
Evaluating Implications of Virtual Worlds on Server Architecture
using Second Life

Srihari Makineni, Omesh Tickoo, Aaron Terrell, Jessica Young, Donald Newell
{srihari.makineni, omesh.tickoo}@intel.com, {enus}@lindenlab.com, {jessica.young, donald.newell}@intel.com

Abstract

Linden Lab’s Second Life is the prominent Virtual World
platform in the market today. Virtual Worlds like Second
Life are emerging to be a main stream server workload
because of their popularity due to richness of 3D content
and immersive social experience they can provide. So, it is
very important for computer architects to fully understand
this workload and its requirements. In this paper, our goal
is to fully analyze the performance and to characterize the
processing of Second Life server Simulator process. The
simulator process has three key critical functions that
dominate the performance characteristics of this workload.
These are: 1) Physics engine that is responsible for
simulating real world behaviors taking into account mass
of the objects, gravity, wind force, etc., 2) Scripting engine
that is responsible for executing scripts attached to the
objects. Scripts is the main way of manipulating object
behaviors (motion, color, etc.) in-world on the server, and
3) Simulator logic that is responsible for simulating the
world which includes avatar movement, calculating visible
areas and communicating with the clients. Our work
includes performance scaling experiments, comparison of
performance on Intel’s Clovertown and Nehalem
processor based server systems and collecting and
analyzing architectural characterization data for this
workload. Our measurements have shown that Intel’s
latest Xeon servers using Nehalem processors offer 20 to
50% performance improvement over previous generation
processor based system, and that the physics computation
is more compute and memory intensive. To get a better
perspective of Second Life’s requirements, we have
compared this workload with three other popular
commercial server workloads (TPC-E, SPECjAppServer
and SPECjbb) and found out that this workload executes 2
to 10 times more floating point, multiply and divide
instructions.

1. Introduction
Virtual Worlds [19,20] represent a new emerging class of
applications in the computer industry. These are gaining in
popularity and growing in size rapidly in recent years
because of rich and immersive user experience they
provide with 3D graphics and real time interactions.

Virtual worlds offer computer simulated worlds that are
persistent. These virtual worlds, sometimes referred to as
Meta Verse [21], and are being used for gaming,
entertainment, socialization, education, training and
collaboration. For example, US army uses virtual worlds to
simulate different battle zone scenarios which are used to
better train personnel in combat, rescue and recovery
missions. Another example is that several education
institutions have created presence in virtual worlds to
increase their reach and enhance experience of distance
learning. Users in virtual worlds feel a sense of presence
through their avatars (online appearance) and can control
these avatars to communicate, express emotions, move,
dance and even to fly around in the virtual worlds.

Virtual worlds can be broadly characterized into two types.
First type is Massively Multiplayer Online Games
(MMOG [22] or MMORPG) such as World of Warcrafts
[10], Eve Online [9], Club Penguin [11], LegoUniverse
[12], etc, where users focus on role playing and playing
games. In this type of virtual worlds, game developers
envision and create games and define rules and objectives
of games. The simulated world is mostly built by game
developers and interactions and effects are predetermined.
From computer processing perspective, the division of
work between client and server is predetermined and most
of the simulated world is downloaded or available to the
client at the start of the game. As a result, the network
bandwidth requirements are low and game developers take
utmost care to minimize the network latency. These
MMOGs adopt a technique, called sharding to support a
large number of simultaneous users. They replicate the
entire world on multiple sets of servers.

The second type of virtual worlds is where user’s focus is
not game playing, but more on interaction, socialization
and commerce. In this type, users are allowed to build their
own worlds as they imagined. Some examples of this type
of virtual worlds are: Second Life [2], Olive [13], Quake
[14], etc. Of these types of virtual worlds, Second Life
from Linden Lab [15] is the most popular virtual world out
there with more than 2000 multi-core servers simulating a
world that spans tens of thousands of acres in size. In first
quarter of 2009 alone, Second Life has registered about
124Million hours of user activity and in-world trading

978-1-4244-4921-7/09/$25.00 ©2009 IEEE 453

amounting to about 120Million Dollars. Second Life has
more than 75K users accessing different parts of the world
at any given time. In spite of its popularity, there is very
little understanding in the computer architecture
community about its functionality and processing
characteristics and requirements. It is important to
understand these workloads now so we can build platforms
that better support evolution of these workloads. There
have been some published studies that have attempted to
characterize the Second Life client [1, 23] and networking
aspects [24] of Second Life, but there have been no
published studies on Second Life server characterization.
The main reason for this is lack of access to the Second
Life server software. Linden Lab has recently started a
pilot program to roll out a standalone version of their
Second Life server software for private enterprise use. We
have access to this standalone version of Second Life.

Our main contributions in this paper are: 1) Identify key
frequently executed functional components of the Second
Life server that dictate the overall performance and user
experience, 2) Understand how these components perform
on latest state of the art server systems, and their
performance scaling characteristics, and 3) perform a
detailed architectural characterization of SL processing
and compare it to three other popular commercial server
workloads (TPC-E [16], SPECjAppServer [18], SPECjbb
[17]) to better understand this workload’s requirements.

Rest of the paper is organized as follows. In section 2, we
provide a quick high level overview of Second Life server
side functionality and architecture. In section 3, we explain
the test methodology, three Second Life scenarios we have
created to understand and characterize the workload’s key
functional components. In section 4, 5 and 6, we go over
the performance scaling, and characterization data. We
also discuss how the Intel’s latest Nehalem processor
improves Second Life performance. Finally, in section 7,
we provide our conclusions and discuss our future work in
this area.

2. Second Life
In this section, we provide a brief overview of the Second
Life (SL) server architecture and describe various
functional components that make up the server side. Our
intention here is not to provide a detailed overview. For
detailed information, readers are requested to read the
citations provided below.

There are two different flavors of SL server in existence
today. One is a distributed version where different services
are run on one or more servers. This is the public domain
version of SL Grid that is hosted and managed by the
Linden Lab. The second one is a grid in a box variant of
SL where all the services run on a single server box. This
version is developed for enterprises to use on enterprise
networks behind firewalls. This is relatively a new offering
from Linden Lab. Corporations and universities are using
this version for collaboration and training purposes. This
grid in a box version uses the same code base as the public
domain version and any studies done on this are directly
applicable to the public domain version as well. Figure 2.1
shows snapshots from some regions in SL which highlight
the rich 3D content that its users have created.

Figure 2.1. Snapshots of some Second Life regions

Users of SL buy land, create a terrain of their choice and
build structures on it. The terrain typically includes
mountains, water and some flat land. In SL, objects are
built using simple basic shapes called primitives or prims.
SL supports 8 different shapes of prims (cylinder, cube,
sphere, etc) and 7 prim material types (wood, metal,
concrete, etc). Users can change the basic prims by
changing size, color, rotation, cut, shear, lighting and other
attributes.

SL server consists of several services: Simulator, Map,
Space, Asset, etc. There is also a backend mysql [25]
database that acts as data provider and storage server for
various services. In addition, Linden Lab’s SL has its own
currency, called Linden Dollar, and allows buying/selling
of properties and other types of trading activity. SL server
side architecture looks is shown in figure 2.2. We describe
the main components next.

454

Space ServiceSpace ServiceSpace Service

The Viewer
(Rendering)

Agent DatabaseAgent Database

Assets/Objects
Databases

Assets/Objects
Databases

Log DatabaseLog Database

Region Domain (e.g. SL main grid)

Agent Domain (e.g. SL main grid)

Another Region Domain (e.g.XYZ co)

Developer’s
XML-RPC

API
(bypassing
the viewer)

Another Agent Domain (e.g. XYZ co)

Simulator/
Host 1

Simulator/
Host 2

Simulator/
Host 3

Search DatabaseSearch Database

Central DatabaseCentral Database

UDP Circuits

Central Utilities
• Identity
• Region Location/Topology
• Currency
• Search

Inventory DatabaseInventory Database

Asset ServiceAsset ServiceAsset Service Map ServiceMap ServiceMap ServiceRPC ServiceRPC ServiceRPC Service

Login ServiceLogin ServiceLogin Service User ServiceUser ServiceUser Service

Central
Backbone
Service

Central
Backbone
Service

Central
Backbone
Service

Service for Stateless InfoService for Stateless Info

Service for Stateless InfoService for Stateless Info

Figure 2.2. Second Life Server Architecture

Simulator
The main service that is responsible for simulating the
world is the simulator. Each simulator is responsible for a
256m2 region in the virtual world. This service (process) is
responsible for storing object state, terrain information and
performing visibility calculations to send to each
connected viewer. This is the workhorse service of SL
server. The simulator process talks to other services and
the database server whenever is needed. The simulator
process relies on TCP/IP and UDP/IP protocols for
communicating with the clients. It uses TCP/IP internally
for communicating with other services. The simulator
process is currently single threaded and has a hard limit of
100 avatars per region. It also has an upper threshold of 45
frames/sec and won’t process any more even if the CPU is
not 100% utilized. Simulator processes communicate with
each other, especially when avatars cross region
boundaries. Within the simulator process, there are three
main components. They are: Physics, Scripting and logic
to handle avatars and compute visible area. We focus on
these main components in this paper, and explain these in
detail in the next section.

Map Server
This service is responsible for keeping track of information
about the entire world being simulated. For example, when
the user clicks on map button on the viewer, map server
sends back map information that shows what regions are
active, how many avatars are in each region, etc.

Asset Server
Every object inside SL is treated as an Asset and is
assigned a unique ID (uuid). Asset server is responsible for
managing this asset information. This also includes

managing each avatar’s inventory of objects (clothes,
shoes, any objects built or bought). When the user clicks
on the inventory button on the viewer, a request goes to the
asset server and the asset server sends back asset
information for that avatar to the client.

Space Server
This service is responsible for keeping track of which
regions are where on the grid and maintaining neighbor
information. It also handles routing of messages based on
grid (x and y) locations. The simulator talks to the space
server to register the region and to find out who the
neighbors are.

Data Server
This service is responsible for handling connections to all
the active databases (log, inventory, central, etc.). This
handles communication with the database server on behalf
of other services.

There are some other services to handle messaging, login,
etc which we don’t cover here due to space constraints.

3. Testing Methodology
In this section, we explain our testing methodology and
describe the tools and systems used for the testing. First,
we start with the server platforms used for this testing.

SERVER PLATFORMS

Figures 3.1 and 3.2 show details of Clovertown and
Nehalem processor based server systems used for the
studies. Even though these platforms support 2 sockets, we
have used only one socket (one CPU) for our studies and

455

left the second one idle. We affinitized the simulator
processes of interest to logical processors of one socket
using taskaffinity tool available in schedutils [26] package
for Linux OS. Nehalem system supports Hyper Threading
(HT) which means each core has two logical processors
(hardware threads) that share the core resources. HT
allows for maximum utilization of the core resources.
Nehalem also has a 256KB L2 cache that is private to each
core. All the 4 cores of Nehalem share an 8MB L3 cache,
while in Clovertown system there are two 4MB L2 caches
per CPU each of which is shared by two cores. Nehalem
also introduces a new system interconnect, called Quick
Path Interconnect (QPI) which is link based instead of bus
based like in the Clovertown system. QPI offers 12.8GB/s
of read/write bandwidth per direction per link while the
bus interconnect offers a total of 10GB/s. In Nehalem, the
memory controller is integrated into the processor offering
much lower latency to the memory.

Figure 3.1. Details of Clovertown processor based
Platform

Figure 3.2. Details of Nehalem processor based Platform

We have enabled HT for some tests and disabled for some
other tests. When we discuss individual test results, we
point out whether HT is used or not.

We have turned off the HW prefetchers on both the
platforms as we found that the HW prefetchers hurt
performance slightly in some studies by increasing the
cache miss rate.

TEST SETUP

Our test setup includes the server systems described above
and several client machines. All the client machines are
Nehalem (Core i7) processor based high end desktop
systems with Gigabit NW interface and 4GB of memory.
We made sure that the client machines are not a bottleneck
in our studies. We run the grid in a box version of SL
server on our server systems and run LLQABot script
(described below) on the client machines. Servers and
clients are connected to a Gigabit switch as shown in
figure 3.3. Our server system is running Debian Linux
version 4.0r8.

Figure 3.3. Test Setup

CLIENT SIDE PROGRAM

We use a publicly available bot generation and control tool
to automate the process of logging in avatars into a region
of SL and to control their actions. We call this program
LLQABot [4]. Some enhancements were made to this tool
to support wandering of avatars on the ground and while
flying for some duration. Without this program, we
literally need a person behind each avatar to control the
avatar. Even then it will be difficult to generate repeatable
actions for consistent and reproducible results. The
LLQABot program solves this problem. Using this
program, we can make avatars move, jump, fly, wander,
query the database for inventory, rez and derez objects into
the world, etc. In our studies, we mainly use this program
for logging in the avatars and making them wander around
the region. This program does not have any user interface
associated with it, so no rendering of scenes has to be
done. This allows the program to support multiple avatars
at the same time. LLQABot sends commands and position
updates to the server on behalf of each avatar and receives
and processes screen updates and texture downloads from
the server.

SCENARIOS

As we have explained in the section on SL (SL), there are
a lot of different functions in SL that are of interest, but we

456

focus mainly on 3 very important aspects of the SL
simulator (sim) process, which are physics processing,
script processing and Avatar handling. The sim process
performance is majorly dependent upon these three
functional components. Some of the other functional
components of sim process are network processing,
processing large amount of data from the database (XML),
etc. These have been studied in other domains extensively
and their characteristics are well understood.

We have created scenarios to study the processing
behavior of these three components in isolation as well as
combined. Below is a brief description of each of the
scenarios.

Physics – This scenario focuses on measuring performance
of physics engine and interactions between it and the sim
process. SL uses Havok [8] physics engine. This scenario
allows us to study performance scaling and processing
characteristics of the physics engine in isolation. To study
this, we create a number of spheres in each SL region and
place them in a valley. Since these are placed in a small
valley, the spheres touch each other on the ground. We
then apply a rotational force (llApplyRotationalForce [5])
to each of the spheres. Applying this force requires the
physics engine to compute gravitational force to be applied
based on object’s mass and rotational direction. When this
force is applied, the spheres spin along one of the X, Y or
Z directions, and this causes lot of collisions which the
physics engine has to resolve. This collision resolution is
compute intensive. To minimize scripting overhead on this
test, we applied rotational force randomly once every 0 to
10secs. Figure 3.4 illustrates this scenario in one of the
regions.

Figure 3.4. Physical Objects spinning and colliding

Scripting – This scenario focuses on measuring scripting
engine’s performance inside SL sim process. SL uses
Mono runtime engine to host scripts. Mono[6] is an open

source cross platform implementation of .NET[7]
development framework. The scripting language supported
by SL sim process is called Linden Scripting Language
(LSL). For this scenario, we instantiate a number of 0.25m
wide cubes and place them in stack of 10x10 grids. These
cubes are not marked physical in the simulator, so they can
hang in the air. These cubes don’t touch each other and
each cube has a script that runs as fast as the simulator
process allows. Whenever this script runs, it tries to change
color of the cube and rotate it along x or y axis. The
simulator process has to register the timers when the object
is instantiated and fire off the scripts every time the timer
goes off. This scenario allows us to measure performance
of this component and to characterize the processing. This
scenario is illustrated in figure 3.5.

Figure 3.5. Scripted cubes rotating and changing color

Avatars – In this scenario, we focus on sim’s ability to
process avatars and their movement around the region. We
place a number of avatars in each region and make the
avatars move randomly around the region. We use
LLQABot program on the client machines to log in and
control these avatars. SL simulator does not know or care
who is controlling the bots and treats each avatar same as
if a person is logged into the region using a SL viewer. So,
if 75 avatars logged in using LLQABot program, the load
on the SL server would be the same as if 75 people logged
in from different SL viewers. Whenever an avatar moves,
the simulator has to update the avatar’s new position with
respect to other avatars and objects and send updates to all
the other avatars within some visible range. Figure 3.6 is a
snapshot of a region with some number of avatars (bots)
moving around.

457

Figure 3.6. Avatars wandering on the ground and flying

Mixed – In this scenario, we combine all the above key
elements of SL sim process and create a mixed scenario.
This scenario is probably a better representative of real
world load on SL servers. So, understanding the
processing and performance of this scenario is quite
important as well. This scenario has either 50 or 75 agents
moving around, 800 non physical cubes rotating and
changing color and 100 spinning spheres causing
collisions.

4. Scaling Experiments
Before we jump into detailed characterization of SL
performance, it is useful to first understand how the three
main components of SL sim process perform in isolation
and how their performance scales with varying amounts of
load. To understand this, we look at CPU utilization and
Time/Frame metrics. The Time/Frame metric is reported
by the SL sim server. This indicates how many frames
(scene updates) that the sim process is able to compute per
sec. The SL sim process has an upper threshold of 45
frames/sec (22.2ms/frame). We start out with the Physics
engine.

Figure 3.7. Avatars, spinning spheres and rotating cubes

PHYSICS

The graph in figure 4.1 shows how the SL sim process
scales with increased number of physical objects, spheres
in this case, spinning and colliding with each other. The
primary y-axis in the graph shows CPU utilization and
secondary y-axis shows time/fr numbers. Data shown in
the graph is for 8 sims running on 8 hardware threads (4
cores with HT) of a Nehalem socket. Each sim process is
loaded with a number of physical spheres which is shown
on the x-axis. The graph shows that CPU utilization and
time/fr doubling from 200 to 400 spheres and more than
doubling from 400 to 600 spheres. The CPU utilization
reaches 100% at 600 spheres. Increasing load from 600 to
800 spheres causes time/fr increase beyond the desired
22.2ms which means that the sim process is not able to
keep up 45fr/sec frame rate. We will discuss the nature of
this physics processing in the next section.

0

5

10

15

20

25

30

0%

20%

40%

60%

80%

100%

120%

200 400 600 800

ms

of Physical Spheres

SL Scaling - Physics

CPU Time/Fr(ms)
Figure 4.1. SL physics engine performance with Number

of Physical Objects

SCRIPTING

Graph in figure 4.2 shows how SL sim process
performance scales with number of scripted objects. We
varied the number of scripted objects from 800 to 4800
(shown on x-axis). CPU utilization (primary y-axis) and
time/fr (secondary y-axis) scale more linearly than the
physics scenario until we reach 3200 scripted cubes. Just
like in the Physics scaling experiment above, we have
loaded 8 sims on 8 hw threads. Each sim is processing the
same number of scripted objects. Surprisingly, both CPU
and time/fr flatten out after 3200 scripted cubes. To
understand what is happening, we looked at events
executed per sec metric, also reported by the SL sim
process. This data is shown in table 4.1. This data reveals
that the sim process executes fewer events/sec beyond
3200 scripted objects indicating that the sim process
throttles the events processed sec to maintain the 45
frames/sec frame rate.

458

0

5

10

15

20

25

0%

20%

40%

60%

80%

100%

120%

800 1600 2400 3200 4000 4800

ms

of Scripted Cubes

SL Scaling - Scripting

CPU Time/Fr(ms)
Figure 4.2. SL Performance Scaling with Number of

Scripted Objects

of Cubes Events/sec
2400 10000
3200 6700
4000 6000
4800 4750

TABLE 4.1. Throttling of Events/sec with increased
number of scripted objects

AVATARS

Now, we will look at how the SL sim process handles
avatars (agents) and their movement. Just like the other
two experiments, this one also starts 8 sims on 8 hw
threads and each sim handles same number of avatars.
After these avatars login, they start walking randomly
around the region. The client program that logs in these
avatars constantly sends avatar position updates to the
server forcing the server to calculate screen updates. While
running this test, the physics and scripting load on the SL
sim process is very small and most of the activity is in the
sim logic that handles the avatars. As we increase the
number of avatars from 25 to 95 the CPU utilization
increases somewhat linearly. Even at 95 avatars, CPU
utilization is only 60% (all cores of the CPU are at 60%).
The SL sim process has a built-in limitation of 100
avatars/region.

0%

10%

20%

30%

40%

50%

60%

70%

25 50 75 95
Number of Avatars/Bots

SL Scaling - Agents

CPU

Figure 4.2. SL Performance Scaling with Number of

Agents

We have seen how the main components of SL sim
process respond to varying amounts of load, we will try to
analyze and characterize this processing in more detail in

the next section. We will also compare SL sim processing
with 3 other popular commercial server workloads to get a
better perspective at the requirements of SL server
processing.

5. SL vs. Other Server Workloads
In this section, we compare SL behavior to other well
known commercial server workloads. This kind of
comparison helps architects get a better perspective about
this workload’s requirements. We compare SL to TPC-E,
SPECjAppServer and SPECJbb workloads on various
metrics. Data for all the workloads is collected on Intel
Nehalem processor based dual socket server systems.

CYCLES PER INSTRUCTION (CPI) COMPARISON

CPI metric indicates, on average, how many clocks the
CPU requires to retire one instruction. CPI value depends
on several factors including frequency, micro-architecture,
cache size, memory latency, etc. The graph in figure 5.1
shows how CPI numbers for various SL scenarios compare
to other server workloads.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

SJBB SJAS TPC-E SL_Agents SL_Mix SL_Script SL_Phy

SL vs. Other Server Workloads - CPI

CPI
Figure 5.1. CPI Comparison

Except for SL_Phy scenario, all the other SL scenarios
have lower CPI than TPC-E. This is expected because the
physics engine is constantly trying to resolve collisions
amongst 800 spinning spheres, which requires lot of state
management and vector processing. High CPI of
SL_Physics scenario is mainly due to two reasons. These
are: 1) higher LLC MPI (explained in next sub section of
the paper and shown in figure 5.3) is due to large amount
of active memory that the physics engine allocates to keep
track of 800 objects/sim, and 2) resolving collisions
involves execution of complex instructions such as
floating-point, multiply, divide and SSE instructions. On
the other hand, SL_Agents has the lowest CPI. This is
because the processing involved in handling the avatars
and their movement is light weight compared to others
scenarios. Looking at the CPI number (2.19) for SL_Mix
scenario, which is a better representative of real world load
on SL, we can say that SL in general is on the high side of

459

CPI spectrum. Next, we will look at some other metrics
that can explain observed CPI behavior.

MISSES PER INSTRUCTION (MPI) COMPARISON

We will start with the L2 MPI. To remind readers, the
Nehalem processor has a 256KB of L2 per core that is
shared by two hardware threads. The graph in figure 5.2
shows L2 MPI numbers.

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

SJBB SJAS TPC-E SL_Agents SL_Mix SL_Script SL_Phy

SL vs. Other Server Workloads - L2 MPI

MPI

Figure 5.2. L2 MPI Comparison

Looking at the data in the graph, it is clear that SL in
general has lower L2 MPI. SL_Mix has a L2 MPI of 0.016
which is less than that of SJBB. This shows that both the
code and data of SL has high temporal locality. Even
though the MPI of SL_Mix is lower, it has high CPI as
shown in figure 5.1. This is because of the nature of
instructions and not due to cache capacity. We will look at
the instruction mix shortly, but before we do that let’s look
at the last level cache performance first. The graph in
figure 5.3 shows last level cache MPI and memory read
bandwidth numbers.

SL_Phy has highest LLC MPI of 0.011 while the
SL_Agents has the least (0.0022). Physics engine allocates
about 12 to 15MB of memory to manage state information
for 800 spheres. This is per region and there are 8 regions
active on the socket. So, the physics engine’s memory
footprint far exceeds the available cache (8MB) causing
large number of misses. This is also evident from the miss
ratio (misses/requests) numbers. Miss ratio for SL_Phy is
51% while it is only 36% for the SL_Mix scenario.
Comparing SL_Mix with SJAS, we can see that SJAS has
much higher L2 MPI, but lower LLC MPI. This is because
the 8MB cache is able to accommodate SJAS code and
data better. Plus, SJAS has a lot of sharing across its
threads vs. no sharing at all across multiple SL regions.

Even though SL_Phy has highest MPI, it’s memory read
bandwidth is less than SJBB. This is because SJBB has
much lower CPI than SL_Phy, hence is doing lot more

work per sec (instructions/sec) and as a result has higher
memory read bandwidth (misses/sec). However, the
writeback bandwidth numbers for SL are generally lower
than other workloads. Overall, SL’s memory bandwidth
requirements fall within the range of other three server
workloads.

0
1
2
3
4
5
6
7
8
9

0.000

0.002

0.004

0.006

0.008

0.010

0.012

SJBB SJAS TPC-E SL_Agents SL_Mix SL_Script SL_Phy

M
em

 R
d

BW
 in

 G
B/

s

M
PI

SL vs. Other Server Workloads - LLC MPI

MPI Mem Rd BW Mem Wr BW

Figure 5.3. LLC MPI and Mem Read BW Comparison

INSTRUCTION MIX

Table 5.1 compares numbers for three different types of
instructions executed by the workloads. In general, SL
executes large number of floating, multiply and divide
instructions which explains partly why it’s CPI is higher.
Another interesting point to note here is that SL_Phy_800
(800 spheres) has fewer of these instructions executed than
SL_Phy_600 (600 spheres) because the cores are waiting
for memory more often hence end up doing less amount of
work per sec in case of SL_Phy_800 case.

It is also interesting to note that SL_Agents scenario
executes a large number of floating point, multiply and
divide operations, yet it’s CPI is much lower than SL_Phy
and SL_Mix scenarios. This is because SL_Agents has
smaller cache footprint hence don’t end up spending very
much time waiting for data.

 TPC-E SJBB SJAS
SL_Age

nts SL_Mix
SL_Scri

pts
SL_Phy_8

00
SL_Phy_

600
FP Ops 1 5 8 20 11 4 4 13
Multiply Ops 16 84 48 231 225 150 330 354
Divide Ops 2 10 15 76 54 20 37 55
Table 5.1. Comparison of Instruction Mix across
workloads

Looking at CPI, L2 and LLC MPI, memory bandwidth and
instruction mix numbers across these four workloads, it is
clear that the SL workload’s requirements fall within the
range of other three more established server workloads,
except for the instruction mix. The SL seems to be
executing a lot more of floating point, multiplication and

460

divide instructions. Also, physics intensive scenarios need
larger caches to provide better performance.

6. SL Performance on Nehalem vs. CloverTown
In this section, we evaluate SL sim performance on two
latest Intel server platforms, Clovertown and Nehalem
processor based systems. The objective of this comparison
is to figure out how much SL can benefit from the
integrated memory controller, faster memory and
improved cache hierarchy and micro architecture of the
Nehalem processor. For this comparison, we load 4 sims
on each system (no HT). Later in this section, we will also
evaluate the impact of Hyperthreading that is available in
Nehalem on SL’s performance.

Graph in figure 6.1 plots efficiency of SL sim process on
Nehalem over Clovertown. Efficiency is calculated using
time/fr metric for 5 different scenarios shown on the x-
axis. Data in the graph shows that Nehalem system
provides 40 to 50% benefit over the Clovertown, except
for the 1sim, 5000 cubes scenario. For this case, we have
compared number of events/sec metric and found out that
the Nehalem system is generating almost twice as many
events (9900). To understand where the efficiencies are
coming from, we have collected processor performance
counters on both the platforms. Graph in Figure 6.2 shows
CPI and MPI efficiencies for three different scenarios.
Nehalem has 10 to 20% lower MPI and 25 to 45% lower
CPI than the Clovertown processor based system. Even
though both the processors have a total of 8MB cache per
CPU, the Nehalem cache is more efficient, thanks to its
improved replacement policy and organization. CPI
improvement is not entirely due to improvement in MPI,
but other improvements are also contributing. For
example, for the physics scenario (800 spheres), we have
compared memory latency and it is about 70ns for
Nehalem and about 150ns for Clovertown.

0%

10%

20%

30%

40%

50%

60%

4 sims 4 sims 1 sim 4 sims 4 sims

800 Spheres 600 Spheres 5000 Cubes 50agents,
800cubes,

100spheres

800Cubes,
100Spheres

Nehalem Efficiency Over Clovertown

Time/Frame

Figure 6.1. Nehalem benefit for SL – Time/Frame

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

800 Spheres 5000 Cubes 50agents, 800cubes,
100spheres

Nehalem Efficiency Over Clovertown

CPI

LLC MPI

Figure 6.2. Nehalem benefit for SL – CPI and MPI

HYPER THREADING (HT) ADVANTAGE

We have seen that Nehalem processor without HT offers
significant advantage over the previous generation
Clovertown processor. Now, we turn our attention to HT
and figure out if HT offers any additional benefit to SL sim
process. We have to remind readers one more time that the
SL sim process is not multi-threaded, and as such can only
utilize one logical processor. So, the real advantage of HT
for SL is to double the number of sims per box. We can
run 8 sims per CPU (socket) with HT on vs. 4 when HT is
off. But when HT is on, two hw threads share the core
resources (execution ports, TLBs, caches, etc.). This can
lead to lower performance on each logical processor. The
following tables show impact of HT on SL sim process for
two different scenarios. Table 6.1 shows impact for the
mixed scenario where each sim is handling 50 avatars
moving randomly around the region, 800 cubes rotating
and changing color and 100 spinning spheres. Going from
4 sims to 8 sims per CPU slows down each sim
significantly, so if sims are heavily loaded then using HT
to double the number sims is not very beneficial. However,
there is still some benefit with HT. Looking at the Fr/sec
metric in Table 6.1, we can see that 8 sims delivers 43
fr/sec/sim (344) vs. 4 sims deliver 71 fr/sec/sim (284). This
amounts to roughly 20% more frames/sec in 8 sim case.
Frames/sec number is calculated based on time/fr, not
measured directly (sim process has a upper threshold of 45
frames/sec). It must be noted that the CPI and MPI
numbers didn’t double going from 4 sims to 8 sims which
again confirms that there is benefit to be had with HT.

461

 4 sims 8 sims
4 cores 8 threads

CPU 87% 100%
Cycles/100Inst 149 219
L2 Req/10KI 239 366
L2 Miss/10kI 105 164
LLC Miss/10KI 43 59
Fr/Sec 71 43

Table 6.1. HT Impact – 50 Agents, 800 Rotating Cubes,
100 Spinning Spheres

Table 6.2 shows similar data but for a physics scenario
with 600 spinning spheres per region. Here also CPI didn’t
double from 4 to 8 sims and Fr/sec numbers show that we
get about 11% more frames/sec with HT.

 4 sims 8 sims
4 cores 8 threads

CPU 72% 100%
Cycles/100Inst 164 281
L2 Req/10KI 297 495
L2 Miss/10kI 140 217
LLC Miss/10KI 55 110
Fr/Sec 81 45

Table 6.2. HT Impact – 600 Spinning Spheres

If the sim process were fully multi threaded or even if it
has a way to offload one major component to a different
thread then in that case HT would help scale up individual
sim’s performance. Having this support in the software
provides flexibility and supports both scale up and scale
out options.

7. Conclusions and Future Work
Virtual Worlds are gaining popularity and growing in size
rapidly due to rich 3D content and immersive experience
they provide. Yet, there have been no published studies on
what this workload’s requirements on server platforms are.
We have done a thorough analysis of one of the most
popular virtual world server, called Second Life. Our
analysis included analyzing how the simulator process
performance scales with varying amounts of physics,
scripting and avatar load. This analysis showed that the
physics engine is the most demanding of all in terms of
compute and cache resources. We have also compared SL
performance on Nehalem to Clovertown and showed that
Nehalem processor based systems can improve SL
performance by 20 to 40%. Also, HT on Nehalem doubles
the number of regions per socket and still improves
performance by about 5 to 20%. For cases, where
performance scale up is more important, HT can help there
too if the sim is multithreaded. We have collected detailed
architectural characterization data for the sim process to
understand its requirements and compared this data with
similar data from three other well known server workloads
(TPC-E, SPECjbb and SPECjAppServer). This comparison
(CPI, MPI, MemBW and Mem Latency) revealed that SL

sim process’s requirements fall within the range of these
well known server workloads. SL simulator process issues
2 to 10 times more floating point, multiply and divide
instructions than the three other workloads.

Future work in this area includes understanding
performance implications of sim multithreading options,
creating more complex scenarios involving other services,
performing cache and frequency scaling experiments, etc.

REFERENCES
[1] Sanjeev Kumar, Jatin Chhugani, Changkyu Kim, Daehyun Kim,

Anthony Nguyen, Pradeep Dubey, Christian Bienia, Youngmin
Kim, "Second Life and the New Generation of Virtual Worlds,"
Computer, vol. 41, no. 9, pp. 46-53, Sept. 2008,
doi:10.1109/MC.2008.398

[2] Second Life, http://www.secondlife.com.
[3] Nebraska,

https://blogs.secondlife.com/community/workinginworld/blog/2009/
04/01/second-life-lives-behind-a-firewall

[4] LLQABot, http://lib.openmetaverse.org/wiki/Main_Page
[5] LSL, http://en.wikipedia.org/wiki/Linden_Scripting_Language
[6] Mono, http://www.mono-project.com/Main_Page
[7] .NET, http://www.microsoft.com/net/
[8] HAVOK, http://software.intel.com/sites/havok/
[9] Eve Online, http://www.eveonline.com/
[10] World Of Warcraft, http://www.worldofwarcraft.com/index.xml
[11] Club Penguin, http://www.clubpenguin.com/
[12] Lego Universe, http://universe.lego.com/en-

us/Default.aspx?domainredir=www.legouniverse.com
[13] Olive, http://www.forterrainc.com/
[14] Quake, http://www.quakelive.com/
[15] Linden Lab, http://lindenlab.com/
[16] TPC-E, http://www.tpc.org/tpce/tpc-e.asp
[17] SPECjbb, http://www.spec.org/jbb2005/
[18] SPECjAppServer, http://www.spec.org/jAppServer2004/
[19] Innovation in VirtualWorlds.

http://www.research.ibm.com/virtualworlds/.
[20] Virtual World, http://en.wikipedia.org/wiki/Virtual_world
[21] Meta Verse, http://en.wikipedia.org/wiki/Metaverse
[22] MMOG, Massively Multiplayer Online Games,

http://en.wikipedia.org/wiki/MMOG
[23] Second Life Viewer, Client program to connect to Second Life grip,

http://secondlife.com/support/downloads.php
[24] Kinicki, J. and Claypool, M. 2008. Traffic analysis of avatars in

Second Life. In Proceedings of the 18th international Workshop on
Network and Operating Systems Support For Digital Audio and
Video (Braunschweig, Germany, May 28 - 30, 2008). NOSSDAV
'08. ACM, New York, NY, 69-74. DOI=
http://doi.acm.org/10.1145/1496046.1496063

[25] MySQL, open source database server, http://www.mysql.com/
[26] SchedUtils for Linux, http://sourceforge.net/projects/schedutils

462

