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ABSTRACT

Video summarization is a fertile topic in multimedia research. While
the advent of modern video cameras and several social networking
and video sharing websites (like YouTube, Flickr, Facebook) has
led to the generation of humongous amounts of redundant video
data, video summarization has emerged as an effective methodol-
ogy to automatically extract a succinct and condensed representa-
tion of a given video. The unprecedented increase in the volume of
video data necessitates the usage of multiple, independent comput-
ers for its storage and processing. In order to understand the overall
essence of a video, it is therefore necessary to develop an algorithm
which can summarize a video distributed across multiple comput-
ers. In this paper, we propose a novel algorithm for distributed
video summarization. Our algorithm requires minimal communi-
cation among the computers (over which the video is stored) and
also enjoys nice theoretical properties. Our empirical results on
several challenging, unconstrained videos corroborate the potential
of the proposed framework for real-world distributed video sum-
marization applications.

Categories and Subject Descriptors

1.4.9 [Image Processing and Computer Vision]: Applications;
1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
Video Analysis
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1. INTRODUCTION

The progress of technology in leaps and bounds has led to the
emergence and widespread deployment of inexpensive video cam-
eras. These cameras have a high frame rate (typically, 25 — 30
frames per second) and thus capture a humongous amount of data
in a short duration. The captured data has high redundancy (due
to the high frame rate) and also is also extremely unstructured and
diverse (both in terms of contents and duration). Scanning through
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these staggering number of images manually entails significant hu-
man labor. This has set the stage for research in the field of video
summarization, which automatically extracts the salient and infor-
mative frames from a video stream and enables a more efficient and
engaging viewing experience [15]. It is extensively used as a pre-
processing step in many video-based applications like indexing, re-
trieval and browsing. Common approaches of video summarization
include shot boundary detection [17], motion-based sampling [12]
and clustering [3]. Shroff et al. [14] proposed an iterative algo-
rithm to select the exemplar frames from a given video sequence.
Egocentric video summarization has recently gained attention to
recognize important people and objects in a video [9].

Video data volumes are increasing faster than the ability of in-
dividual computers to store and process them. Consider a surveil-
lance system where a video camera is installed in a public place
to detect suspicious behaviors. The high frame rate and long du-
ration of operation of the camera result in the generation of an
enormous number of frames, which need to be stored across mul-
tiple machines. In order to detect unusual activities, it is nec-
essary to generate a summary of the entire video stream. Fur-
ther, it may be necessary to quickly sift through months of security
video footage, stored across multiple computers, in order to rec-
ognize suspicious/anomalous behavior. Medical video analysis is
another application where the informative frames need to be identi-
fied from vast amounts of a patient’s video data, spread across mul-
tiple machines. Thus, there is a pressing need for an algorithm to
summarize a video, which is distributed across multiple machines,
with minimal interaction among them. Even though video summa-
rization is extensively studied, distributed video summarization is
much less explored. loannis er al. [8] proposed an unsupervised
data reduction algorithm based on non-negative matrix factoriza-
tion (NMF) to identify the summary frames in a distributed setting.
The NMF algorithm is run separately on each machine to identify
the representative frames and the results are merged to generate
the final summary. To the best of our knowledge, this is the only
published algorithm to summarize a video distributed across multi-
ple computers. However, this method is heuristic in nature and also
lacks any theoretical guarantees on the quality of the obtained solu-
tion. Other related efforts in this domain are all focused on speed-
ing up the summarization process using multi-core CPUs, GPUs
and parallelization schemes [2, 1], but the entire video is assumed
to be present in a single computer.

In this paper, we propose a novel algorithm for distributed video
summarization. We develop an optimization-based framework to
identify the salient and informative frames distributed across mul-
tiple independent computers. Our algorithm requires minimal com-
munication among the machines and the obtained solution can be
theoretically guaranteed to be competitive with the centralized so-



lution (obtained when the entire video is present in a single com-
puter). Although we focus on video summarization in this work,
the proposed framework is generic and can be used in any appli-
cation where the salient exemplars need to be identified from large
amounts of redundant data distributed across multiple machines.

2. PROPOSED FRAMEWORK

2.1 Problem Formulation

Consider a distributed video summarization set-up, as shown in
Figure 1. The video captured by the camera is discharged in com-
puter Co, which broadcasts the frames to m computers C to Ch,.
Each computer (C'; to C',) processes its own chunk of the video
stream and the results are broadcasted to a backend server (it is not
possible to store the entire contents of C to Cl, in the backend,
due to resource limitations). The objective is to select k& summary
frames from the entire video.
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Figure 1: Distributed Video Summarization Setup

Summary Selection Criteria: Video streams have an inherent
redundancy among them due to the high frame rate of video cam-
eras. Thus, a good summarization technique should focus on iden-
tifying the critical events in a given video. However, if two sum-
mary frames separately furnish important, but duplicate informa-
tion, then the net information gained by selecting both of them is
not maximal. A metric computing the redundancy among a set of
selected frames is therefore of paramount importance. We hence
quantify the utility score of a set of summary frames in terms of the
following two criteria:

o Exhaustive, which ensures that the summary captures a large
portion of the events in the video

e Mutually Exclusive, which enforces the summary frames to
be non-redundant (distinct from each other)

A summarization framework based on maximizing the exhaus-
tive and mutually exclusive criteria ensures that the essence of the
original video is captured well in the summary (exhaustive) and that
there is minimal duplication of information (mutually exclusive).
Such selection criteria are commonly used in selective sampling
applications like active learning [13].

Formally, consider a video V' = {v1,va, ... v, } consisting of n
frames and let S denote the set of frames selected in the summary.
The exhaustive-ness of the summary can be quantified as:
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where w;; > 0 denotes the similarity between two frames v; and v;
in the video sequence. Maximizing £(S) ensures that the summary
set S has maximal similarity to the ground set V.

The mutually exclusive-ness score of a frame is computed as
its minimum distance from the set of already selected summary
frames:

(@3]

where d;; > 0 denotes the distance between two frames v; and
v;. This is conceptually similar to the Hausdorff distance metric,
commonly used for image matching [7]. Maximizing M (.S) avoids
selection of duplicate information in the summary S. The net utility
score of a summary set can be expressed as a weighted combination
of E(S) and M (S):

Q(S) = E(S) + AM(S) (©)

where A > 0 denotes the weight parameter. The summary selection
can therefore be posed as the following optimization (k£ denotes the
summary length):

max Q(S)
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The search space being exponentially large, exhaustive search
techniques are computationally prohibitive. We solve this problem
using submodular optimization algorithms.

2.2 Submodular Optimization

Let N be a finite ground set and consider a function f : 2V —
R, that returns a real value for any subset S C N. The function f
is called submodular if forall A C B C N and x € N\B,

f(AU{a}) = f(A) = f(BUA{z}) - f(B) ©)

This is called the diminishing returns property [6]. Further, f is
called monotonically non-decreasing if f(A) < f(B) whenever
ACB.

THEOREM 1. The objective function Q(S) defined in Equation
(3) is submodular.

PROOF. From Equation (3), we get:

Q(S) = E(S) + A\M(S)
+)\ min dij
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Now, consider two arbitrary summary sets S; and Sz such that

S1 C S5. We then have,
min
1€So

)

1€S1

This holds since S2 being a larger summary, it is possible to have
an element in this superset, which is closer to the element x. The
first term on the right side of Equation (6) does not depend on the
set S; A is a non-negative scalar. We therefore have,

Q(S1U{z}) —Q(S1) > Q(S2 U {z}) — Q(S2)
VS1,52, 81 C Sa. Hence, Q(S) is submodular. [



Further, since both the distance and similarity-based terms are
non-negative, the objective Q(S) is monotonically non-decreasing
as addition of elements to the set S can only increase the value
of Q(S). The optimization in Equation (4) is therefore the maxi-
mization of a monotonically non-decreasing submodular function,
subject to a cardinality constraint. This can be efficiently solved us-
ing the greedy algorithm proposed by Nemhauser et al. [11], which
produces a solution guaranteed to be within 1 — i of the optimal.

2.3 Distributed Submodular Maximization

In the distributed video summarization setup (outlined in Figure
1), however, the entire video V' is not present in a single machine,
but is distributed across multiple machines. Our summary selection
problem therefore reduces to maximizing a monotone submodular
function in a distributed setting. Mirzasoleiman et al. [10] pro-
posed the GREEDI framework for distributed submodular max-
imization under cardinality constraints. The algorithm first dis-
tributes the ground set uniformly at random across the m machines.
It operates in two stages, where in the first round, each machine
separately runs the standard greedy algorithm [11] on its local data
samples and selects k exemplars. In the second step, the selected
mk elements are merged in the backend server (Figure 1) and k fi-
nal summary frames are selected using the same greedy algorithm
on the mk samples.

The computation of the term E(S) in our algorithm (Equation
1) requires the complete ground set V, while evaluation of M (S)
(Equation 2) requires only the elements of the set S. In the first
step, E(S) is evaluated in a particular machine with respect to the
local data samples in that machine. According to our definition,
E(S) satisfies the definition of decomposable functions [10] and
thus, in the second step, it can be evaluated with respect to a ran-
domly chosen subset of the ground set, of size [n/m], where n is
the size of the ground set V. This distributed maximization algo-
rithm has a concrete mathematical guarantee on the quality of the
obtained solution with respect to that of the optimum centralized
solution (the solution obtained when the entire video is present in a
single machine). This is formalized in the following theorem [10]
(we take kK = | = k, and follow the notations in the paper); f is
the submodular function being used for sample selection (f = @,
in our case):

THEOREM 2. Letr A°[k] denote the optimum centralized solu-
tion and A9*[m, k] denote the solution obtained using the dis-
tributed maximization algorithm. Let 6 > 0,¢ < 1/4 and let no
be an integer such that for n > ng we have In(n)/n < €2 /(mk).
For n > max(no, mlog(8/4m)/e*), we have, with probability at
least 1 — 0,

FA™[m,K]) > (1= 1/e)*(f(A°[k]) — 2¢)

3. EXPERIMENTS AND RESULTS

Datasets and Feature Extraction: We conducted experiments
on a wide range of videos from different application domains to
validate the generalizability of our approach: (1) The UT Egocen-
tric Video dataset, which contains videos captured by a subject
under unconstrained natural settings, using a wearable camera [9],
(2) DARPA’s VIVID video surveillance dataset, which contains
low resolution aerial videos captured by an unmanned aerial vehi-
cle (UAV) [4] and (3) The SFU Skating dataset, which contains
unconstrained images with real pan, tilt and zoom of the camera
capturing rapid moves of a skater like jumps, spins, lifts and turns
[16]. Each video was split into images and the histogram of ori-
ented gradients (HOG) feature [5] was used as a descriptor of each
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frame. The distance d;; between two frames was computed using
the chi-squared distance between their color histograms; the cosine
similarity metric was used to compute the similarity.

Experiment Set-up: The experimental set-up is outlined in Fig-
ure 1. Since this is our first effort to validate the proposed frame-
work, we simulate the set-up in a single computer by partitioning
the video data V' into m segments (corresponding to the m ma-
chines) Vi,Va... Vi, such that V; N'V; = ¢,Vi,4,i # j; no
communication mechanism is assumed among the data in differ-
ent segments (replicating the situation with m different machines).
The outputs from the different segments are combined to select the
final summary. Validation of the framework in a distributed infras-
tructure with multiple computers will be taken up as part of future
research. The summary length k& was taken as 50 and the number of
machines m as 10 for the UT Egocentric and VIVID datasets; for
the SFU Skating dataset, we take £ = 10 and m = 4. The weight
parameter A was set as 5, based on preliminary experiments.

Comparison Baselines: We compare the proposed framework
against the following two approaches for distributed summariza-
tion: (¢) Random: in the first round, each machine selects & frames
at random from its local contents and in the second round, k out of
the mk frames are again selected at random in the final summary;
(#¢) NMF: the method proposed in [8] for distributed video sum-
marization, where non-negative matrix factorization (NMF) is used
in the first step to select k£ frames from each of the computers and
the outputs are combined to select the final summary.

Evaluation Metric: To evaluate a video summary quantitatively,
we compute the count of the number of frames whose reconstruc-
tion error using the summary is above a given threshold. The in-
sight behind this metric is that a good summary is one where all the
frames in the video lie in the space spanned by the linear combina-
tion of the exemplars; fewer the number of frames in the null-space
of the exemplars, better the summary. Please refer [14] for details.

Experiment 1: Proposed against Baselines: The results com-
paring the proposed framework against the baselines are depicted
in Figure 2, where the z-axis denotes the threshold and the y-axis
denotes the number of frames with error above this threshold (lower
the better). We note that for the proposed algorithm, the number of
frames with reconstruction error above the threshold drops at the
fastest rate with increasing values of this threshold; at any given
threshold, it consistently has the lowest number of frames with er-
ror above that threshold. This corroborates the fact that our algo-
rithm appropriately identifies the exemplar frames in a distributed
setting and best captures the overall essence of a video. The im-
proved performance is particularly evident for the SFU Skating
video (Figure 2(c)), where a diverse variety of actions is performed
by the skater. The images selected in the final summary by all the
methods for this dataset are shown in Figure 3. Our method cap-
tures samples from a wide range of actions, thereby generating a
more informative summary in a distributed setup, which accounts
for its superior performance.

Experiment 2: Proposed vs. Centralized: We also compare
the solution obtained by the proposed algorithm against the cen-
tralized solution that we would obtain if we had the resources to
store the entire video in a single computer. The centralized solu-
tion is obtained by running the greedy algorithm (used in the first
step of our framework) once on the entire video stream. Figure 4
reports the results on the VIVID dataset. We note that the perfor-
mance of our algorithm is very close to the optimum centralized
solution. This corroborates the fact that the proposed framework
produces high quality solutions, even when the data is partitioned
across multiple machines.
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4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel algorithm for distributed video
summarization. We exploited distributed submodular maximiza-
tion techniques to identify a set of exemplar frames from a video
distributed across multiple machines. Our empirical results demon-
strate tremendous promise in identifying the useful and relevant in-
formation from a video in a distributed environment. As part of our
future work, we plan to conduct extensive large scale experiments
to validate the merit of our framework.
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