that a destructive 
application running after the context switch wipes the TLB out before the VM is 
scheduled again. One solution to this problem is to reduce the interference from the 
destructive VM through QoS as shown in the next section. 

4.3. Impact of DTLB QoS  

Our next step is to understand the TLB level interactions between multiple 
applications with different working set sizes and the effect of TLB QoS on 
performance.  In our simulation setup, two different applications are run under the 
Xen virtualization environment with one workload running in Domain-0 and another 
one in a dedicated virtual machine.  The TLB footprint obtained for Domain-0 is 



influenced by the combination of the test workload running in Domain-0 and other 
Xen related processes running in the administrative domain. To understand the effect 
of TLB QoS on an individual workload performance, we assign higher priority to the 
workload running in the isolated VM. The exact QoS metrics are tunable and are 
described in detail below. We use VMIDs to tag the TLB entries for QoS enforcement 
purposes. In the graphs presented below, we plot the miss ratios for high priority 
applications with changing occupancy limits for the lower priority application. The 
miss counts are plotted relative to the miss count when no QoS is enforced. Table 1 
shows the different TLB configurations analyzed.  

 
Figure 6: DTLB performance impact of VMID tagging 

 
Consider a scenario where the high priority application exhibits 

characteristics of highly TLB friendly workload. Since, the applications benefit from 
being allocated more entries in the TLB, restricting the background app will provide 
considerable performance improvement. This is more significant when the TLB size 
is small. Better management of the TLB can provide better results for the important 
application in this scenario. We will look at two sets of results to demonstrate this 
behavior. The first set of results (Figure 7) uses SWIM as the background process. It 
may be noted that the highly TLB friendly applications gcc and parser benefit highly 
from the increased TLB resources provided by TLB QoS. On the other hand, art and 
ammp which are minimal TLB friendly get minimal benefit out of TLB QoS. 

Another important observation is that the VMID tagging benefits dwarfed by 
the excessive TLB resource utilization are now moderated by employing TLB QoS.   

Table 1: TLB configurations supported 
System Scenarios TLB Semantics 

Legacy  
System 

TLBs are flushed on each context switch. 

VMID tagging 
(No  application TLB QoS) 

VMID tagging and TLB entries are not flushed on VM 
switches. LRU is used to replace the TLB entries across 

VMs. 

X% 
(preferential 

Resource allocation) 

VMID tagging with QoS Aware replacement. Low 
priority application gets at most X% of the TLB capacity. 

X= 40, 30, 20, 10, 0 (examples) 
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Figure 7.a: Miss Rates for parser in swim 
vs. parser (parser has higher priority) 
 

Figure 7.b: Miss Rates for gcc in swim vs. 
gcc (gcc has higher priority) 
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AMMP DTLB performance - SWIM background

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

64 128 256 512

TLB Size

Re
la

tiv
e 

M
is

s 
C

ou
nt

Legacy
VPID
40%
30%
20%
10%
0%

 

Figure 7.c: Miss Rates for art  in swim  vs. 
art (art  has higher priority) 
 

Figure 7.d: Miss Rates for ammp in swim vs. 
ammp (ammp has higher priority) 
 

 
Figure 7: Impact of VMID and TLB QoS on various applications with SWIM in 
background 
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Figure 8: Miss Rates for swim in art vs. swim (swim has higher priority) 

 
  It should be noted that the impact of TLB QoS depends both on the 
foreground as well as on the background application. Results with art as a 
background application are shown in Figure 8. Since art is less TLB intensive than 



swim, the impact of art on the foreground application is considerably less. This results 
in better QoS results even with smaller TLB sizes. The art vs swim plot shows that 
TLB QoS is needed to ensure that the a minimum number of entries must necessarily 
stay dedicated for the high priority application. The performance gains for swim 
reduce after a minimum TLB size of 128 entries is reached or when the TLB QoS 
mechanism ensures a minimum level of allocation for swim.  

4.4. ITLB QoS 

Locality behavior of instructions is different than that of data.  Applications typically 
have small code working sets that fit into smaller TLBs. They also exhibit a high 
degree of locality. Instruction TLB behavior with TLB scaling is shown in Figure 9. 
We note that with increase in the size of the TLB, relative miss ratio decreases and is 
almost constant after size of 128. We infer that an ITLB size of 128 entries is 
sufficient to incorporate almost all possible address translations during the TLB stage, 
hence reducing the performance penalty.  
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Figure 9: ITLB Scaling Impact  Figure 10: ITLB Miss Rates for swim in 

art vs. swim (swim has higher priority) 
 

Intuitively, we expect that most  applications will have a fairly smaller 
instruction working set when compared with the data working set. Our experimental 
results support this intuition. Consequently, to improve the ITLB hit rates for higher 
priority applications in heterogeneous operating environments, we can either increase 
the size of ITLBs to a minimum acceptable level (128 entries for high priority VM 
from Figure 9),  or tune the QoS factor to achieve equivalent capacity for the high 
priority application. It should also be noted that VMID tagging alone works well with 
all TLB sizes. 

As Figure 10 shows, high gains are obtained at moderate ITLB sizes and 
moderate capacity restrictions for low priority applications. In fact, ITLB size of 128 
entries and a QoS factor close to 0.5 ensuring fair distribution of the ITLB provides 
close to maximum performance boost. QoS tuning beyond this point does not produce 
proportionate results.  
 

 



This type of behavior was observed in all the studied workloads leading us to 
conclude that providing ITLB QoS in virtualized systems is less application sensitive 
than the DTLB QoS and may amount to ensuring a fair TLB distribution in most 
cases.  

5. CONCLUSION AND FUTURE WORK 

Virtualization and multi-core architectures are two complementary upcoming 
paradigms that throw open interesting workloads and applications scenarios. In this 
paper we analyzed the TLB level interactions of different applications operating in 
virtualized settings. Our execution driven simulation based results show that 
modifications to default TLB management policies are needed for efficient operation 
in such settings. We show that using VMIDs to avoid flushing the global (VMM) 
entries from TLBs on VM context switches leads to significant drops in TLB miss 
rates. 
 We also investigated the effect of prioritizing the applications and providing 
QoS in terms of TLB capacity. Our investigations show that different applications 
display different TLB related behaviors depending on the working set sizes and 
access locality. Running multiple applications within different virtual machines raises 
interesting TLB sharing scenarios. In such conditions, our experiments show that an 
administrator can potentially provide a preferential performance boost to high priority 
applications using TLB QoS. The knowledge of application working-set sizes and 
access locality can be used to determine the QoS factors needed for a targeted TLB 
miss count. 

We are investigating how QoS services will affect TLB coherence protocols 
in context of performance and overhead.  We are currently in the process of designing 
a dynamic TLB QoS policy that tunes the QoS factor during run-time to achieve a 
guaranteed minimum performance level for high priority applications. We are also 
investigating hardware and software enhancements for architecting QoS aware multi-
core platforms. 

References 

[1] A. Foong, J. Fung, and D. Newell, “An In-Depth Analysis of the Impact of Processor 
Affinity on Network Performance”, Proceeding of IEEE Int’l Conf. Networks, IEEE Press, 
2004. 

[2]  A. Menon, A. Cox, W. Zwaenepoel, “Optimizing Network Virtualization in Xen”, 2006 
USENIX Annual Technical Conference. 

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache contention on a 
chip multiprocessor architecture”, In Proc. 11th International Symposium on High 
Performance Computer Architecture (HPCA), Feb, 2005 

[4]  G. Neiger, A. Santoni, F. Leung, D. Rodgers and R. Uhlig. Intel Virtualization Technology: 
Hardware Support for Efficient Processor Virtualization. Intel Technology Journal, August 
2006. 



[5]  H. Kannan, F. Guo, L. Zhao, R. Illikkal, Ravi Iyer, D. Newell, Y. Solihin and C. Kozyrakis, 
“From Chaos to QoS: Case Studies in CMP Resource Management,” 2nd Workshop on 
Design, Architecture and Simulation of CMP platforms (dasCMP/ MICRO), Dec 2006. 

[6]  Intel Virtualization. Technology Specification for the IA-32 Intel Architecture, April 2005. 
[7] L. Hsu, S. Reinhardt, R. Iyer and S. Makineni, “Communist, Utilitarian, and Capitalist 

Cache Policies on CMPs: Caches as a Shared Resource“, 15th International Conference on 
Parallel Architectures and Compilation Techniques (PACT), Sept 2006.  

[8] Kyle J. Nesbit, et al, “Fair Queuing Memory Systems”, MICRO 2006. 
[9] Michael R Marty, and Mark D. Hill. Virtual hierarchies to support server consolidation. In 

proceedings of ISCA 2007. 
[10] “Pacifica – Next Generation Architecture for Efficient Virtual Machines”. 

http://developer.amd.com/assets/WinHEC 2005_Pacifica_Virtualization.pdf (Accessed 
April 2007). 

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I Pratt, and 
A Warfield, “Xen and the Art of Virtualization”, Proceedings of the ACM symposium on 
operating systems principles, Oct 2003. 

[12] R. Illikkal, R. Iyer, Don Newell, “Micro-Architectural Anatomy of a Commercial TCP/IP 
Stack”, 7th IEEE Annual Workshop on Workload Characterization (WWC-7), Oct. 2004. 

[13] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms,” 
18th Annual International Conference on Supercomputing (ICS’04), July 2004. 

[14] R. Iyer, “On Modeling and Analyzing Cache Hierarchies using CASPER”, 11th IEEE 
International Symposium on Modeling, Analysis, and Simulation of Computer and 
Telecommunications Systems (MASCOTS'03). 

[15] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu and S. 
Reinhardt, “QoS Policies and Architecture for Cache/Memory in CMP Platforms,” ACM 
SIGMETRICS 2007. 

[16] R. P. Goldberg, “Survey of virtual machine research,” IEEE Computer, 34—45, 1974. 
[17] R. Uhlig, R. Fishtein, O. Gershon, I Hirsh and H. Wang, “SoftSDV: A Presilicon Software 

Development Environment for the IA-64 Architecture. Intel Technology Journal. Q4, 1999. 
(http://www.intel.com/ technology/itjf). 

[18] S. Makineni and R. Iyer, “Performance Characterization of TCP/IP Packet Processing in 
Commercial Server Workloads”, 6th IEEE Workshop on Workload Characterization, Oct 
2003. 

[19] Vineet Chadha, Ramesh Illikkal, Jaideep Moses, Ravi Iyer, Donald Newell, Renato J. 
Figueiredo. I/O Processing in a Virtualized Platform: A Simulation-Driven approach. In 
proceedings of VEE, San Diego, June 2007. 


