

PIONEER 2024 BRAND PRODUCTS

Important Dates

October 27th 2023

2% PIONEER Seed Early Order Discount

December 6th 2023

PIONEER Seed Early <u>Payment</u> Deadline Cash 25% Defer Payment 22% (Prime-1)

December 6th 2023

Meristem Hopper Throttle Early Order Deadline

March 1st 2024

TruChoice® Fund Deadline for Corteva Chemicals and Biologicals

Since you're making an investment in the ag industry's finest corn and soybeans, we're glad to provide the service that helps you get the most from those seeds.

- □ Data Management
- ☑ Drone Imagery/Aerial Field Scouting
- ☑ TruChoice® Offering

INNOVATION

Pioneer® brand products boast 95+ years of history and trailblazing innovation.

We are a technology and innovation leader developing the industry's leading seed products.

Our elite seed genetics, state-ofthe-art breeding technologies and rigorous local testing ensures farmers' crops will thrive.

We're investing more resources into our R&D organization, ensuring our leadership position will be sustained.

Innovating for the American farmer to deliver on increasing yield (productivity) per acre, proprietary and differentiated traits and new breeding techniques.

We plan to launch more traits in the next decade than we have ever done before in our company's history.

INNOVATIVE CORN PRODUCTS

VORCEED™ ENLIST®

- Pioneer® brand Vorceed™ Enlist® corn gives farmers flexibility in managing CRW pressure with three modes of action for exceptional control of CRW pests.
- Adding a new RNAi modes of action to our proven Bt traits.

POWERCORE® ENLIST®

- Three modes of action for protection against broad-spectrum above-ground pests.
- Superior yield potential and agronomics from one of the largest corn germplasm libraries in the industry.

★ Agrisur∈Viptera

Enlist Duo* and Enlist One* herbicides are not registered for sale or use in all states or counties. Contact your state pesticide regulatory agency to determine if a product is registered for sale or use in your area. Enlist Duo and Enlist One are the only 2,4-D products authorized for use with Enlist crops. Consult Enlist herbicide labels for weed species controlled. Always read and follow label directions.

Ploneer* brand Vorceed* Enlist* corn products are provided subject to the terms and conditions of purchase which are part of the labeling and purchase documents * Enlist, Enlist Logo, Pioneer and Vorceed are trademarks of Corteva Agriscience and its affiliated companies. © 2023 Corteva.

Suitability Ratings for North Central Indiana Corn Products - 2024

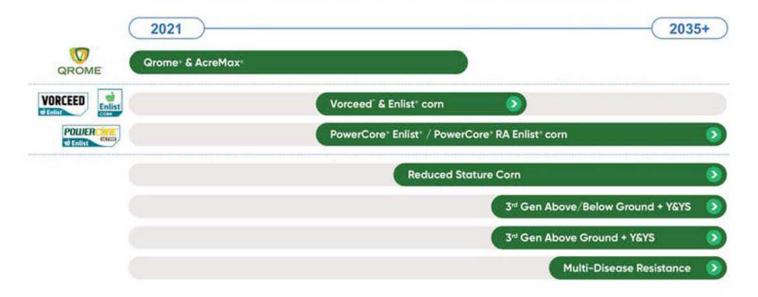
							l							
	CRM	X.	Planting Populations eld Recommendation	Characteris	Characteristic and Disease	High	Variable	Low Ea	Early Corn on	on Late	Tar Spot	Fungicide Response	Response	Product Management Suggestions
nybrid/brand	(SIIK CRIVI)	_	for 30 inch rows		cg	_	nein	+	Planting	+		CIO CIO	INCED	
32	901	120-160 Bu	27,000	e		0 0				9	-		1	Both offensive and defensive 100 day corn coupling fuller
P0035AM TM	100	160-200 Bu	32,000	Koots	Staygreen	SE.	£	도 도	HS S	s	7	全	MΡ	season corn type yields with Aquaiwax stress tolerance.
		>240 Bu	36,000	1	GLS	1 4								very good (at spot tolerance due to it staygreen, but
		120-160 Bu	28,000	به	ž	9		-						Early silking hybrid with great roots and stalks. Has
MTMA 1 CANG	104	160-200 Bu	31,000	т		9	v	,	HC	,	7	ΔV	٥	shown very good Tar Spot tolerance and fits muck and
101710	(86)	200-240 Bu	34,000	\exists	NCLB	2	,							irrigated soils of Northern IN particularly well with its
		>240 Bu	37,500	7	GLS	4		1	1					outstanding roots and moderate height.
	,	120-160 Bu	30,000	e	Drought	ا م								
P04511AMTM	104	160-200 Bu	32,000	Roots	Staygreen	S	S	s	S	S	9	윺	9	INTRO. Solid agronomics with a nice yield advantage
	(701)	200-240 Bu	36,000	1	T	۰								over our current hybrids in this maturity.
		120-160 Bu	25,000	,	Drought	. 0								High violation triple for high and order of vital and all the state of vital and a state of vital and v
	104	160-200 Bu	27.500	1	Stauproen		Ì	_		_		ķ	N	night yielding triple for high productivity are with good
P0487Q TM	(103)	200-240 Bu	30,000	T	NCLB	£	£	오	S HS	S	9	Δ	9	drought tolerance and pleanty of ear flex make it a ton
		>240 Bu	33,500	1	GLS	2								candidate for variable Northern IN soils.
P0720		120-160 Bu	31,000	Emergence	5 Drought	8								Leader Product! Exceptional roots provides outstanding
P0720AM TM	107	160-200 Bu	32,000	Roots		9	90		.00		r	9	-	drought tolerance supporting placement on sand ground
P0720Q TM	(106)	200-240 Bu	35,500	Т	Г	2	£	2	NIA	5	`	È	5	and in heavy clay soils. Strong stalks with average NLB.
PO720WXTM	No. of the Control of	>240 Bu	37,000	Brittle 4	4 GLS	4								Manage GLS. Rapid drydown.
		120-160 Bu	31,000	Emergence 4	4 Drought	2								Package on the farm with P0720AM and P0953AM.
MTMADSOOD	108	160-200 Bu	32,000		6 Staygreen	7	v	v	0	,	Ľ	MA	MA	Showed great versatility under stress during the 2022
PUOSSAIVI	(111)	200-240 Bu	35,500	П	П	ر ا و	2	17		,	,	Z IA	Civi	growing season with very high top end potential. Very
		>240 Bu	37,000	Brittle	6 GLS	5								solid disease package on top of the versatility.
		120-160 Bu	27,000	e		9								
P0935AM TM	109	160-200 Bu	30,000	T	Staygreen	و ع	HS	s	HS S	S	9	MP	MP	Verstatile hybrid that fits variable and tight/wet soils
	(111)	200-240 Bu	32,500	Stalks	6 NCLB	S 4								P0977AM fit with some added top end yield potential.
		120.160 Bu	29,000	1	Dought	,								highly and programmy species of a few months of the
P0924	109	160-200 Bu	31,000	Roots	Stavigreen	-	u			55	3			with great agronomics. Above average roots and brittle
P0924Q ¹⁷⁴	(109)	200-240 Bu	33,000	T	NCLB	HS	S	s	S	S	9	MΡ	9	tolerance Good test weight. Moderate resistance to GIS
P0924WX TM	(car)	>240 Bu	35,000	1	GLS	2 50								and above average NCIB resistance and Tar Spot.
		120-160 Bu	29,000	بو	Drought	9								Outstanding vield potential and grain quality are
MT	109	160-200 Bu	32,000	T		8	v			917	ų	974	OVV	trademarks for this waxy corn. Strong roots on good
10934WA	(108)	200-240 Bu	35,000	Stalks		2	,	Y IN	0	2	0	L L	L I	stalks allow it to stand well into harvest. Steer toward
		>240 Bu	37,000	Brittle	S GLS	5								better soils.
		120-160 Bu	27,000	e		9								YIELD LEADER. More fit to top-end yielding soils or under
P0953AM TM	109	160-200 Bu	29,000	T	Staygreen	و E	S	S	S	s	2	MP	MP	irrigation. Shorter plant stature, low ear placement,
	(111)	200-240 Bu	31,000	1	NCLB			_	_					dark green canopy. Above average stalks and roots.
		>240 Bu	33,000	+	SIS.	0 0								Keep populations moderated, even under higher yield
	109	160-200 Bu	31,000	Roote	S Stavereen	n 4	ı							Lead stress hybrid with good drought tolerance and solid
P0995AM TM	(100)	200-200 Bu	33,000	T	NCIB	S I	£	Ұ	s s	S	2	MΡ	MΡ	agronomics. Wide area adaptation on tough variable
	(core)	>240 Bu	35,000	3.5	GLS	, ,								soils. Moderate resistance to GLS and NCLB.
		120-160 Bu	27,000	۰	Drought	9								100 March 200 Ma
M	110	160-200 Bu	30,000	+			·					200	200	YIEID LEADER. High yielding AM with very high yield
F102/AM	(109)	200-240 Bu	32,000	Stalks		2	n	n	0	n	D	Y N	L L	potential. Make sure to place on well drained, good soils
		>240 Bu	34,000	Brittle	e GLS	5								or under irrigation. Good Lar Spot tolerance.
		120-160 Bu		e e	Drought	7								Agronomically sound hybrid with tremendous yield and
P1108Q***	111	160-200 Bu		T	Staygreen	-HS	HS	s	S HS	s	9	MP	MP	consistent performance across all environmenents.
P1108Wx	(110)	200-240 Bu	33,000	Stalks	6 NCLB	s 1					Ñ.	X USA		Moderate plant stature with strong stalks and an all
		ng 047/	non'ee	1	1									around strong disease package.

Suitability Ratings for North Central Indiana Corn Products - 2024

Pioneer	CRM	탉	Planting Populations	Characteris	Characteristic and Disease	High	Variable	Low	Early	Corn on	Late	1000	Fungicide Response	esbouse	
Hybrid/Brand***	(Silk CRM)	Yield	Recommendation for 30 inch rows	R	Ratings	Yield	Yield	Yield	Planting	Corn	Harvest	lar spot	GLS	NCLB	Product Management Suggestions
		120-160 Bu	29,000	Emergence 5	5 Drought	9									YIELD LEADER. Widely adapted mid-season hybrid for the
D1136AMTM	111	160-200 Bu	32,000	Roots	6 Staygreen	2	¥	MA	,	,	,	y	Q Z	MP	well drained, mid to highly productive acre. Strong stalks
MEGETT	(112)	200-240 Bu	34,000	\exists	S NCLB	2			,	,	,	,		į	and roots, especially late roots. Good foliar disease
		>240 Bu	37,000	Brittle	S GLS	2							1		package. Very nice grain quality/TW.
	2000	120-160 Bu	26,500	Emergence	5 Drought	7									NEW HYBRID. Southern adapted mid-season hybrid
D1170AMTM	111	160-200 Bu	30,000	\Box	5 Staygreen	7	¥	¥	,	v	0	v	MM	MA	providing solid stress potential and top-end yields. Best
MOOTEL	(111)	200-240 Bu	32,000	Stalks	6 NCLB	9	2	2	,	,	,	,	•		kept of loose, loamy soils due to lower root and
		>240 Bu	34,500	Brittle	S GLS	5									willowing score. Very consistent performance on
D119E		120-160 Bu	28,000	Emergence 4	4 Drought	7									Stable hybrid for most acres across Northern IN. Short
MTAGEARATM	111	160-200 Bu	30,000	Roots 7	7 Staygreen	9	v	VVV	v	N N	v	u	9	0	stature plant with tremendous root strength,
PITOSOM	(110)	200-240 Bu	32,000	Stalks	9 NCLB	9	A4	1	,	2	,	•	È	5	standability, and NCLB resistance. High test weight and
Эсотть		>240 Bu	34,000	Brittle	6 GLS	4				10				-	exceptional grain quality. Manage GLS.
D1107		120-160 Bu	28,000	Emergence	5 Drought	9									Industry leading consistency with proven performance; on
MTMATP119	111	160-200 Bu	30,000	П	5 Staygreen	®	0	MA	,	¥	H	y	N N	d	both high yield and variable soils. Dependable
MIXWIN	(113)	200-240 Bu	32,000	\exists	7 NCLB	9			,	2	2	,		1	agronomics. Tremendous staygreen with above average
VALCETTA		>240 Bu	35,000	Brittle	S GLS	5									resistance to NCLB.
	989	120-160 Bu	28,000	Emergence	6 Drought	9									VERSATILE YIELD LEADER. Best performance on moderate
P1222	112	160-200 Bu	30,000		6 Staygreen	7	H	v	v	v	v	u	Q N	MP	to high yield soils. Strong overall agronomic package.
P1222AMTM	(114)	200-240 Bu	32,000	Stalks	6 NCLB	2		,	,	,	,	,			Above average stalks and roots. Great staygreen with
		>240 Bu	34,000	Brittle 4	4 GLS	2									moderate resistance to GLS and NCLB.
P1359		120-160 Bu	28,000	Emergence	6 Drought	9						Ī			Toward vield and agranamic A tallar robust plant
P1359AM TM	113	160-200 Bu	30,000	\exists	6 Staygreen	®	<i>y</i>	MM	<i>y</i>	v	H	r	MP	d l	Strong stalks Excellent stavereen Rest on well drained
P1359MXTM	(113)	200-240 Bu	32,000	T	7 NCLB	2	34.		,	,		,		i	coils and manage average Tar Snot tolerance
VAACCETA		>240 Bu	34,000	Brittle (6 GLS	2					j				sons and manage average rai spor tolerance.
	0.000	120-160 Bu	27,000	e	6 Drought	9									FULL SEASON YIELD LEADER. Eastern adapted hybrid
P1383AM TM	113	160-200 Bu	30,000	T	~	ع ا	HS	s	HS	s	s	2	MP	MP	bringing top-end yield, stability, and stress tolerance over
	(112)	200-240 Bu	32,000	Stalks	9 NCLB	9 4									P1222 & P1359. Solid disease package, standability, and
		120-160 Bu	22,000	١,	ľ	, 4							ı		mediless, Manage 100ts.
P14830AMLTM	114	160-200 Bu	30,000		**		,	,	,	,	,				INTRO FULL SEASON YIELD LEADER. Very solid agronomic
P14830Q TM	(111)	200-240 Bu	32,000	T	┺	^	'n	'n	n	'n	'n	X X	MM	MA	scores with versatile placement. Brings a step-change in
		>240 Bu	34,000	Brittle	S GLS	2									yield versus other hybrids in this maturity.
		120-160 Bu	27,000	e	4 Drought	7		e,							FULL SEASON YIELD LEADER. Exceptional silage hybrid.
P1718	117	160-200 Bu	000'67	Roots	5 Staygreen	2	2	27	v	v	v	u	QV	QV	Very offensive hybrid with opportunity to moderate
P1718AML TM	(117)	200-240 Bu	31,000	Stalks 8	8 NCLB	4		2	n	n	n	n	Ě	L	seeding rates to take advantage of tremondous ear flex.
		>240 Bu	33,000	Brittle	6 GLS	S									High TW.
	2000	120-160 Bu	27,000	Emergence	6 Drought	9									FILL SEASON OROME VIELD LEADER. Vield standard in
MT/02/07M	116	160-200 Bu	30,000	┪	7 Staygreen	7 H2	<i>y</i>	<i>y</i>	H	H	H	7	Ā	유	full season triples on a nice hight plant and moves north
	(117)	200-240 Bu	32,000	寸	6 NCLB	_		,			!	•			out of zone will. Industry best Tar Spot tolerance.
		>240 Bu	34,000	Brittle 4	4 GLS	9									
							The state of the s								

Product Positioning and Management Recommendations are made from personal observations. Product Population recommendations are based on Pioneer population data taking hybrid performance and agronomic scores into consideration. Product Ratings: HS = High Probability, MP = Moderate Probabilit

***All Forest products are hybrids unless designated with AMI, AMM, AMM, AMM, AMM and Q, in which case they are brands. Als cores of integrated refuge products are based upon the major component.


**HT8BO FAMINT: Hybrid family identifies products that have the same base genetics, which the same it amily similarly.

WHAT'S NEXT HAPPENS HERE

The Pioneer® corn portfolio today is comprised of elite genetics, advanced biotech trait options and best-in-class seed treatments. Future product innovations will build on our solid foundation of delivering a premium product performance through exclusive, tailored genetics and trait packages.

CORN INNOVATION: TODAY AND TOMORROW

ELITE CORN GENETICS + BEST TECHNOLOGY OPTIONS = SUPERIOR PERFORMANCE

Backed by an industry-leading R&D engine, the near-term pipeline will bring new technology and flexibility to farmers, with multiple long-term innovative options to follow.

^{*} PowerCore® Enlist® Refuge Advanced® core, PowerCore Ultra Enlist core, PowerCore Ultra Enlist Refuge Advanced core, new MOA lepidopteran above-ground protection and new MOA CRW below-ground protection will not be offered for sale or distribution until completion of field testing and applicable regulatory reviews.

NEAR-TERM PIPELINE INTRODUCTIONS

Enables multi-year flexibility to manage corn rootworm (CRW) acres through more options than any other CRW product with 6 modes of action to control insects and 4 modes of actions for weeds.

- 6 insect protection modes of action + 4 herbicide tolerance modes of action + enhanced yield potential and agronomics through broad germplasm compatibility
- Includes a new CRW protection mode of action in RNAi, combined with Cry3Bb1 and the proven Bt proteins in DP4114.
- With the inclusion of the Enlist® corn trait, Vorceed® Enlist® corn will have tolerance to multiple herbicides, including 2,4-D choline, glyphosate, glufosinate, and FOP to allow maximum flexibility in weed management.

A comprehensive trait package for above-ground pest acres and weed management options allows for peace of mind corn is protected.

- PowerCore* Enlist* corn features three modes of action for protection against broad-spectrum above-ground pests, including susceptible European corn borer, fall armyworm, Southwestern corn borer, and corn earworm.
- Insect protection products available in a diverse lineup of high yield potential genetics across a wide range of maturities in both integrated refuge – PowerCore Enlist Refuge Advanced® corn – and structured refuge options.
- With the addition of the Enlist® corn trait, PowerCore Enlist corn will have tolerance to multiple herbicides, including 2,4-D choline, glyphosate, glufosinate, and FOP to allow maximum flexibility in weed management.

ENLIST® CORN FOR EFFECTIVE, NEIGHBOR-FRIENDLY WEED CONTROL.

- Part of the Enlist® weed control system, it enables flexible weed management with a wide application window for late-season broadleaf weed control
- Ease of use and confidence with applications of Enlist® herbicides

A comprehensive trait package with additional technology for above ground-ground pest protection.

- Includes all the advantages and flexibility of PowerCore Enlist corn, with an additional mode of action for geographies that need additional protection against fall armyworm and western bean cutworm.
- Will be available in both integrated refuge PowerCore® Ultra Enlist® Refuge Advanced® corn – and structured refuge options.

LONG-TERM PIPELINE OPPORTUNITIES*

REDUCED STATURE CORN

- Yield stability through stress tolerances (wind)
- Corteva Agriscience is bringing new products to market that have been selected for high performance
- All season equipment access

NEW MOA LEPIDOPTERAN 3RD GEN ABOVE-GROUND PROTECTION

- Broad-spectrum control of above-ground lepidopteran pests
- · Season-long protection with multiple modes of action
- New insect control proteins derived from Bt source diversify Corteva Agriscience's pipeline of proprietary Bts

NEW MOA CRW 3RD GEN BELOW-GROUND PROTECTION

- New, non-Bt protein sources protect roots by controlling corn rootworm
- · Excellent efficacy against Western and Northern corn rootworm
- · Corteva developed suite of proprietary traits

YIELD AND YIELD STABILITY TRAIT (Y&YS1)

- Improves grower productivity under a wide range of growing conditions, from stressed to optimal environments
- Consistent yield potential under high-stress conditions
- · Corteva developed propriety technology

MULTI-DISEASE RESISTANCE TRAIT

- · Delivers dominant disease resistance traits in elite hybrids
- · Creates in-field management efficiencies
- Corteva-developed proprietary technology

¹ Corteva Agriscience. Research studies of NDFD. Data on file, 2021.

* Current estimated project plans. Pending applicable regulatory reviews and correlation of field testing. Enlist** corn is part of the Enlist** weed control system, which is sold in combination with other blotech stacked traits.

PowerCore® Enlist® Refuge Advanced® corn, PowerCore Ultra Enlist corn, PowerCore Ultra Enlist Refuge Advanced corn, new MCA sepidopteran above-ground protection and new MOA CRW below-ground protection will not be offered for sale or distribution until completion of field testing and applicable regulatory reviews.

PowerCore® multi-event technology developed by Corteva Agriscience and Monsanto. PowerCore® is a registered trademark of Monsanto Technology LLC.

Liberty®, LibertyLink® and the Water Droplet Design are trademarks of BASF.

Agricure® and Agrisure Viptera® are registered trademarks of, and used under license from, a Syngenta Group Company. Roundup Ready® is a registered trademark used under license from Monsanto Company.

Enlist Duo® and Enlist One® herbicides are not registered for sale or use in all states or counties. Contact your state pesticide regulatory agency to determine if a product is registered for sale or use in your area. Enlist Duo and Enlist One are the only 2,4-D products authorized for use with Enlist crops. Consult Enlist herbicide liabels for weed species controlled. Always read and follow table (intentions.

Pioneer® brand products are provided subject to the terms and conditions of purchase which are part of the labeling and purchase documents.

*** Trademarks of Corteva Agriscience and its affiliated companies.

© 2023 Corteva, 012805-1 PIO (65/23)

PIONEER® BRAND POWERCORE® ENLIST® CORN

3 modes of action

FLEXIBILITY HAS NEVER LOOKED SO STRONG

Product overview

- An advanced combination of high-yielding genetics, unsurpassed flexibility and protection against above-ground pests
- Stacked with the Enlist® corn trait for multiple modes of action against tough weeds

Farmer benefits

- Long-lasting insect control against key above-ground susceptible insects
- Herbicide flexibility with tolerance to 2,4-D choline in Enlist® herbicides, glyphosate, glufosinate and FOP herbicides
- Enlist® weed control system provides a whole-farm, neighbor-friendly solution across corn, soybean and cotton acres
- Exclusive products available with the Pioneer® brand bringing superior yield potential, agronomics and elite genetics

How does PowerCore® trait technology stack up?

Primary Pest Controlled	PowerCore® Enlist® corn	VT Double PRO® corn
Black cutworm	1	NONE
European corn borer	111	11
Fall armyworm	111	11
Southwestern corn borer	111	11

Checkmarks represent number of modes of action for control over specified pest.

^{*} PowerCore Enlist corn requires a 5% refuge in the Corn Belt and a 20% refuge in cotton-growing areas.

Economical weed control

- enhancing corn trait technology

Enlist® corn provides robust tolerance to 2,4-D choline in Enlist® herbicides, as well as glyphosate and FOP herbicides, providing more weed control options to give farmers more flexibility and choice in their field management.

	Hybrids 1	tolerant to:	
2,4-D choline	Glyphosate	Glufosinate	FOP herbicides

Insect protection from PowerCore® or Vorceed trait technology

Additional benefits to the Enlist™ System

- Wider application window: no larger than V8 growth stage or 30"
- Low volatility
- Whole farm convenience

LIBERTY LINK W

Product responses can vary by location, pest population, environmental conditions, and agricultural practices.
Please contact your Corteva Agriscience sales professional for information and suggestions specific to your
operation. Individual results may vary. Various factors, including pest pressure, reduced susceptibility, and insect
resistance in some pest populations may affect efficacy of certain corn technology products in some regions.
To help extend durability of these technologies, Corteva Agriscience recommends you implement Integrated
Pest Management (PMI) practices such as roop rotation, cultural and biological control teatics (including rotating
sources of Bt-protected corn traits), pest scouting, and appropriate use of pest thresholds when employing
management practices such as insecticide application. You must also plant the required refuge when using these
technologies. Please contact your sales professional or consult with your local university extension for more
information regarding insect resistance management guidelines, best management practices and to understand
whether there has been a shift in susceptibility or insect resistance with certain pests documented in your area.

"No" Trademarks of Corteva Agriscience and its affiliated companies. Enlist Duo" and Enlist One" herbicides are
not registered for sale or use in all states or counties. Contact your state pesticide regulatory agency to determine

if a product is registered for sale or use in your area. Enlist Duo and Enlist One are the only 2,4-D products

authorized for use with Enlist crops. Consult Enlist herbicide labels for weed species controlled. Always read and follow label directions.

PowerCore® multi-event technology developed by Corteva Agriscience and Monsanto. PowerCore® is a registered trademark of Monsanto Technology LLC. Always follow IRM. grain marketing and all other stewardship practices and pesticide label directions. B.t. products may not yet be registered in all states. Check with your seed representative for the registration status in your state.

The PowerCore® Enlist® Refuged Advanced® trait is not yet available for sale or distribution in the U.S.; limited quantities available in Canada for 2023.

Liberty®, LibertyLink® and the Water Droplet Design are trademarks of BASF.

Pioneer® brand products are provided subject to the terms and conditions of purchase which are part of the labeling and purchase documents. ™® Trademarks of Corteva Agriscience and its affiliated companies. © 2023 Orteva. 011352≤ PI0 (04/23)

Characterizing corn insect protection technology

ABOVE-GROUND INSECT PROTECTION

	/\L	JOVE O	KOUND	INOLOI	INCIL	011011		
		European corn borer#	Southwestern corn borer#	Black cutworm	Corn earworm#	Western bean cutworm*	Fall armyworm#	Herbicide tolerance
	Optimum* AcreMax* PRODUCTS	+++*	+++*	++	+	æ	++	glyphosate, glufosinate
nd portfolio	Optimum* AcreMax* Leptra* & Optimum* Leptra* PRODUCTS	+++*	+++*	+++*	+++	+++	+++*	glyphosate, glufosinate
Options in the Pioneer® brand portfolio	Optimum* Intrasect* PRODUCTS	+++*	+++*	++	+		++	glyphosate, glufosinate
Options in	PowerCore* Enlist* corn	+++*	+++*	++	+	; 1	++*	2,4-D choline, glyphosate, glufosinate, FOP
3	PowerCore* Ultra Enlist* corn† PRODUCTS	+++*	+++*	+++ *	+++	+++	+++*	2,4-D choline, glyphosate, glufosinate, FOP
	VT Double PRO* RIB Complete* corn	+++*	+++*	=	+	Ű.	++*	glyphosate
Competitive products	Trecepta* corn	+++*	+++*	+++	+++	+++	+++*	glyphosate
Competitiv	Agrisure* 3120 E-Z Refuge* corn	+++*	+++*	++	+	-	++	glyphosate, glufosinate
	Agrisure* 3330 E-Z Refuge* corn	+++*	+++*	+++	+++	+++	+++*	glyphosate, glufosinate

⁺⁺⁺ Excellent protection

⁺⁺ Good protection + Some protection - No activity/not labelled

^{▼2} or more working modes of action

ABOVE- AND BELOW-GROUND INSECT PROTECTION

		Corn rootworm (western#, northern, Mexican)	European corn borer	Southwestern corn borer#	Black cutworm	Corn earworm#	Western bean cutworm#	Fall armyworm#	Herbicide tolerance
nd portfolio	Qrome* PRODUCTS	++*	+++*	+++*	++	+	1	++	glyphosate, glufosinate
Options in the Pioneer® brand portfolio	Optimum* AcreMax* XTreme PRODUCTS	++*	+++*	+++*	++	+	1	++	glyphosate, glufosinate
Options in t	Vorceed Enlist corn	+++*	+++*	+++*	++	+	, - 7	++*	2,4-D choline, glyphosate, glufosinate, FOP
ıcts	SmartStax* Technology	++*	+++*	+++*	++	+	J.	++*	glyphosate, glufosinate
Competitive products	SmartStax* PRO Technology	+++*	+++*	+++*	++	+	-	++*	glyphosate, glufosinate
Con	Agrisure* Duracade* 5122 E-Z Refuge* corn	++*	+++*	+++*	++	+		++	glyphosate, glufosinate

+++ Excellent protection

otection ++ Good protection

+ Some protection

- No activity/not labelled

₹2 or more working modes of action

Characterization from Internal Corteva Agriscience Attributes database.

Efficacy levels based on Corteva Agriscience and/or independent university entomologist results against susceptible insect populations. Product responses can vary by location, pest population, environmental conditions, and agricultural practices.

Please contact your Pioneer sales professional for information and suggestions specific to your operation. Individual results may vary.

Various factors, including pest pressure, reduced susceptibility, and insect resistance in some pest populations may affect efficacy of certain corn technology products in some regions. To help extend durability of these technologies, Corteva Agriscience recommends you implement Integrated Pest Management (IPM) practices such as crop rotation, cultural and biological control tactics (including rotating sources of Bt-protected corn traits), pest scouting, and appropriate use of pest thresholds when employing management practices such as insecticide application. You must also plant the required refuge when using these technologies. Please contact your sales professional or consult with your local university extension for more information regarding insect resistance management guidelines, best management practices and to understand whether there has been a shift in susceptibility or insect resistance with certain pests documented in your area. * Western bean cutworm has been removed from the Corteva Agriscience product use statement for several corn products that contain Herculex* I (Cry1F) but lack another mode of action for western bean cutworm due to a wide-spread decrease in susceptibility indicating the possibility of field-evolved resistance to Cry1F in most geographies.

†The Vorceed™ Enlist® trait and PowerCore® Ultra Enlist® trait will not be offered for sale or distribution until completion of field testing and applicable regulatory reviews.

PowerCore® multi-event technology developed by Corteva Agriscience and Monsanto. PowerCore® is a registered trademark of Monsanto Technology LLC. Always follow IRM, grain marketing and all other stewardship practices and pesticide label directions. B.t. products may not yet be registered in all states. Check with your seed representative for the registration status in your state. Roundup Ready® is a registered trademark used under license from Monsanto Company.

Liberty®, LibertyLink® and the Water Droplet Design are trademarks of BASF.

Agrisure® and Agrisure Viptera® are trademarks of, and used under license from, a Syngenta Group Company.

Agrisure® technology incorporated into these seeds is commercialized under a license from Syngenta Crop Protection AG.

Corteva Agriscience is a member of Excellence Through Stewardship® (ETS). Corteva Agriscience products are commercialized in accordance with ETS Product Launch Stewardship Guidance and in compliance with the Corteva Agriscience policies regarding stewardship of those products. In line with these guidelines, our product launch process for responsible launches of new products includes a longstanding process to evaluate export market information, value chain consultations, and regulatory functionality. Growers and end-users must take all steps within their control to follow appropriate stewardship requirements and confirm their buyer's acceptance of the grain or other material being purchased. For more detailed information on the status of a trait or stack, please visit www.biotradestatus.com.

Excellence Through Stewardship® is a registered trademark of Excellence Through Stewardship.

Fungicide

The LumiGEN® seed treatment package on Pioneer® brand corn products is the most robust protection in the industry.

	Trade Name	Active Ingredients	muidtyq	Rhizoctonia	Fusarium	Head smut
		Metalaxyl	•			
	Lumiscend" Pro	Ethaboxam	•			
LumiGEN		Inpyrfluxam		•	•	
Seed Treatments	Lumiflex" seed treatment fungicide	Ipconazole		•	•	•
	L-2012 R biofungicide	Bacillus amyloliquefaciens strain MBI 600		•	•	
		Number of Modes of Action	2	3	3	-
	Acceleron® DC-309	Metalaxyl	•			
	Acceleron® D-342	Prothioconazole		•	•	
Acceleron® - Enhanced Disease Control	Acceleron® D-281	Fluoxastrobin		•		
	Acceleron® D-310	Ethaboxam	•			
		Number of Modes of Action	ı	2	-	
		Mefenoxam	•			
	Section M	Azoxystrobin	•	•	•	ë .
NK®/Golden Harvest®	יאמאווון - שממונוס אפפט נופטווופוון	Fludioxonil		•		
corn standard		Thiabendazole			•	
	Vibrance® seed treatment	Sedaxane		•		
		Number of Modes of Action	2	М	7	
				· pending EP	• pending EPA label addition approval.	on approval.

Pioneer" brand corn products is the broadest spectrum protection in the industry. The LumiGEN" premium insecticide seed treatment package on

Z	
<u>ō</u>	
TREATMENTS CHARACTERIZATI	Į.
4	
2	
出	
E	
Q	
2	
d	
Î	ŀ
C	
S	
与	
面	
Σ	
5	
M	
~	ľ
H	
Ω	
ш	
S	
DE SEED I	
므	
$\overline{0}$	ŀ
INSECTICIDE	
S	
S	
Z	

	Premium Package	Enhanced		
Pest	Lumialza® bio-nematicide Lumivia® 250 Lumisura® 250	CRW Package Lumialza® bio-nematicide Lumisure®1250	Bayer Option Poncho [®] Votivo [®] 500	Regional Seed Co. Option Cruiser® 250
Corn Nematodes	++++	+ + + +	++	1
Wireworm	++++	+ + + + +	+ + + +	++
Cutworm	+ + + + + +	+ +	-	7
Fall Armyworm	+ + + + +	1	1	1
Seed Corn Maggot	++++	+ + +	+ + + +	+ +
White Grub	+ + +	++++	+ + +	++
Grape Colaspis	+ + +	+ + +	++	+ +
Billbug	++	+ + +	1	T
Flea Beetle	++	+++	++	++
Corn Rootworm	1	++	ı	Î
	LumiGEN see	LumiGEN seed treatment		Į.

 Expanding Bio-barrier shields roots 80+ days of root growth protection · Activity against all key nematode

NEMATICIDE SEED TREATMENT

Lumialza

under low nematode pressure & Yield improvement of 3.7 bu/a

species

9.0 bu/a when under heavy

nematode pressure*

No Control or not labeled

Lumivia® insecticide seed treatment, Lumiatza® bio-nematicide and Lumisure® 1250 and 250 are part of the LumiGEN technologies package available on Pioneer brand corn. Poncho® products are included in Acceleron® seed applied solutions.

Cruiser® products are available on NK® com.

Lumivia Lumiflex

SEED TREATMENT F

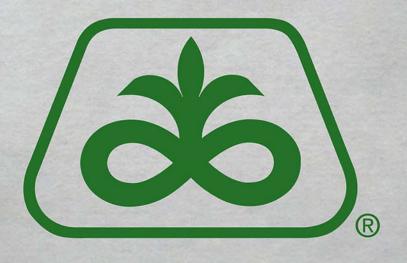
Lumiscend Pro

Lumisure

The information presented here is not an offer for sale. This is not intended as a subsitute for the product label for the product(s) referenced herein. The information contained in this technical document is based on the latest to-date technical information available to Corteva Agriscience, and Corteva Agriscience, an

The information described in these charts is based on a review of product labels and research trials. These comparisons include base rates. Additional seed treatment options are available with all brands compared. Acceleron® is trademark of Bayer.

NK®, Maxim® Quattro, Cruiser® and Vibrance™ are registered trademarks of Syngenta.


Poncho® is a registered trademark of BASF.

* Lumiata® nematicide seed treatment vs. non-nematicide seed treatment utilizing the same insecticide and fungicide recipe in seed applied technology replicated and strip trial data. Yelds ranged from 3 to 9 bu/a depending on nematode species and population, in 184 low stress and 54 moderate to high stress locations. Individual results may vary. Contact your local Corteva Agriscience retailer or representative for details and availability in your state.

Pioneer® brand products are provided subject to the terms and conditions of purchase which are part of the labeling and purchase documents. © IV Trademarks of Corteva Agriscience and its affiliated companies. © 2023 Corteva. 013031 PIO (05/23)

⁺⁺ Average protection +++ Above average protection ++++ Excellent protection



PIONEER®

IT'S TIME YOU BROUGHT YOUR - CAN - C

We bring ours, year after year. With unmatched agronomic performance and exclusive genetics, these seeds have earned the title of America's number one soybean brand for 20-plus years and counting. Pioneer® brand A-Series soybeans. Number one for a reason.

Pioneer.com/SoybeanLeader

Enlist E3 Soybean Suitability Ratings for North Central Indiana - 2024

CORTEVA Ogrisciones

Product Management Suggestions	PEKING. High vielding, offensive variety best suited for the productive acre. Provides very good	SDS tolerance and late season standability. Brings above average White Mold tolerance.	Provides consistent harvest standability		New Late Group 1 high yielding line for the early planted/early harvest market. Able to be	אמזוובת אתתנון כן פ ווסדוופן וופנתווע לסווב מתב נס אתום פקוסוותווינא.		High yielding variety with tremendous versatility. Suited for both drought prone and poorly designed soils. Douglass secondary COS to leaves a Moderate successfully to White Mode.	District Solis. Provides extendit 503 tolerance. Intoderate Susceptibility to writte more.		New Early 2 maturity bean with high yield potential. Manage lower white mold tolerance and	Standarding	High vielding variety with the highest A-series White Mold tolerance in Group II. Very good	harvest standability and plant height to allow for wide area of placement. Above average SDS	tolerance. Outstanding Frogeye tolerance.	Excellent yield stability across testing locations with strong agronomics. Solid top end yield	and with strength in low to moderate yield environments. Good frogeye tolerance and white	mold tolerance. Top choice for irrigated acres. Peking cyst tolerance		NEW Lead variety in the late group 2 matunty. Excellent emergence and late season standability. Use foliar fungicides to manage Froe Eve Leaf Spot tolerance.		Best suited for highly productive acres with excellent lodging resistance. Very good tolerance to	SDS, Brown Stem Rot, and Phytophthora. Moderate stress tolerance providing versatility.	Manage frogey leaf spot, will respond to fungicide applications.	High vielding variety with excellent stress tolerance. Solid height allows for placement on	eastern Indiana clay soils. Stacked Phytophthora genes with excellent SDS tolerance. Manage	Frogeye.		NEW Hexible placement variety with stess tolerance and top end yield potential. Good standahility and white mold tolerance for productive or irrigated arrives	אמותמטווון מות אווניב וווסס נסופומולב זמן הסתרנודים ווווקמנים מניבא.	PEKING. Provides excellent yield in all yield environments. Very good emergence and harvest.	standability. Outstanding tolerance to Frogeye Leaf Spot and average tolerance to SDS.	Manage white mode.		NEW but proven genetics with versatile placement in all environments. Good plant height	when on succeed sons with good standability on productive sons.	MINISTER AND	with excellent standability lend well for indicated acres but white mold needs to be managed.	
/ Wide		s			s			s			s			H			£			£			s			s			s			£			£			£	
Early Planting		S			H		_	s			s			s			HS			S			S			S			s			S		_	s			S	
ght- ne Imgated Is		S			HS			S			S			S		-	HS			S	-		S			s			£			S		_	S			S	
ndy Drought- ned Prone		£ E			S			포 모			s			S HS		_	S			S		_	s			S HS			S			S			s			S	
Poorly Drained Soils	L	·			s			s			s			£			£			¥			s		L	£			S			£			£		Н	s	
	5	-		2	•		9																			-		9								_	9	- 1	
	£	_	e	th		e	Н	_	e	th 5	•	• •	th 4	•	e	th 6	•	• •	th 6	•	• •	th 6	_	e	th 6	•	e	-	•	• •	th 6	_	e	th 4	•	e	th	•	e
	Canopy Width	Metribuzin	SU Tolerance	Canopy Width	Metribuzin	SU Tolerance	Canopy Width	Metribuzin	SU Tolerance	Canopy Width	Metribuzin	SU Tolerance	Canopy Width 4	Metribuzin	SU Tolerance	Canopy Width 6	Metribuzin	SU Tolerance	Canopy Width 6	Metribuzin	SU Tolerance	Canopy Width 6	Metribuzin	SU Tolerance	Canopy Width 6	Metribuzin	SU Tolerance	Canopy Width	Metribuzin	SU Tolerance	Canopy Width 6	Metribuzin	SU Tolerance	Canopy Width	Metribuzin	SU Tolerance	Canopy Width	Metribuzin	SU Tolerance
tings	7 Canopy Width	5 Metribuzin	PK SU Tolerance	6 Canopy Width	4 Metribuzin	PI SU Tolerance	Н	3 Metribuzin	PI SU Tolerance	Н	4 Metribuzin	PI SU Tolerance	H	5 Metribuzin	PI SU Tolerance	H	6 Metribuzin	PK SU Tolerance	_	Н	PI SU Tolerance	_	4 Metribuzin	PI SU Tolerance	H	4 Metribuzin	PI SU Tolerance	-	5 Metribuzin	PI SU Tolerance	_	2 Metribuzin	PK SU Tolerance	-	4 Metribuzin	PI SU Tolerance	6 Canopy Width		PI SU Tolerance
d Disease Ratings	SDS 7 Canopy Width	S		9 SQS		Ы	Canopy Width	3		6 Canopy Width			6 Canopy Width			7 Canopy Width	9		6 Canopy Width	4	Ы	7 Canopy Width			7 Canopy Width			6 Canopy Width	2		5 Canopy Width	2		Canopy Width	4		9	3	Ш
ristic and Disease Ratings	1	WMD 5	PK	9	4	Ы	SDS 5 Canopy Width	3	Ы	6 Canopy Width	4	Ы	6 Canopy Width	2	Ы	7 Canopy Width	9 QWM	PK	6 Canopy Width	WMD 4	Ы	7 Canopy Width	4	Ы	7 Canopy Width	4	Ы	SDS 6 Canopy Width	2	Ы	5 Canopy Width	WMD 2	PK	5 Canopy Width	4	Ы	9	æ	Id
Characteristic and Disease Ratings	Z SDS 7	4 WMD 5	SCN PK	9 SQS	WMD 4	Ы	1c SDS 5 Canopy Width	WMD 3	Ы	SDS 6 Canopy Width	4	SCN PI	SDS 6 Canopy Width	WMD S	SCN PI	SDS 7 Canopy Width	9 QWM	SCN PK	SDS 6 Canopy Width	5 WMD 4	3 SCN PI	1k SDS 7 Canopy Width	WMD 4	Ы	SDS 7 Canopy Width	4	SCN PI	1k SDS 6 Canopy Width	WMD S	Ы	1k SDS 5 Canopy Width	3 WMD 2	8 SCN PK	SDS 5 Canopy Width	WMD 4	Ы	1k SDS 6	4 WMD 3	SCN PI
Characteristic and Disease Ratings	1k SDS 7	4 WMD 5	9 SCN PK	1k, 3A SDS 6	5 WMD 4	SCN PI	1c SDS 5 Canopy Width	5 WMD 3	S SCN PI	1k, 3A SDS 6 Canopy Width	WMD 4	6 SCN PI	1k SDS 6 Canopy Width	4 WMD 5	9 SCN PI	1k SDS 7 Canopy Width	PFT 4 WMD 6	8 SCN PK	1k SDS 6 Canopy Width	PFT 5 WMD 4	3 SCN PI	1k SDS 7 Canopy Width	5 WMD 4	3 SCN PI	1k,3a SDS 7 Canopy Width	WMD 4	3 SCN PI	1k SDS 6 Canopy Width	S WMD S	SCN PI	1k SDS 5 Canopy Width	PFT 3 WMD 2	8 SCN PK	1c SDS 5 Canopy Width	4 WMD 4	SCN PI	1k SDS 6	PFT 4 WMD 3	8 SCN PI
Characteristic and Disease Ratings	1k SDS 7	4 PFT 4 WMD 5	FEY 9 SCN PK	PRR 1k, 3A SDS 6	PFT 5 WMD 4	FEY SCN PI	PRR 1c SDS 5 Canopy Width	PFT 5 WMD 3	FEY 5 SCN PI	PRR 1k, 3A SDS 6 Canopy Width	PFT WMD 4	FEY 6 SCN PI	PRR 1k SDS 6 Canopy Width	PFT 4 WMD 5	FEY 9 SCN PI	1k SDS 7 Canopy Width	PFT 4 WMD 6	FEY 8 SCN PK	PRR 1k SDS 6 Canopy Width	4 PFT 5 WMD 4	FEY 3 SCN PI	PRR 1k SDS 7 Canopy Width	PFT 5 WMD 4	FEY 3 SCN PI	PRR 1k,3a SDS 7 Canopy Width	PFT WMD 4	FEY 3 SCN PI	PRR 1k SDS 6 Canopy Width	PFT 5 WMD 5	FEY SCN PI	PRR 1k SDS 5 Canopy Width	PFT 3 WMD 2	FEY 8 SCN PK	PRR 1c SDS 5 Canopy Width	PFT 4 WMD 4	FEY SCN PI	PRR 1k SDS 6	3 PFT 4 WMD 3	FEY 8 SCN PI
Tech. Segment	Emergence 7 PRR 1k SDS 7	4 PFT 4 WMD 5	Standability 7 FEY 9 SCN PK	Emergence 8 PRR 1k, 3A SDS 6	5 PFT 5 WMD 4	Standability 7 FEY SCN PI	Emergence 7 PRR 1c SDS 5 Canopy Width	4 PFT 5 WMD 3	Standability 7 FEY 5 SCN PI	Emergence 7 PRR 1k, 3A SDS 6 Canopy Width	S PFT WMD 4	Standability 6 FEY 6 SCN PI	Emergence 6 PRR 1k SDS 6 Canopy Width	6 PFT 4 WMD 5	Standability 7 FEY 9 SCN PI	Emergence 7 PRR 1k SDS 7 Canopy Width	4 PFT 4 WMD 6	Standability 8 FEY 8 SCN PK	Emergence 6 PRR 1k SDS 6 Canopy Width	4 PFT 5 WMD 4	, 8 FEY 3 SCN PI	Emergence 6 PRR 1k SDS 7 Canopy Width	4 PFT 5 WMD 4	Standability 8 FEY 3 SCN PI	Emergence 7 PRR 1k,3a SDS 7 Canopy Width	5 PFT WMD 4	Standability 7 FEY 3 SCN PI	Emergence 7 PRR 1k SDS 6 Canopy Width	4 PFT 5 WMD 5	Standability 7 FEY SCN PI	Emergence 7 PRR 1k SDS 5 Canopy Width	4 PFT 3 WMD 2	Standability 7 FEY 8 SCN PK	Emergence 7 PRR 1c SDS 5 Canopy Width	6 PFT 4 WMD 4	Standability 7 FEY SCN PI	Emergence 8 PRR 1k SDS 6	3 PFT 4 WMD 3	Standability 8 FEY 8 SCN PI
	Emergence 7 PRR 1k SDS 7	Height 4 PFT 4 WMD 5	Standability 7 FEY 9 SCN PK	Emergence 8 PRR 1k, 3A SDS 6	Height 5 PFT 5 WMD 4	Standability 7 FEY SCN PI	Emergence 7 PRR 1c SDS 5 Canopy Width	Height 4 PFT 5 WMD 3	Standability 7 FEY 5 SCN PI	Emergence 7 PRR 1k, 3A SDS 6 Canopy Width	Height 5 PFT WMD 4	Standability 6 FEY 6 SCN PI	Emergence 6 PRR 1k SDS 6 Canopy Width	Height 6 PFT 4 WMD 5	Standability 7 FEY 9 SCN PI	Emergence 7 PRR 1k SDS 7 Canopy Width	Height 4 PFT 4 WMD 6	Standability 8 FEY 8 SCN PK	Emergence 6 PRR 1k SDS 6 Canopy Width	Height 4 PFT 5 WMD 4	, 8 FEY 3 SCN PI	Emergence 6 PRR 1k SDS 7 Canopy Width	Height 4 PFT 5 WMD 4	Standability 8 FEY 3 SCN PI	Emergence 7 PRR 1k,3a SDS 7 Canopy Width	Height 5 PFT WMD 4	Standability 7 FEY 3 SCN PI	Emergence 7 PRR 1k SDS 6 Canopy Width	Height 4 PFT 5 WMD 5	Standability 7 FEY SCN PI	Emergence 7 PRR 1k SDS 5 Canopy Width	Height 4 PFT 3 WMD 2	Standability 7 FEY 8 SCN PK	Emergence 7 PRR 1c SDS 5 Canopy Width	Height 6 PFT 4 WMD 4	Standability 7 FEY SCN PI	Emergence 8 PRR 1k SDS 6	Height 3 PFT 4 WMD 3	Standability 8 FEY 8 SCN PI

SUITABILITY RATINGS: HS = Highly Suitable, S = Suitable, M = Manage. The environment in which the variety is planted heavily influences variety yield performance. Use this guide along with suggestions from your Ploneer field agronomist or local sales professional. Please use this information as only one component of your product positioning decision. Refer to www.pioneer.com/products or contact a Pioneer sales professional for the latest and most complete listing of traits and scores for each Pioneer* brand product.

PRR (Phytophora Resistance)

PRR (Phytophora Resistance)

FR (Frog Eve Leaf Spot)

SOS (Suyden Death Sundone)

SOS (Soybean Cyst Nematode tolerance

PRR (Phytophora Pleaf Please)

SOS (Soybean Cyst Nematode tolerance

PRR (Phytophora Pleaf Please)

PRR (Phytophora Pleaf Please)

SOS (Soybean Cyst Nematode tolerance)

PRR (Phytophora Pleaf Please)

PRR (Phytophora Pleaf Please)

SOR (Soybean Cyst Nematode tolerance)

PRR (Phytophora Pleaf Please)

PRR (Phytophora Please)

PRR (Phytophor

Pioneer® brand Soybeans -**Seed Treatment Portfolio**

Treatment	Application Rate	Active Ingredient	Activity & Benefits
LumiTreo™ Fungicide	0.25 fl oz/140k	Oxathiapiprolin, Ipconazole, Picoxystrobin	Multiple modes of action to control the soybean seedling disease complex (damping off, seedling blight, seed and root rot) caused by <i>Phytophthora, Fusarium, Rhizoctonia</i> , and suppression of <i>Pythium</i> . Also provides protection from seed-borne <i>Phomopsis</i> .
L-2030 G Bio-Fungicide, Bio-Stimulant, + Color/Polymer	1.0 fl oz/140k	Bacillus amyloiquefaciens and Bacillus pumilus	The biological provides early season protection against <i>Rhizoctonia</i> and <i>Fusarium</i> while enhancing root and plant growth. The color/polymer provides a distinctive green color plus a coating to minimize dust-off and improve seed flow through planting and seed handling equipment.
Sebring [®] 318 Fungicide	0.2 fl oz/140k	Metalaxyl	Excellent activity against Pythium sp. damping off. Also labeled for early season Phytophthora control.
Imidacloprid Insecticide	0.80 fl oz/140k	Imidacloprid	Protection against early-season insect feeding from overwintering bean leaf beetles, seedcorn maggot and suppression of soybean aphids. Pair with Lumiderm Insecticide to broaden pest protection and provide a second mode of action against BLB, SCM, and aphids.
Lumiderm® Insecticide (Optional to add to any package)	0.57 fl oz/140k	Cyantraniliprole	New systemic mode of action that shields soybeans above and below ground from cutworm*, bean leaf beetle, thrips, seedcorn maggot, soybean aphid, white grub and wireworm.
ILEVO® HL (Optional to add to any package)	0.50 to 1.00 fl oz/140k	Fluopyram	Control of SDS (Fusarium viguliforme) and Soilborne Nematodes (Soybean Cyst Nematode, Lesion nematode, Root knot nematode, Lance nematode and Reniform nematode.)
L-120+ (Optional to add to any package)	1.0 fl oz/140k	Rhizobia Inoculant plus Extender	Delivers high concentration of beneficial <i>Rhizobia</i> bacteria for nitrogen fixation. Extender product helps prolong <i>Rhizobia</i> up to 120+ days following application.

TruChoice® Offer

Up to 15% upfront savings on your Corteva® crop protection with Pioneer purchase.

	CROP PROTECTIO	N SAVINGS
Prepay Savings	10% or 5% Credit	Qualification Fund a TruChoice® prepay account, with a minimum of \$5,000 by Mar. 1, 2024
	PL	US
Pioneer Customer Bonus	5% Additional Upfront Savings	Qualification Achieve Infinity Platinum or Gold level
	Total Savings 15% Cash or	10% Credit

INVOICE, pay, and achieve Infinity Platinum or Gold level status on your Pioneer brand products with your Pioneer sales representative by **Jan. 12, 2024**

FUND your TruChoice prepay account, with your Pioneer sales representative or on Pioneer.com, with a minimum of \$5,000 by **Mar. 1, 2024**

5. EARN upfront savings on Corteva Agriscience crop protection products

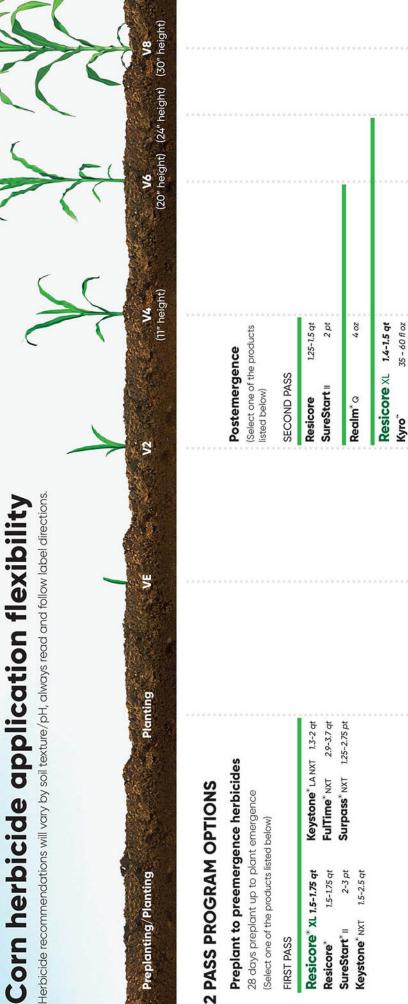
- PREPAY SAVINGS
- PIONEER CUSTOMER BONUS

4. SPEND your TruChoice prepay funds on participating Corteva crop protection products for upfront savings

General program provisions

Sign your Grower Prepay Agreement via your local Pioneer sales representative or by logging on to Pioneer.com

- Earn TruChoice® offer prepay savings by funding a prepay account from Oct. 2, 2023 through Mar. 1, 2024. Spend your TruChoice prepay account funds at any authorized retailer; transactions must be entered into TruChoiceOnline.com between Nov. 15, 2023 and Sept. 30, 2024.
- Any amount of prepay funds can be used towards your Corteva Agriscience crop protection products; however a minumum of \$5,000 deposited plus the prepay savings applied must be spent in order to retain any prepay savings.
- Any quantities of qualifying products purchased during the offer period which are subsequently returned to the Pioneer agents or retailers are not eligible for the incentives, nor will they count toward the required minimum(s).
- 4. The Pioneer Customer Bonus is available to customers whose business operations are based in AZ, CO, CT, DE, ID, IL, IN, IA, KS, ME, MD, MA, MI, MN, MO (excluding Bootheel counties of Bollinger, Butler, Cape Girardeau, Carter, Dunklin, Iron, Madison, Mississippi, New Madrid, Oregon, Pemiscot, Perry, Reynolds, Ripley, St Francois, Ste Genevieve, Scott, Shannon, Stoddard, and Wayne), MT, NE, NH, NJ, NM, NV, NY, ND, OH, OK, OR, PA, RI, SD, TX, UT, VT, WA, WI and WY.
 - The TruChoice offer is available to farmers based in the U.S., except those in CA.
- 5. Earn the Pioneer Customer Bonus by:
 - A. Qualifying as an Infinity Platinum or Gold level customer and pay for your Pioneer brand seed by Jan. 12, 2024. Contact your Pioneer sales representative for more information on how to qualify for Platinum or Gold levels.
 - B. Funding a TruChoice prepay account with your Pioneer sales representative or on pioneer.com from Oct. 2, 2023 through Mar. 1, 2024.
 - C. Spend your Pioneer Customer Bonus with your prepay account funds at any participating retailer; transactions must be entered into TruChoiceOnline. com between Nov. 15, 2023 and Sept. 30, 2024.


- Pioneer Customer Bonus cannot be combined with any other Corteva Agriscience brand customer bonus.
- 7. A complete list of participating products is published on pioneer.com/truchoice.
- TruChoice prepay cash payments can be accepted by the Pioneer sales representative or online: Depositing funds online is easy, secure, and convenient at pioneer.com.
- 9. TruChoice financing is available by working with your Pioneer sales representative to initiate financing through the TruChoice financing program enables customers of Corteva Agriscience through its subsidiary PHI Financial Services, Inc., to finance their approved crop protection product purchases. Cash can be applied to a registered TruChoice prepay account to avoid loan approval.
- Have approved deferred payment loan with adequate credit limit. TruChoice financing for Corteva Agriscience crop protection opens Nov. 15, 2023.
 - A. For TruChoice financing rates in your area, contact the TruChoice support team at 1-800-922-2368.
 - B. Subject to credit approval and program requirements.
- Participation in this program is subject to any terms, conditions and procedures that Corteva Agriscience may, at its discretion, change from time to time.

TruChoice Financing

Ask your local Pioneer sales representative about the flexible options available through TruChoice financing.

TruChoice support team: 1-800-922-2368 pioneer.com/truchoice

	ļ,			
	ļ,	á		
		ý	,	×
	Ļ		į.	
		-		
		-		
				•
			•	
			CITCHEC	
			OITO HEO MA	
				REM CRICES
				CKAM OF LOND
				ROCKEM OF ION
			ON CHACK MACCOCC	TROCKAM OF LOND
			CITOTHOO MACOCCO	DESCRIPTIONS
			CITOTION AND COURT	THE CALLED AND THE CA

(30" height)

(24" height)

(20" height) %

(11" height)

2

Planting

Preplanting/Planting

		-	
Droplant horbicidos			
riepidiit liel bicides			
28 deve proplement of an taplace	Preemergence	Postemergence	-

Preplant herbicides 28 days preplant up to plant emergence	Preemergence	Postemergence	ø			
OPTION 1	OPTION 2	OPTION 3				
e XL	e×L S	qt Resicore	2 qt	2 qt or SureStart	2pt	
resicore 2.5-5 qt	or SureStart 2-3pt	2-3 pt Resicore XL	2.5 qt			

Application window

For more info, visit us at CornHerbicides.corteva.us

"Trademarks of Corteva Agriscience and its affiliated con

This reference guide is not intended as a substitute for the product label for the product labels for the product labels for the above product(s) contain important precautions, directions for use, and product warranty and fiability limitations, which must be read before using the product label(s) at the time of application rules in label direction and precautions for use when using any pesticide alone or in tank-rinx combinations. Not all products have been seed before using the product label(s) at the time of application, rules in label direction and precautions for use when using any pesticide alone or in tank-rinx combinations. Not all products are all products or use in all states. Fulline NCI, Keystone Repair of the product is registered for size or use in all tables directions and precautions for use. In your state contains the second product is registered for size or use in all tables directions and precautions for use. In your state contains the second product is registered for size or use in all tables directions and precautions for use. In your state contains the second product is registered for size in your state and prolone all pass directions and precautions for use. In your state and prolone all pass directions and precautions for use in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and prolone and product is registered to size in your state and y

Enlist®

Soybean program approach

tillage or burndown Start clean with

Plant Enlist E3® soybeans

Apply soil residual herbicide*

Apply through R1 growth stage Apply Enlist® herbicides

HERBICIDE

Enlist Duo®

COLEX.D' technology

Enlist One

COLEX.D' technology

(No plantback restriction for Enlist E3® soybeans)

HERBICIDE

Sonic® Afforia®

> **Enlist E3** SOYBEANS

Surveil® Enlite® **Trivence**® **Envive**®

HERBICIDE

Enlist One COLEX•D* technology **Enlist Duo**® COLEX.D' technology

Apply glyphosate

Apply no later than R2 growth stage

Apply Liberty® herbicide Apply up to R1 growth stage

Liberty Herbicide

EverpreX®

(Also layered residual use)

plantback restriction)

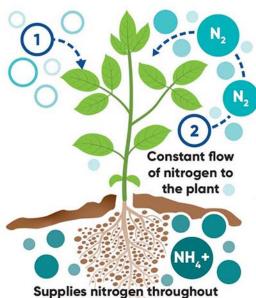
(See label for Arylex active

Elevore®

Enlist Duo® herbicides. Always reference product labels for application cut-off timing. "Visit EnlistTankMix.com for a full list of qualified tank mix patterns with Enlist One® or

Planting Tillage or burndown

Postemergence/tank-mix Preemergence



Utrisha[™]N

NUTRIENT EFFICIENCY OPTIMIZER

Application in Soybean

the crop cycle in an effective

and controlled way

Composition

Methylobacterium symbioticum

Application

Timing: Apply to growth stage V4-V8 or R1-R3

Rate: 5 oz/A

BlueN | Technology

 Best applied in the early morning, when a greater number stomata are open

Utrisha™ N nutrient efficiency optimizer

Fixes nitrogen from the air and converts it for the plant

- (1) Enters the plant through the stomata and gets into the leaf cells.
- (2) Converts N, from the air into ammonium resulting in a constant supply of amino acids to the plant

Flexibility

Supplemental nitrogen source to add to nitrogen management program

Effective

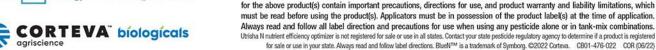
Enhances Nitrogen Use Efficiency (NUE) and reduces dependency on nitrogen uptake from the soil

Sustainable

Natural bacteria that can supplement nitrogen to the plant

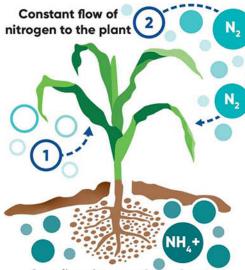
Recommendations

- Apply in healthy crops unaffected by poor nutrition or other biotic/abiotic stresses
- Apply with sufficient plant biomass, when the crop presents good soil coverage
- Apply to standard side-dressing fertilization timing as closely as possible
- · Mix with water only for best product performance
- Spray volume: 10 and 25 GPA
- Water total chlorine content: < 2 ppm
- Water pH: between 5 and 8
- Rain fast: one hour after application
- · To be used within current nitrogen programs


*Data is based on average yield advantage of Utrisha N treated soybeans adjacent to untreated soybeans in 2021 field trials. Product performance is variable and depends on a variety of factors including but not limited to weather conditions, soil factors and manner of use or application. Individual results may vary. 26 trials of high yielding soybean environments with greater than 80 bu/A.

Soybean yield increase from Utrisha™ N related to yield potential in high yielding environments

Visit us at www.corteva.us/utrisha-n



Powered by Symborg

Application in Corn

Supplies nitrogen throughout the crop cycle in an effective and controlled way

Composition

Methylobacterium symbioticum

Application

Timing: Apply to growth stage V4-V8

Rate: 5 oz/A

BlueN Technology

 Best applied in the early morning, when a greater number stomata are open to provide optimum uptake

Utrisha™ N nutrient efficiency optimizer

Fixes nitrogen from the air and converts it for the plant

- 1 Enters the plant through the stomata and gets into the leaf cells.
- **2** Converts N₂ from the air into ammonium resulting in a constant supply of amino acids to the plant

Flexibility

Supplemental nitrogen source to add to nitrogen management program

Effective

Enhances Nitrogen Use Efficiency (NUE) and reduces dependency on nitrogen uptake from the soil

Sustainable

Natural bacteria that can supplement nitrogen to the plant

Recommendations

- Apply in healthy crops unaffected by poor nutrition or other biotic/abiotic stresses
- Apply with sufficient plant biomass, when the crop presents good soil coverage
- Apply to standard side-dressing fertilization timing as closely as possible
- Mix with water only for best product performance
- Spray volume: between 10 and 25 GPA
- Water total chlorine content: < 2 ppm
- Water pH: between 5 and 8
- · Rain fast: one hour after application
- To be used within current nitrogen programs

Corn yield increase from Utrisha" N related to yield potential

Yield environment Yield increase Low (120-179 bu/A) - 14 trials + 8.2 bu/A Medium (180-219 bu/A) - 74 trials + 6.0 bu/A High (220-280 bu/A) - 147 trials + 3.1 bu/A

*Data is based on average yield advantage of Utrisha N + optimal nitrogen application compared to optimal nitrogen application in 2021 field trials. Product performance is variable, and depends on a variety of factors including but not limited to weather conditions, soil factors and manner of use or application. Individual results may vary.

Visit us at www.corteva.us/utrisha-n

Powered by Symborg

TIMING

RATE

VALUE

CROP PERFORMANCE

MERISTEM

At Planting

1 pail treats 50 units of corn at 80k seeds per unit.

Powered by BIO-CAPSULE TECHNOLOGY™, REVLINE HOPPER THROTTLE is a patented seed lubricity packaging system with an 80/20 talc/graphite blend that safeguards the vigor and vitality of microbes all the way to the furrow while ensuring peak planter performance.

REVLINE HOPPER THROTTLE CORN (RHTC) includes 1.35 lbs of IONLOCK™ Zinc in the base along with an Mn and Fe blend. RHTC contains two BIO-CAPSULEs, the first includes industry-leading bio-fertility & Nfixing microbes and the second contains 6.25 oz of Terrasym[®], a proven biostimulant that drives early root system development and season-long stressmitigation benefits.

BIO-CAPSULE TECHNOLOGY

Actual product packaging may be different trun this assur-

REVLINE HOPPER THROTTLE YBEA

TIMING

RATE

VALUE

At Planting

1 pail treats 40 units of soybeans at 140k seeds per unit.

Industry-Leading RACEREADY™
Bradyrhizobia Inoculant 5 oz Terrasym[®] Proven, Industry-Leading Bio Stimulant PPFM strains that generate massive root structures Proprietary Triple-Stack accelerates early-season nodulat for maximum nutrient uptake.

The REVLINE HOPPER THROTTLE SOYBEAN (RHTS) base includes 0.43 lbs of IONLOCK™ Zinc combined with Mn and Fe. Two BIO-CAPSULES are charged with a proprietary 3-strain Bradyrhizobia inoculant, a third is contains 5 oz of proven biostimulant Terrasym, and a fourth has bio-fertility & N-fixing microbes.

NEW: Industry-Leading Bio-Fertility & N-Fixing Microbes

Azospirillum brasilense Azospirillum lipoferum zolobacter chroacucum Azotobacter vincelandi Thibacillus Ferooxidans Paenbacillus Azotofixans acillus amyfoliquefaciens Bacillus sicheniformis Bacillus pumitus Bacillus spumitus Bacillus subtilis Trichoderma hazianum

BID-CAPSULE

Actual product packaging may be different than this visual

Revline Hopper Throttle on Farm Trial

205.87 bu/Ac Treated +7.89 bu/Ac

197.98 bu/Ac Untreated

Revline Hopper Throttle on Farm Trial

Treated 255.9 bu/Ac Field Ave. +6.55 bu/Ac 249.35 bu/Ac Untreated

BakerAg

