
SNARF: A Social Networking-inspired Accelerator
Remoting Framework

Heungsik Eom*, Pierre St Juste*, Renato Figueiredo*,
Omesh Tickoo**, Ramesh Illikkal**, Ravishankar Iyer**

*Advanced Computing and Information Systems Laboratory

University of Florida
Gainesville, Florida, USA

{hseom, pstjuste, renato}@acis.ufl.edu
**Intel Corporation

2111 N.E. 25th Avenue
Hillsboro, Oregon, USA

{omesh.tickoo, ramesh.g.illikkal, ravishankar.iyer}@intel.com

ABSTRACT
The diminishing size and battery requirements of mobile devices
restrict the scope of computations possible on such devices and
motivate approaches that support the selective offloading of
computations to remote resources. With a variety of resources
available to potentially host offloaded computations – such as
cloud-provisioned resources, and devices within a user’s personal
or social network – a key challenge lies in architecting a
framework that enables applications to seamlessly discover
available services, effectively and securely communicate with
them, and be presented with API interfaces that hide the
complexities associated with managing the interactions with a
remote device from applications and present the abstraction of a
local device. In this paper, we outline a framework that addresses
these challenges by layering APIs and an offload infrastructure
upon a virtual networking substrate that supports TCP/IP
networking and widely-used resource discovery protocols. An
intelligent runtime scheduling layer monitors the execution
environment and provides opportunistic remote offloads based on
the performance requirements, offload benefits and expendable
power. We demonstrate the feasibility of the approach through
experiments that evaluate end-to-end application execution times
and energy consumption in offloaded mobile devices, as well as
the ability to support universal plug-and-play (UPnP) resource
discovery in both local- and wide-area environments.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Client/Server

General Terms
Design, Experimentation, Performance

Keywords
offload, mobile device, energy consumption, virtual network

1. INTRODUCTION
The diminishing size and battery requirements of mobile devices
restrict the scope of computations possible on such devices.
Commonly used strategies to combat these limitations can be
grouped under two categories:

- Device Specialization: Mobile devices target a specific market
segment leading to well-defined use cases and limited application
deployment. The specialized devices use highly efficient fixed-
function hardware to speed up the common case of computation at
relatively low power consumption. GPS and medical notification
devices fall under this category.
- Cloud offload: For more general-purpose devices such as
Tablets and Smartphones, applications perform limited data
processing at the mobile device itself, and offload more resource-
intensive computations to servers in a cloud backend.

While specialized devices address specific niche use cases, they
come with inflexibility in use case variations and high cost of
manufacture/upgrade. As such, it is highly attractive to design
more general-purpose mobile devices with an ability to address
multiple usage segments. Since it is not practical to include fixed-
function specialized hardware for all the possible use cases with a
general purpose mobile platform, offloading compute-intensive,
domain-specific tasks to other more capable platforms over the
network is an attractive solution. In an ideal case, a mobile
application should be able to use computation resources (both
local to the platform as well as the ones located remotely over a
network) in a seamless fashion. In this paper we present design
considerations for such an “aggregated” platform, and an
architecture that allows dynamic platform building using both
local and remote resources. An application querying the platform
is able to enumerate the devices irrespective of their physical
location, and the runtime presents resource discovery and job
scheduling services. For our implementation, the runtime is
supported by the SocialVPN [3], social virtual networking service
that implements popular resource identification and discovery
protocols on top of the ubiquitous TCP/IP based network stack for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MCC’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1519-7/12/08...$15.00.

29

efficient and seamless communication over a wide range of
network topologies.

Figure 1. Block diagram of offload framework

 The proposed architecture is shown in Figure 1 and has the
following components:

- Application: An application program executes on a mobile
device. It offloads various tasks to available hardware and
software resources for optimal computation. In this paper, we
present the requirements for the application design to achieve
efficient offload in the presence of networked resources.

- API: The API layer is local to the mobile device and allows the
application to utilize the platform resources in a seamless and
portable manner. The design complexity of the API depends on
the application design and is detailed in Section 2.

- Offload Infrastructure: This layer is responsible for managing
the aggregated platform resources. The functions include keeping
track of dynamic resources, optimal offload management
accounting for granularity, and providing the backend services to
the API.

- Local Device API: Interface to the device drivers for local
resources at the mobile device.

- Local Network Abstraction: This is comprised of the
infrastructure necessary to abstract a remote device locally. The
layer is comprised of two sub-layers: A device stub for
virtualizing a remote device or service and a network abstraction
sub-layer to manage network diversity among technologies such
as Wi-Fi and cellular.

- Remote Network Abstraction: The remote networking stack
implementing the device proxy and networking peer for the
mobile device.

- Remote Device API: Interface for job/function execution on the
remote device.

The following sections present design consideration for the
components listed above staring with the relevant work in this
area. We then present an implementation of the architecture that
we are building and a proof of concept prototype. The rest of the
paper is structured as follows. In Section 2, we describe the
architecture for our framework by presenting major sub-blocks.
The prototype of our work and the result of experiments are

presented in Section 3 and 4, respectively. We overview previous
related works on computation offloading framework in Section 5,
and lastly, Section 6 concludes the paper.

2. ARCHITECTURE
The main goal is to design an offloading framework for mobile
devices by layering offload APIs and an offload infrastructure
upon a virtual networking substrate that supports TCP/IP
networking and widely-used resource discovery protocols. In this
section, we present major sub-blocks of the framework such as
application, offload API and infrastructure, and network layer
prototype.

2.1 Application
Mobile applications involve the use of system resources to a very
large degree. Most of the context-based applications use sensors
from a mobile platform. These sensors include GPS,
accelerometer, camera, and microphone. Apart from the local
sensors, the applications use a variety of media processing
engines for data processing and formatting for human
consumption. Furthermore, applications may require access and
processing of information hosted externally to the device. While
the sensor data acquisition operations need to be local to a mobile
platform, most of the other compute intensive jobs can be
offloaded over a network connection under application-specific
latency constraints. An application programmer has the best
knowledge of the routines that can and cannot be offloaded
because of local context requirements. Providing this information
to the offload infrastructure can help in fine-tuning the scheduling
engine. This comes at the cost of application complexity. The
application offloading assistance can thus be classified into four
categories:

- Minimum assistance: The programmer provides two versions of
the offloadable routine: one for local execution, and a remote
optimized version. An API is provided to invoke a routine at
runtime from the application. The offload manager picks the
suitable version at the time of offload.

- Maximum assistance: This mode keeps the programmer free of
any responsibility to annotate the application program for ease of
programming. The offload framework can use the activity
monitoring, runtime compiler and other tools to recognize
opportunities and offload in runtime. This mode features a
complex implementation of the offload manager.

- Medium assistance: The programmer only annotates the code
with flags or compiler pragmas denoting the parts of the code that
can be optimally offloaded. The offload framework uses these
flags to schedule on local and remote resources.
- API assisted: This mode falls under the category of medium
assistance where an application programmer uses the API services
to discover remote resource capable of offloading.

2.2 API
Application Programming Interfaces (APIs) are designed to
enable program portability and decouple the application
development from hardware specifications.

30

Figure 2. API invocation for platform and runtime services
A typical API layer that enables aggregation of hardware resources
(both local and remote) needs to provide a set of fundamental
service hooks for the application. The exact nature of the API calls
depends on the programming model chosen from the set of options
discussed in previous subsection. From the architecture perspective,
the application API should support the following services:

2.2.1: Platform services comprise of APIs for discovering and
enumerating the platform hardware. Following platform APIs are
needed:
- Device/Function Discovery: This API allows an application to
query and discover devices of different types. The device types
queried can include the functionality of the device (graphics,
decoder, crypto etc.) or the location of the device (remote/local).
Querying for remote devices can be supported depending on the
offloading framework. For our implementation described in Section
3, the use of local and remote devices is managed by the runtime
and therefore the device location does not need to be exposed to the
application programmer. Runtime provides a device handle for
each device that matches the query for the application to use.
- Device/Function Selection: API needs to allow for an application
to choose a device using available device handles.

2.2.2: Runtime services comprise of APIs for enabling the actual job
offload on the local and remote devices. These APIs include:
- Job customization: To enable application portability, this API
provides the translation of user requirements into actual hardware
configuration for a job offload. The runtime functions supporting
this include compiler-based tools for generating hardware-specific
binaries, software libraries for hardware set-up, and network
encapsulation for transporting the job over the network for remote
execution.
- Buffer Management: This API is needed to allow the application to
marshal data for offload and provide for returned data storage. This
includes methods for allocating new buffers and copying data
between the user application and these buffers. Keeping the offload
buffers separate from the memory actively used by the application
enables decoupled offload and efficient program implementations
with reduced synchronization requirements.
- Offload Queue Management: This API is needed to provide
methods for creating offload queues targeted at enumerated devices
by the application. A created queue is identified by a handle and
each offload job gets queued in these queues. Further, the

application needs APIs to specify the properties of these queues,
including synchronization requirements and the nature of the queue
(e.g. FIFO vs. out-of-order execution). Once the queues are created,
an application should be able to query the status of a queue using a
handle provided by the runtime through the API.
- Job Offload: Using the information from the APIs above, the
application can now “package” a job targeted for a specific device
or a device type (with runtime deciding the exact device to be used
based on scheduling metrics). The job offload API allows for
queuing jobs in the job queues targeting the hardware devices along
with any input/output buffers. Synchronization details between
different jobs and completion notifications to the application can
also be specified at this time.
- Status Queries: To enable an application to determine the status of
an offloaded task, the API needs to provide for status queries.
These queries can be used by the application to either poll for a job
completion or determine if there were any errors executing the
offloaded job. The exact error codes implemented depend on the
offload methodology chosen. Figure 2 shows the API invocation at
different offload stages.

2.3 Network layer – Communication and
Resource discovery
Related works such as MAUI, Cuckoo, and Mobile MapReduce
[4-6] have focused on code partitioning to deal with the power
management of mobile devices, but assume static resource
discovery. Our system enables an automatic and seamless service
discovery in order to give end-users flexibility during service
selection. Our approach is based on network virtualization,
presenting the IP layer to clients and services, coupled with a self-
organizing overlay topology that abstracts away the set up and
management of network connections from the upper layers. With
this approach, a wealth of applications and middleware written for
TCP/IP can be readily reused and devices can communicate using
a unified interface (e.g. the Berkeley socket API) whether on a
LAN, personal-area network, or WAN. For network
virtualization, we propose the use of SocialVPN [3] which is
tunneling techniques through Virtual Private Network (VPN).
SocialVPN provides an easy-to-use, scalable, yet secure virtual IP
network.

31

With support from virtualization, the network layer adopts
universal plug-and-play (UPnP) which allows devices to
seamlessly discover each other using a set of IP protocols such as
Internet Group Management Protocol (IGMP) and Simple Service
Discovery Protocol (SSDP). A challenge with multicast resource
discovery is that the vast majority of ISPs prevent multicast traffic
from traversing their networks. We sidestep this issue with
virtualization – each UPnP discovery message is tunneled and
encapsulated in a unicast IP packet and overlay-routed, possibly
over WAN.

3. PROTOTYPE
3.1 SocialVPN
While many VPN tunneling techniques would be applicable (e.g.
OpenVPN [1], Hamachi [2]), the approach chosen in our
prototype is SocialVPN, due to its ability to autonomously create
and manage VPN links to social peers, and its support for
tunneling IP multicast and discovery via UPnP. SocialVPN is a
decentralized, self-configuring VPN based on structured peer-to-
peer overlays and a public-key based security model where
certificates are exchanged and used to set up VPN links
automatically using online social network APIs. Furthermore, it
supports users behind network address translators (NATs) to have
bidirectional virtual IP connectivity to other SocialVPN users
through decentralized NAT “hole punching”. SocialVPN
maintains a private IP address space, and assigns it to SocialVPN
users to which are intended to connect dynamically and locally
such that it is able to handle the constraints of limited IPv4
address space.

3.2 Computation offload
While various options are possible to implement application-level
data transfer between mobile devices and remote hosts, we use a
REST-like RPC system. This REST-like RPC system
encapsulates the method name and parameters to be processed on
the remote host into an HTTP header and sends the binary data as
HTTP body incurring a negligible overhead for marshalling data
to be transferred compared with other RPC systems such as
XMLRPC. Then, the remote host executes the method which is
included in HTTP header it receives.

Figure 3. Image used for the offload experiments and image

after Sobelfilter
We implemented offload client/server primitives written in
Python and targeted a simple image processing workload:
Sobelfilter. Sobelfilter is used for image edge detection and
implemented in OpenCL for CUDA GPU architecture and C++
for a regular CPU host [9]. Figure 3 shows the image used for the
offload experiments before and after applying sobelfilter.

4. EXPERIMENT
In this section, we verify the feasibility of UPnP on top of the
SocialVPN from the perspective of service discovery and the
benefits of mobile offload in terms of processing time and energy
consumption. We conducted a series of experiments over local
and wide area networks. In order to measure the service discovery
time, we used WireShark [11] to measure the latency of UPnP
request and response messages. Also, we measured the energy
consumption of the mobile device through PowerTutor [8] which
is an application for the variants of Android devices that displays
the power consumed by major system components such as CPU,
network interface, display, and GPS receiver.

4.1 Service discovery time
We conducted a WAN experiment in which 100 UPnP servers
bound to the SocialVPN overlay are deployed in virtual machines
at FutureGrid [7] resources at U. Chicago, UC San Diego, and U.
Texas, while an UPnP client located at U. Florida requests service
discovery. In this experiment, we observed that the UPnP client
is able to discover all of the UPnP servers over three sites and the
service discovery times for 100 UPnP servers range from 27ms to
57ms.

Table 1. Service discovery time for location of UPnP servers
on FutureGrid resources (client at U. Florida)

Table 1 shows service discovery times for each location of UPnP
servers, demonstrating the ability of the SocialVPN to support
unmodified UPnP applications and middleware across wide-area
resources.

Figure 4. Service discovery time for Wi-Fi vs. wired LAN

(client is at U. Florida)
An additional experiment has been conducted to observe the
variation in service discovery times when the client is connected
by Wi-Fi or wired LAN. The service discovery request is repeated
100 times, and the distribution of times is summarized in Figure
4. The service discovery time is proportional to the underlying
physical network latency to services, and the Wi-Fi setup has
longer service discovery time than wired LAN.

32

4.2 Offloading: performance and energy
consumption
In this experiment, we consider the potential benefits of
offloading either to a cloud instance or to a personal computer
connected to a user’s SocialVPN (e.g. their own, or a friend’s
desktop). For the client, we used an Android tabletPC, Samsung
GalaxyTab 10.1, running Android honeycomb. For the
SocialVPN-connected PC, we utilized a desktop with 3.0 GHz
Intel Core2 Duo CPU and 4 GB of memory, and for the cloud
offload instance, we used an Amazon Elastic Compute Cloud
(EC2) resource with two NVIDIA GPUs equipped with 3 GB on-
board memory per GPU. Firstly, we executed sobelfilter on the
tabletPC locally and measured the processing time and energy
consumption using PowerTutor. Secondly, the Android tabletPC
offloads the image processing task to the PC and cloud resources.
In the experiments, we varied the size of JPEG images: 26KB
(480×270), 674KB (1920×1080), and 1,743KB (1936×2592) to
assess the impact of having different workload sizes.

Figure 5. Image processing execution time for client

processing and offloading to PC workstation and cloud
Figure 5 shows the image processing execution time for local
processing and offloading to the local workstation and Amazon
EC2 GPU node. In the 674KB and 1,743KB sizes, offloading to
the local workstation and Amazon EC2 GPU is faster than local
processing. For the smallest image size, however, offloading to
Amazon EC2 GPU took longer time than local processing. The
reason is that offloading needs an additional time to setup the
GPU and to move the image data to GPU memory.
Consequentially, the larger image size to be processed, the bigger
improvement obtained in terms of the execution time. As shown
in Figure 6, for the smallest size image, local processing is better
than offloading for energy consumption of the mobile device
because image processing time is fairly small and no image data
transfer to remote host is required. However, as image size
increases, client processing results in much more energy
consumption, and eventually both offloading to the local
workstation and Amazon EC2 consume less energy than local
processing. It is worth noting that offloading to EC2 GPU cluster
consumes more energy than offloading to the local workstation in
all the image sizes. This is caused by the power consumption
characteristics of Wi-Fi networking card and the increased
latency. Wi-Fi networking card stays in high power state only
when it has a certain number or more packets to be sent or
received in a second. In the cloud setup, it is common that
packets sent or received are spread over longer periods compared

to the LAN workstation because each packet exchange is required
to be ACKed. Thus the Wi-Fi card stays in high power state for
longer time and consumes more energy.

5. RELATED WORK
Offloading computation from mobile devices to remote hosts has
been considered in the literature to handle challenges such as
managing the energy of mobile devices efficiently and improving
the performance of offloaded tasks qualitatively and
quantitatively. MAUI and Cuckoo [4, 5] have presented the
runtime frameworks for computation offloading to minimize
user’s response time while maximizing the life span of mobile
devices. Mobile MapReduce [6] has implemented the mobile
version of the MapReduce framework by employing several
remote hosts to parallelize mobile applications. Also,
CrowdSearch [10] adopted the combination of local processing on
mobile devices and remote processing on powerful servers to
increase the accuracy of image search engine.

While these works target a static remote host to offload
computation, our framework is novel in the way it integrates with
virtual networking to seamlessly discover remote hosts using
universal plug-and-play (UPnP) on top of the SocialVPN, such
that mobile devices are able to connect to remote hosts over wide
area networks as well as local area network and supporting
existing, well-established resource discovery protocols and a
wealth of TCP/IP applications.

Figure 6. Energy consumption of Android tabletPC for local

processing and offloading

6. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper is to demonstrate the
feasibility of a virtual networking-based framework for
opportunistic function offloading. We demonstrated the efficacy
of offloading compute-intensive functions of different
granularities to remote systems over different network latencies to
establish the benefits of such a scheme. Clear benefits in terms of
both performance and power were achieved in certain offloading
scenarios. In order to achieve these benefits for a variety of
applications and connectivity scenarios, the framework needs to
be capable of dynamically discovering the remote capabilities and
intelligently offload to cloud opportunistically. SNARF provides
a prototype implementation of such a framework which was built
on top of SocialVPN. It also provides a consistent interface for
local and remote function offloading absorbing the complexities

33

of discovery, configuration and dynamic offloading away from
the programmer. We demonstrated the power and performance
benefits of an image processing application on an Android
tabletPC using SNARF. The benefits were quite compelling at
large image sizes – which clearly offsets the remoting overheads.

We continue to characterize the benefits of SNARF using
different workloads related to Tablets and Smartphone use cases.
Detailed characterization of the remoting overhead and
investigation of potential architectural enhancements to reducing
this overhead are parts of our future work. Also, we are currently
working on the implementation of SocialVPN tailored to low-
power operation in mobile platforms. We will characterize the
cost of such a secure connection for mobile devices in terms of
energy consumption, bandwidth, and latency in the future work.

7. REFERENCES
[1] Openvpn – the open source vpn. 2009. http://openvpn.net/
[2] Hamachi – instant, zero configuration vpn. May, 2009.

https://secure.logmein.com/products/hamachi/
[3] P. St. Juste, D. Wolinsky, P. Oscar Boykin, M. J. Covington,

and R. J. Figueiredo, SocialVPN: Enabling wide-area
collaboration with integrated social and overlay networks.
Computer Networks. January, 2010.

[4] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.
Saroiu, R. Chandra, and P. Bahl. MAUI: Making
Smartphones Last Longer with Code Offload. In Proceedings
of the Eighth International Conference on Mobile Systems,
Applications, and Services. San Francisco, CA, USA. June
15-18, 2010.

[5] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a
Computation Offloading Framework for Smartphones. In
Proceedings of the Second International Conference on

 Mobile Computing, Applications, and Services. Santa Clara,
 CA, USA. October 25-28, 2010.
[6] M. A. Hassan and Songqing Chen. Mobile MapReduce:

Minimizing Response Time of Computing Intensive Mobile
Applications. In Proceedings of the Third International
Conference on Mobile Computing, Applications, and
Services. Los Angeles, CA, USA. October 24-27, 2011.

[7] Gregor von Laszewski, Geoffrey C. Fox, Fugang Wang,
Younge, Andrew J, Archit Kulshrestha, Gregory G. Pike,
Warren Smith, Jens Voeckler, Renato J. Figueiredo, Jose
Fortes, Kate Keahey and Ewa Delman. Design of the
FutureGrid Experiment Management Framework. GCE2010
at SC10. New Orleans, LA, USA. November 14, 2010.

[8] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang
Wang, Robert P. Dick, Zhuoqing Morley Mao, and Lei
Yang. Accurate online power estimation and automatic
battery behavior based power model generation for
smartphones. In Proceedings of the Eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis. Scottsdale, AZ, USA. October 24-29,
2010.

[9] OpenCL SDK Code Samples
http://developer.nvidia.com/opencl-sdk-code-
samples#oclSobelFilter

[10] T. Yan, V. Kumar, and D. Ganesan. CrowdSearch:
Exploiting Crowds for Accurate Real-time Image Search on
Mobile Phones. In Proceedings of the Eighth International
Conference on Mobile Systems, Applications, and Services.
San Francisco, CA, USA. June 15-18, 2010.

[11] Wireshark: A Network Protocol Analyzer,
http://www.wireshark.org/

34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

