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Abstract 

Linden Lab’s Second Life is the prominent Virtual World 
platform in the market today. Virtual Worlds like Second 
Life are emerging to be a main stream server workload 
because of their popularity due to richness of 3D content 
and immersive social experience they can provide. So, it is 
very important for computer architects to fully understand 
this workload and its requirements. In this paper, our goal 
is to fully analyze the performance and to characterize the 
processing of Second Life server Simulator process.  The 
simulator process has three key critical functions that 
dominate the performance characteristics of this workload. 
These are: 1) Physics engine that is responsible for 
simulating real world behaviors taking into account mass 
of the objects, gravity, wind force, etc., 2) Scripting engine 
that is responsible for executing scripts attached to the 
objects. Scripts is the main way of manipulating object 
behaviors (motion, color, etc.) in-world on the server, and 
3) Simulator logic that is responsible for simulating the 
world which includes avatar movement, calculating visible 
areas and communicating with the clients. Our work 
includes performance scaling experiments, comparison of 
performance on Intel’s Clovertown and Nehalem 
processor based server systems and collecting and 
analyzing architectural characterization data for this 
workload. Our measurements have shown that Intel’s 
latest Xeon servers using Nehalem processors offer 20 to 
50% performance improvement over previous generation 
processor based system, and that the physics computation 
is more compute and memory intensive. To get a better 
perspective of Second Life’s requirements, we have 
compared this workload with three other popular 
commercial server workloads (TPC-E, SPECjAppServer 
and SPECjbb) and found out that this workload executes 2 
to 10 times more floating point, multiply and divide 
instructions. 

1.  Introduction 
Virtual Worlds [19,20] represent a new emerging class of 
applications in the computer industry. These are gaining in 
popularity and growing in size rapidly in recent years 
because of rich and immersive user experience they 
provide with 3D graphics and real time interactions. 

Virtual worlds offer computer simulated worlds that are 
persistent. These virtual worlds, sometimes referred to as 
Meta Verse [21], and are being used for gaming, 
entertainment, socialization, education, training and 
collaboration. For example, US army uses virtual worlds to 
simulate different battle zone scenarios which are used to 
better train personnel in combat, rescue and recovery 
missions. Another example is that several education 
institutions have created presence in virtual worlds to 
increase their reach and enhance experience of distance 
learning. Users in virtual worlds feel a sense of presence 
through their avatars (online appearance) and can control 
these avatars to communicate, express emotions, move, 
dance and even to fly around in the virtual worlds. 

Virtual worlds can be broadly characterized into two types. 
First type is Massively Multiplayer Online Games 
(MMOG [22] or MMORPG) such as World of Warcrafts 
[10], Eve Online [9], Club Penguin [11], LegoUniverse 
[12], etc, where users focus on role playing and playing 
games. In this type of virtual worlds, game developers 
envision and create games and define rules and objectives 
of games. The simulated world is mostly built by game 
developers and interactions and effects are predetermined. 
From computer processing perspective, the division of 
work between client and server is predetermined and most 
of the simulated world is downloaded or available to the 
client at the start of the game. As a result, the network 
bandwidth requirements are low and game developers take 
utmost care to minimize the network latency. These 
MMOGs adopt a technique, called sharding to support a 
large number of simultaneous users. They replicate the 
entire world on multiple sets of servers.  

The second type of virtual worlds is where user’s focus is 
not game playing, but more on interaction, socialization 
and commerce. In this type, users are allowed to build their 
own worlds as they imagined. Some examples of this type 
of virtual worlds are: Second Life [2], Olive [13], Quake 
[14], etc. Of these types of virtual worlds, Second Life 
from Linden Lab [15] is the most popular virtual world out 
there with more than 2000 multi-core servers simulating a 
world that spans tens of thousands of acres in size. In first 
quarter of 2009 alone, Second Life has registered about 
124Million hours of user activity and in-world trading 
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amounting to about 120Million Dollars. Second Life has 
more than 75K users accessing different parts of the world 
at any given time. In spite of its popularity, there is very 
little understanding in the computer architecture 
community about its functionality and processing 
characteristics and requirements. It is important to 
understand these workloads now so we can build platforms 
that better support evolution of these workloads. There 
have been some published studies that have attempted to 
characterize the Second Life client [1, 23] and networking 
aspects [24] of Second Life, but there have been no 
published studies on Second Life server characterization. 
The main reason for this is lack of access to the Second 
Life server software. Linden Lab has recently started a 
pilot program to roll out a standalone version of their 
Second Life server software for private enterprise use. We 
have access to this standalone version of Second Life.  

Our main contributions in this paper are: 1) Identify key 
frequently executed functional components of the Second 
Life server that dictate the overall performance and user 
experience, 2) Understand how these components perform 
on latest state of the art server systems, and their 
performance scaling characteristics, and 3) perform a 
detailed architectural characterization of SL processing 
and compare it to three other popular commercial server 
workloads (TPC-E [16], SPECjAppServer [18], SPECjbb 
[17]) to better understand this workload’s requirements.  

Rest of the paper is organized as follows. In section 2, we 
provide a quick high level overview of Second Life server 
side functionality and architecture. In section 3, we explain 
the test methodology, three Second Life scenarios we have 
created to understand and characterize the workload’s key 
functional components. In section 4, 5 and 6, we go over 
the performance scaling, and characterization data. We 
also discuss how the Intel’s latest Nehalem processor 
improves Second Life performance. Finally, in section 7, 
we provide our conclusions and discuss our future work in 
this area.  

2.  Second Life 
In this section, we provide a brief overview of the Second 
Life (SL) server architecture and describe various 
functional components that make up the server side. Our 
intention here is not to provide a detailed overview. For 
detailed information, readers are requested to read the 
citations provided below.   

There are two different flavors of SL server in existence 
today. One is a distributed version where different services 
are run on one or more servers. This is the public domain 
version of SL Grid that is hosted and managed by the 
Linden Lab. The second one is a grid in a box variant of 
SL where all the services run on a single server box. This 
version is developed for enterprises to use on enterprise 
networks behind firewalls. This is relatively a new offering 
from Linden Lab. Corporations and universities are using 
this version for collaboration and training purposes. This 
grid in a box version uses the same code base as the public 
domain version and any studies done on this are directly 
applicable to the public domain version as well. Figure 2.1 
shows snapshots from some regions in SL which highlight 
the rich 3D content that its users have created.  
 

 

Figure 2.1.  Snapshots of some Second Life regions 

 

Users of SL buy land, create a terrain of their choice and 
build structures on it. The terrain typically includes 
mountains, water and some flat land. In SL, objects are 
built using simple basic shapes called primitives or prims. 
SL supports 8 different shapes of prims (cylinder, cube, 
sphere, etc) and 7 prim material types (wood, metal, 
concrete, etc). Users can change the basic prims by 
changing size, color, rotation, cut, shear, lighting and other 
attributes. 
 
SL server consists of several services: Simulator, Map, 
Space, Asset, etc. There is also a backend mysql [25] 
database that acts as data provider and storage server for 
various services. In addition, Linden Lab’s SL has its own 
currency, called Linden Dollar, and allows buying/selling 
of properties and other types of trading activity. SL server 
side architecture looks is shown in figure 2.2. We describe 
the main components next.  
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Figure 2.2.  Second Life Server Architecture

 
Simulator 
The main service that is responsible for simulating the 
world is the simulator. Each simulator is responsible for a 
256m2 region in the virtual world. This service (process) is 
responsible for storing object state, terrain information and 
performing visibility calculations to send to each 
connected viewer. This is the workhorse service of SL 
server. The simulator process talks to other services and 
the database server whenever is needed. The simulator 
process relies on TCP/IP and UDP/IP protocols for 
communicating with the clients. It uses TCP/IP internally 
for communicating with other services. The simulator 
process is currently single threaded and has a hard limit of 
100 avatars per region. It also has an upper threshold of 45 
frames/sec and won’t process any more even if the CPU is 
not 100% utilized. Simulator processes communicate with 
each other, especially when avatars cross region 
boundaries. Within the simulator process, there are three 
main components. They are: Physics, Scripting and logic 
to handle avatars and compute visible area. We focus on 
these main components in this paper, and explain these in 
detail in the next section. 
  
Map Server 
This service is responsible for keeping track of information 
about the entire world being simulated. For example, when 
the user clicks on map button on the viewer, map server 
sends back map information that shows what regions are 
active, how many avatars are in each region, etc.  
 
Asset Server 
Every object inside SL is treated as an Asset and is 
assigned a unique ID (uuid). Asset server is responsible for 
managing this asset information. This also includes  

 
managing each avatar’s inventory of objects (clothes, 
shoes, any objects built or bought). When the user clicks 
on the inventory button on the viewer, a request goes to the 
asset server and the asset server sends back asset 
information for that avatar to the client. 
 
Space Server 
This service is responsible for keeping track of which 
regions are where on the grid and maintaining neighbor 
information. It also handles routing of messages based on 
grid (x and y) locations. The simulator talks to the space 
server to register the region and to find out who the 
neighbors are. 
 
Data Server 
This service is responsible for handling connections to all 
the active databases (log, inventory, central, etc.). This 
handles communication with the database server on behalf 
of other services. 
 
There are some other services to handle messaging, login, 
etc which we don’t cover here due to space constraints.  
 

3. Testing Methodology 
In this section, we explain our testing methodology and 
describe the tools and systems used for the testing. First, 
we start with the server platforms used for this testing. 

SERVER PLATFORMS 

Figures 3.1 and 3.2 show details of Clovertown and 
Nehalem processor based server systems used for the 
studies. Even though these platforms support 2 sockets, we 
have used only one socket (one CPU) for our studies and 
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left the second one idle. We affinitized the simulator 
processes of interest to logical processors of one socket 
using taskaffinity tool available in schedutils [26] package 
for Linux OS. Nehalem system supports Hyper Threading 
(HT) which means each core has two logical processors 
(hardware threads) that share the core resources. HT 
allows for maximum utilization of the core resources. 
Nehalem also has a 256KB L2 cache that is private to each 
core. All the 4 cores of Nehalem share an 8MB L3 cache, 
while in Clovertown system there are two 4MB L2 caches 
per CPU each of which is shared by two cores. Nehalem 
also introduces a new system interconnect, called Quick 
Path Interconnect (QPI) which is link based instead of bus 
based like in the Clovertown system. QPI offers 12.8GB/s 
of read/write bandwidth per direction per link while the 
bus interconnect offers a total of 10GB/s. In Nehalem, the 
memory controller is integrated into the processor offering 
much lower latency to the memory. 

 

Figure 3.1.  Details of Clovertown processor based 
Platform 

 

Figure 3.2.  Details of Nehalem processor based Platform 

We have enabled HT for some tests and disabled for some 
other tests. When we discuss individual test results, we 
point out whether HT is used or not.  

We have turned off the HW prefetchers on both the 
platforms as we found that the HW prefetchers hurt 
performance slightly in some studies by increasing the 
cache miss rate.  

TEST SETUP 

Our test setup includes the server systems described above 
and several client machines. All the client machines are 
Nehalem (Core i7) processor based high end desktop 
systems with Gigabit NW interface and 4GB of memory. 
We made sure that the client machines are not a bottleneck 
in our studies. We run the grid in a box version of SL 
server on our server systems and run LLQABot script 
(described below) on the client machines. Servers and 
clients are connected to a Gigabit switch as shown in 
figure 3.3. Our server system is running Debian Linux 
version 4.0r8. 

 

Figure 3.3.  Test Setup 

CLIENT SIDE PROGRAM  

We use a publicly available bot generation and control tool 
to automate the process of logging in avatars into a region 
of SL and to control their actions. We call this program 
LLQABot [4]. Some enhancements were made to this tool 
to support wandering of avatars on the ground and while 
flying for some duration. Without this program, we 
literally need a person behind each avatar to control the 
avatar. Even then it will be difficult to generate repeatable 
actions for consistent and reproducible results. The 
LLQABot program solves this problem. Using this 
program, we can make avatars move, jump, fly, wander, 
query the database for inventory, rez and derez objects into 
the world, etc. In our studies, we mainly use this program 
for logging in the avatars and making them wander around 
the region. This program does not have any user interface 
associated with it, so no rendering of scenes has to be 
done. This allows the program to support multiple avatars 
at the same time. LLQABot sends commands and position 
updates to the server on behalf of each avatar and receives 
and processes screen updates and texture downloads from 
the server.  

SCENARIOS 

As we have explained in the section on SL (SL), there are 
a lot of different functions in SL that are of interest, but we 
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focus mainly on 3 very important aspects of the SL 
simulator (sim) process, which are physics processing, 
script processing and Avatar handling. The sim process 
performance is majorly dependent upon these three 
functional components. Some of the other functional 
components of sim process are network processing, 
processing large amount of data from the database (XML), 
etc. These have been studied in other domains extensively 
and their characteristics are well understood. 

We have created scenarios to study the processing 
behavior of these three components in isolation as well as 
combined. Below is a brief description of each of the 
scenarios.  

Physics – This scenario focuses on measuring performance 
of physics engine and interactions between it and the sim 
process. SL uses Havok [8] physics engine. This scenario 
allows us to study performance scaling and processing 
characteristics of the physics engine in isolation. To study 
this, we create a number of spheres in each SL region and 
place them in a valley. Since these are placed in a small 
valley, the spheres touch each other on the ground. We 
then apply a rotational force (llApplyRotationalForce [5]) 
to each of the spheres. Applying this force requires the 
physics engine to compute gravitational force to be applied 
based on object’s mass and rotational direction. When this 
force is applied, the spheres spin along one of the X, Y or 
Z directions, and this causes lot of collisions which the 
physics engine has to resolve. This collision resolution is 
compute intensive. To minimize scripting overhead on this 
test, we applied rotational force randomly once every 0 to 
10secs. Figure 3.4 illustrates this scenario in one of the 
regions. 

 

Figure 3.4.  Physical Objects spinning and colliding 

Scripting – This scenario focuses on measuring scripting 
engine’s performance inside SL sim process. SL uses 
Mono runtime engine to host scripts. Mono[6] is an open 

source cross platform implementation of .NET[7] 
development framework. The scripting language supported 
by SL sim process is called Linden Scripting Language 
(LSL). For this scenario, we instantiate a number of 0.25m 
wide cubes and place them in stack of 10x10 grids. These 
cubes are not marked physical in the simulator, so they can 
hang in the air. These cubes don’t touch each other and 
each cube has a script that runs as fast as the simulator 
process allows. Whenever this script runs, it tries to change 
color of the cube and rotate it along x or y axis. The 
simulator process has to register the timers when the object 
is instantiated and fire off the scripts every time the timer 
goes off. This scenario allows us to measure performance 
of this component and to characterize the processing. This 
scenario is illustrated in figure 3.5. 

 

Figure 3.5.  Scripted cubes rotating and changing color 

Avatars – In this scenario, we focus on sim’s ability to 
process avatars and their movement around the region. We 
place a number of avatars in each region and make the 
avatars move randomly around the region. We use 
LLQABot program on the client machines to log in and 
control these avatars. SL simulator does not know or care 
who is controlling the bots and treats each avatar same as 
if a person is logged into the region using a SL viewer. So, 
if 75 avatars logged in using LLQABot program, the load 
on the SL server would be the same as if 75 people logged 
in from different SL viewers. Whenever an avatar moves, 
the simulator has to update the avatar’s new position with 
respect to other avatars and objects and send updates to all 
the other avatars within some visible range. Figure 3.6 is a 
snapshot of a region with some number of avatars (bots) 
moving around.  
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Figure 3.6.  Avatars wandering on the ground and flying 

Mixed – In this scenario, we combine all the above key 
elements of SL sim process and create a mixed scenario. 
This scenario is probably a better representative of real 
world load on SL servers. So, understanding the 
processing and performance of this scenario is quite 
important as well. This scenario has either 50 or 75 agents 
moving around, 800 non physical cubes rotating and 
changing color and 100 spinning spheres causing 
collisions. 

4. Scaling Experiments 
Before we jump into detailed characterization of SL 
performance, it is useful to first understand how the three 
main components of SL sim process perform in isolation 
and how their performance scales with varying amounts of 
load. To understand this, we look at CPU utilization and 
Time/Frame metrics. The Time/Frame metric is reported 
by the SL sim server. This indicates how many frames 
(scene updates) that the sim process is able to compute per 
sec. The SL sim process has an upper threshold of 45 
frames/sec (22.2ms/frame). We start out with the Physics 
engine. 

 

Figure 3.7.  Avatars, spinning spheres and rotating cubes  

PHYSICS 

The graph in figure 4.1 shows how the SL sim process 
scales with increased number of physical objects, spheres 
in this case, spinning and colliding with each other. The 
primary y-axis in the graph shows CPU utilization and 
secondary y-axis shows time/fr numbers. Data shown in 
the graph is for 8 sims running on 8 hardware threads (4 
cores with HT) of a Nehalem socket. Each sim process is 
loaded with a number of physical spheres which is shown 
on the x-axis. The graph shows that CPU utilization and 
time/fr doubling from 200 to 400 spheres and more than 
doubling from 400 to 600 spheres. The CPU utilization 
reaches 100% at 600 spheres. Increasing load from 600 to 
800 spheres causes time/fr increase beyond the desired 
22.2ms which means that the sim process is not able to 
keep up 45fr/sec frame rate. We will discuss the nature of 
this physics processing in the next section.     
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Figure 4.1.  SL physics engine performance with Number 

of Physical Objects 

SCRIPTING 

Graph in figure 4.2 shows how SL sim process 
performance scales with number of scripted objects. We 
varied the number of scripted objects from 800 to 4800 
(shown on x-axis). CPU utilization (primary y-axis) and 
time/fr (secondary y-axis) scale more linearly than the 
physics scenario until we reach 3200 scripted cubes. Just 
like in the Physics scaling experiment above, we have 
loaded 8 sims on 8 hw threads. Each sim is processing the 
same number of scripted objects. Surprisingly, both CPU 
and time/fr flatten out after 3200 scripted cubes. To 
understand what is happening, we looked at events 
executed per sec metric, also reported by the SL sim 
process. This data is shown in table 4.1. This data reveals 
that the sim process executes fewer events/sec beyond 
3200 scripted objects indicating that the sim process 
throttles the events processed sec to maintain the 45 
frames/sec frame rate. 
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# of Cubes Events/sec
2400 10000
3200 6700
4000 6000
4800 4750  

TABLE 4.1.  Throttling of Events/sec with increased 
number of scripted objects 

AVATARS 

Now, we will look at how the SL sim process handles 
avatars (agents) and their movement. Just like the other 
two experiments, this one also starts 8 sims on 8 hw 
threads and each sim handles same number of avatars. 
After these avatars login, they start walking randomly 
around the region. The client program that logs in these 
avatars constantly sends avatar position updates to the 
server forcing the server to calculate screen updates. While 
running this test, the physics and scripting load on the SL 
sim process is very small and most of the activity is in the 
sim logic that handles the avatars. As we increase the 
number of avatars from 25 to 95 the CPU utilization 
increases somewhat linearly. Even at 95 avatars, CPU 
utilization is only 60% (all cores of the CPU are at 60%). 
The SL sim process has a built-in limitation of 100 
avatars/region. 
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Figure 4.2.  SL Performance Scaling with Number of 

Agents 

We have seen how the main components of SL sim 
process respond to varying amounts of load, we will try to 
analyze and characterize this processing in more detail in 

the next section. We will also compare SL sim processing 
with 3 other popular commercial server workloads to get a 
better perspective at the requirements of SL server 
processing.  

5. SL vs. Other Server Workloads 
In this section, we compare SL behavior to other well 
known commercial server workloads. This kind of 
comparison helps architects get a better perspective about 
this workload’s requirements. We compare SL to TPC-E, 
SPECjAppServer and SPECJbb workloads on various 
metrics. Data for all the workloads is collected on Intel 
Nehalem processor based dual socket server systems. 

CYCLES PER INSTRUCTION (CPI) COMPARISON 

CPI metric indicates, on average, how many clocks the 
CPU requires to retire one instruction. CPI value depends 
on several factors including frequency, micro-architecture, 
cache size, memory latency, etc. The graph in figure 5.1 
shows how CPI numbers for various SL scenarios compare 
to other server workloads.  
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Figure 5.1.  CPI Comparison 

Except for SL_Phy scenario, all the other SL scenarios 
have lower CPI than TPC-E. This is expected because the 
physics engine is constantly trying to resolve collisions 
amongst 800 spinning spheres, which requires lot of state 
management and vector processing. High CPI of 
SL_Physics scenario is mainly due to two reasons. These 
are: 1) higher LLC MPI (explained in next sub section of 
the paper and shown in figure 5.3) is due to large amount 
of active memory that the physics engine allocates to keep 
track of 800 objects/sim, and 2) resolving collisions 
involves execution of complex instructions such as 
floating-point, multiply, divide and SSE instructions. On 
the other hand, SL_Agents has the lowest CPI. This is 
because the processing involved in handling the avatars 
and their movement is light weight compared to others 
scenarios. Looking at the CPI number (2.19) for SL_Mix 
scenario, which is a better representative of real world load 
on SL, we can say that SL in general is on the high side of 
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CPI spectrum. Next, we will look at some other metrics 
that can explain observed CPI behavior. 

MISSES PER INSTRUCTION (MPI) COMPARISON 

We will start with the L2 MPI. To remind readers, the 
Nehalem processor has a 256KB of L2 per core that is 
shared by two hardware threads. The graph in figure 5.2 
shows L2 MPI numbers.  
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Figure 5.2.  L2 MPI Comparison 

Looking at the data in the graph, it is clear that SL in 
general has lower L2 MPI. SL_Mix has a L2 MPI of 0.016 
which is less than that of SJBB. This shows that both the 
code and data of SL has high temporal locality. Even 
though the MPI of SL_Mix is lower, it has high CPI as 
shown in figure 5.1. This is because of the nature of 
instructions and not due to cache capacity. We will look at 
the instruction mix shortly, but before we do that let’s look 
at the last level cache performance first. The graph in 
figure 5.3 shows last level cache MPI and memory read 
bandwidth numbers. 

SL_Phy has highest LLC MPI of 0.011 while the 
SL_Agents has the least (0.0022). Physics engine allocates 
about 12 to 15MB of memory to manage state information 
for 800 spheres. This is per region and there are 8 regions 
active on the socket. So, the physics engine’s memory 
footprint far exceeds the available cache (8MB) causing 
large number of misses.  This is also evident from the miss 
ratio (misses/requests) numbers. Miss ratio for SL_Phy is 
51% while it is only 36% for the SL_Mix scenario. 
Comparing SL_Mix with SJAS, we can see that SJAS has 
much higher L2 MPI, but lower LLC MPI. This is because 
the 8MB cache is able to accommodate SJAS code and 
data better. Plus, SJAS has a lot of sharing across its 
threads vs. no sharing at all across multiple SL regions.  

Even though SL_Phy has highest MPI, it’s memory read 
bandwidth is less than SJBB. This is because SJBB has 
much lower CPI than SL_Phy, hence is doing lot more 

work per sec (instructions/sec) and as a result has higher 
memory read bandwidth (misses/sec). However, the 
writeback bandwidth numbers for SL are generally lower 
than other workloads. Overall, SL’s memory bandwidth 
requirements fall within the range of other three server 
workloads. 
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INSTRUCTION MIX 

Table 5.1 compares numbers for three different types of 
instructions executed by the workloads. In general, SL 
executes large number of floating, multiply and divide 
instructions which explains partly why it’s CPI is higher. 
Another interesting point to note here is that SL_Phy_800 
(800 spheres) has fewer of these instructions executed than 
SL_Phy_600 (600 spheres) because the cores are waiting 
for memory more often hence end up doing less amount of 
work per sec in case of SL_Phy_800 case.  

It is also interesting to note that SL_Agents scenario 
executes a large number of floating point, multiply and 
divide operations, yet it’s CPI is much lower than SL_Phy 
and SL_Mix scenarios.  This is because SL_Agents has 
smaller cache footprint hence don’t end up spending very 
much time waiting for data.  

 TPC-E SJBB SJAS
SL_Age

nts SL_Mix
SL_Scri

pts
SL_Phy_8

00
SL_Phy_

600
FP Ops 1 5 8 20 11 4 4 13
Multiply Ops 16 84 48 231 225 150 330 354
Divide Ops 2 10 15 76 54 20 37 55  
Table 5.1.  Comparison of Instruction Mix across 
workloads 

Looking at CPI, L2 and LLC MPI, memory bandwidth and 
instruction mix numbers across these four workloads, it is 
clear that the SL workload’s requirements fall within the 
range of other three more established server workloads, 
except for the instruction mix. The SL seems to be 
executing a lot more of floating point, multiplication and 
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divide instructions. Also, physics intensive scenarios need 
larger caches to provide better performance. 

6. SL Performance on Nehalem vs. CloverTown 
In this section, we evaluate SL sim performance on two 
latest Intel server platforms, Clovertown and Nehalem 
processor based systems. The objective of this comparison 
is to figure out how much SL can benefit from the 
integrated memory controller, faster memory and 
improved cache hierarchy and micro architecture of the 
Nehalem processor. For this comparison, we load 4 sims 
on each system (no HT). Later in this section, we will also 
evaluate the impact of Hyperthreading that is available in 
Nehalem on SL’s performance. 

Graph in figure 6.1 plots efficiency of SL sim process on 
Nehalem over Clovertown. Efficiency is calculated using 
time/fr metric for 5 different scenarios shown on the x-
axis. Data in the graph shows that Nehalem system 
provides 40 to 50% benefit over the Clovertown, except 
for the 1sim, 5000 cubes scenario. For this case, we have 
compared number of events/sec metric and found out that 
the Nehalem system is generating almost twice as many 
events (9900). To understand where the efficiencies are 
coming from, we have collected processor performance 
counters on both the platforms. Graph in Figure 6.2 shows 
CPI and MPI efficiencies for three different scenarios. 
Nehalem has 10 to 20% lower MPI and 25 to 45% lower 
CPI than the Clovertown processor based system. Even 
though both the processors have a total of 8MB cache per 
CPU, the Nehalem cache is more efficient, thanks to its 
improved replacement policy and organization. CPI 
improvement is not entirely due to improvement in MPI, 
but other improvements are also contributing. For 
example, for the physics scenario (800 spheres), we have 
compared memory latency and it is about 70ns for 
Nehalem and about 150ns for Clovertown.  
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Figure 6.1.  Nehalem benefit for SL – Time/Frame    
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Figure 6.2.  Nehalem benefit for SL – CPI and MPI 

HYPER THREADING (HT) ADVANTAGE 

We have seen that Nehalem processor without HT offers 
significant advantage over the previous generation 
Clovertown processor. Now, we turn our attention to HT 
and figure out if HT offers any additional benefit to SL sim 
process. We have to remind readers one more time that the 
SL sim process is not multi-threaded, and as such can only 
utilize one logical processor. So, the real advantage of HT 
for SL is to double the number of sims per box. We can 
run 8 sims per CPU (socket) with HT on vs. 4 when HT is 
off. But when HT is on, two hw threads share the core 
resources (execution ports, TLBs, caches, etc.). This can 
lead to lower performance on each logical processor. The 
following tables show impact of HT on SL sim process for 
two different scenarios. Table 6.1 shows impact for the 
mixed scenario where each sim is handling 50 avatars 
moving randomly around the region, 800 cubes rotating 
and changing color and 100 spinning spheres. Going from 
4 sims to 8 sims per CPU slows down each sim 
significantly, so if sims are heavily loaded then using HT 
to double the number sims is not very beneficial. However, 
there is still some benefit with HT. Looking at the Fr/sec 
metric in Table 6.1, we can see that 8 sims delivers 43 
fr/sec/sim (344) vs. 4 sims deliver 71 fr/sec/sim (284). This 
amounts to roughly 20% more frames/sec in 8 sim case. 
Frames/sec number is calculated based on time/fr, not 
measured directly (sim process has a upper threshold of 45 
frames/sec). It must be noted that the CPI and MPI 
numbers didn’t double going from 4 sims to 8 sims which 
again confirms that there is benefit to be had with HT. 
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 4 sims 8 sims
4 cores 8 threads

CPU 87% 100%
Cycles/100Inst 149 219
L2 Req/10KI 239 366
L2 Miss/10kI 105 164
LLC Miss/10KI 43 59
Fr/Sec 71 43  

Table 6.1.  HT Impact – 50 Agents, 800 Rotating Cubes, 
100 Spinning Spheres 

Table 6.2 shows similar data but for a physics scenario 
with 600 spinning spheres per region. Here also CPI didn’t 
double from 4 to 8 sims and Fr/sec numbers show that we 
get about 11% more frames/sec with HT. 

 4 sims 8 sims
4 cores 8 threads

CPU 72% 100%
Cycles/100Inst 164 281
L2 Req/10KI 297 495
L2 Miss/10kI 140 217
LLC Miss/10KI 55 110
Fr/Sec 81 45  

Table 6.2.  HT Impact – 600 Spinning Spheres 

If the sim process were fully multi threaded or even if it 
has a way to offload one major component to a different 
thread then in that case HT would help scale up individual 
sim’s performance. Having this support in the software 
provides flexibility and supports both scale up and scale 
out options. 

7. Conclusions and Future Work 
Virtual Worlds are gaining popularity and growing in size 
rapidly due to rich 3D content and immersive experience 
they provide. Yet, there have been no published studies on 
what this workload’s requirements on server platforms are. 
We have done a thorough analysis of one of the most 
popular virtual world server, called Second Life. Our 
analysis included analyzing how the simulator process 
performance scales with varying amounts of physics, 
scripting and avatar load. This analysis showed that the 
physics engine is the most demanding of all in terms of 
compute and cache resources. We have also compared SL 
performance on Nehalem to Clovertown and showed that 
Nehalem processor based systems can improve SL 
performance by 20 to 40%.  Also, HT on Nehalem doubles 
the number of regions per socket and still improves 
performance by about 5 to 20%. For cases, where 
performance scale up is more important, HT can help there 
too if the sim is multithreaded. We have collected detailed 
architectural characterization data for the sim process to 
understand its requirements and compared this data with 
similar data from three other well known server workloads 
(TPC-E, SPECjbb and SPECjAppServer). This comparison 
(CPI, MPI, MemBW and Mem Latency) revealed that SL 

sim process’s requirements fall within the range of these 
well known server workloads. SL simulator process issues 
2 to 10 times more floating point, multiply and divide 
instructions than the three other workloads. 
 
Future work in this area includes understanding 
performance implications of sim multithreading options, 
creating more complex scenarios involving other services, 
performing cache and frequency scaling experiments, etc. 
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