
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
Remote Sensing Based Water Productivity 
Assessment – Sri Lanka (Part A) 
 
 
 
 
 
 
 
  

 
FINAL REPORT 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final Project Report submitted to ADB under the program for Expanding Support to Water 
Accounting in River Basins and Water Productivity in Irrigation Schemes. 
 
Citation: Velpuri, N.M., Khan, A., and Rebelo, L-M., 2020. Remote Sensing Based Water 
Productivity Assessment – Final Project Report, Northwestern and Uva Provinces, Sri Lanka; 
IWMI, Colombo, Sri Lanka 
 
Cover image: Irrigated crops, Saaliya Thilakaratne / IWMI



i 
 

 
EXPANDING SUPPORT TO WATER ACCOUNTING IN RIVER 

BASINS AND WATER PRODUCTIVITY IN IRRIGATION SCHEMES 
 
 

 
 
 
 
 
 
 

 

Project final report: 
Remote Sensing Based Water 

Productivity Assessment, Sri Lanka 
(Part A) 

 
 
 
 
 
 
 
 
 
 
 

PREPARED FOR THE 
ASIAN DEVELOPMENT BANK 

BY 
 

 
 
 

The International Water Management Institute 
 

October 2020 
 

 
  



ii 
 

TABLE OF CONTENTS 

I. INTRODUCTION ........................................................................................................... 1 

II. PROJECT BACKGROUND ............................................................................................ 1 

III. SCOPE OF SERVICES ................................................................................................. 2 

IV. VEGETATION GROWTH AND WATER DEFICIT ASSESSMENT ................................. 4 

A. Background: Site Description ..................................................................................... 4 

B. Summary of the approach .......................................................................................... 7 

1. Analysis of irrigated crop phenology ....................................................................... 7 
2. Water Deficit Analysis ............................................................................................. 9 

C. pySEBAL Implementation ......................................................................................... 10 

1. Data inputs ........................................................................................................... 10 
2. Cloud masking and gap filling ............................................................................... 15 
3. Water Deficits and Biomass Production ................................................................ 16 

D. Presentation of Results ............................................................................................ 17 

1. Analysis of irrigated crop phenology ..................................................................... 17 
2. Crop Water Consumption ...................................................................................... 21 
3. Relative Water Deficit ........................................................................................... 25 
4. Above Ground Biomass Production ...................................................................... 28 

V. SUMMARY AND KEY FINDINGS ................................................................................ 32 

VI. REFERENCES ............................................................................................................ 34 

 
 
 
 
 
 
  



iii 
 

LIST OF FIGURES 

Figure 1: Topography of Sri Lanka along with the boundaries of the 25 basins to be analysed, 
with the four which have been identified as priorities for investment highlighted in red (Source: 
SRTM and IWMI estimates). ................................................................................................. 5 
Figure 2. Distribution of average monthly rainfall (P) and potential evapotranspiration (ETp) 
for the 25 basins during 2014-2018; a) absolute monthly estimates of P and ETp; b) 
cumulative estimates of P and ETp, and, c) the water balance (P–ETp). .............................. 6 
Figure 3. A flowchart showing the describing the processing steps for the phenology analysis 
for the 25 river basins. ........................................................................................................... 7 
Figure 4: Data used for the phenology analysis; a) Mean NDVI over 2000-2018 with basin 
boundaries; b) Irrigated crop map (IWMI, 2013) and c) Mean NDVI for the irrigated areas. .. 8 
Figure 5: Illustration of phenology parameters (start of season, SOS; end of season, EOS 
and length of season (LOS)) for irrigated rice fields in Sri Lanka derived from the time-series 
of NDVI data. SOS, EOS and LOS are shown as day of the year. ........................................ 9 
Figure 6: Cloud cover percentage during Maha and Yala growing seasons for the two 
northern (Mi Oya and Deduru Oya), and the two southern (Kirindi Oya and Menik Ganga) 
river basins ......................................................................................................................... 13 
Figure 7: Map of irrigated areas for the four basins (Left panel Kirindi Oya and Menik Ganga, 
right panel Mi Oya and Deduru Oya; Source: IWMI 2013). .................................................. 15 
Figure 8: The pySEBAL methodological framework (Source: IHE Delft and IWMI, 2020). ... 15 
Figure 9: Mean NDVI time-series for the Mi Oya basin (2000-2018) showing the Maha and 
Yala cropping seasons separated by an insignificant change in NDVI profile, thus 
representing an unimodal curve. ......................................................................................... 18 
Figure 10. Mean NDVI profile in Karanda Oya Basin showing absence of distinct seasonal 
changes in NDVI. ................................................................................................................ 18 
Figure 11. Presence of tree cover in and around irrigated fields in the Karanda Oya basin. 
The grid represents the 250 m irrigated pixels. The location of Karanda Oya basin is shown 
in the left panel in cyan; the black dot indicates the location of the grids. ............................ 19 
Figure 12: Deviation from the mean for each of the crop phenology parameters analysed: 
Start of season (SOS), End of season (EOS) and Length of season (LOS) for the cropping 
seasons (Maha + Yala) in the Kirindi Oya basin, Sri Lanka over the period 2000 – 2018. ... 20 
Figure 13: Spatiotemporal distribution of seasonal ETa during the Maha season in the Mi Oya 
and Deduru Oya. ................................................................................................................. 22 
Figure 14: Spatiotemporal distribution of seasonal ETa during the Yala seasons in Mi Oya 
and Deduru Oya. ................................................................................................................. 23 
Figure 15: Spatiotemporal distribution of seasonal ETa during Maha season in Kirindi Oya 
and Menik Ganga. ............................................................................................................... 23 
Figure 16: Spatiotemporal distribution of ETa during the Yala season in the Kirindi Oya and 
Menik Ganga. ..................................................................................................................... 24 
Figure 17: Frequency of water deficits in irrigated areas during the Maha season each year 
in Mi Oya (top basin) and Deduru Oya (bottom basin). ........................................................ 25 
Figure 18: Frequency of water deficits in irrigated areas during the Yala season each year in 
Mi Oya (top basin) and Deduru Oya (bottom basin). ........................................................... 26 
Figure 19: Frequency of water deficits in irrigated areas during the Maha season each year 
in Kirindi Oya (left basin) and Menik Ganga (right basin) ..................................................... 27 
Figure 20: Frequency of water deficits in irrigated areas during the Yala season each year in 
Kirindi Oya (left basin) and Menik Ganga (right basin). ....................................................... 27 



iv 
 

Figure 21: AGBP (kg/ha) for the Maha Season in irrigated areas within the Mi Oya (top basin) 
and Deduru Oya (bottom basin). ......................................................................................... 29 
Figure 22: AGBP (kg/ha) estimates for the Yala Season in the irrigated areas of the Mi Oya 
(top basin) and Deduru Oya (bottom basin). ....................................................................... 30 
Figure 23: AGBP (kg/ha) for the Maha season in irrigated areas of the Kirindi Oya and Menik 
Ganga. ................................................................................................................................ 30 
Figure 24: AGBP (kg/ha) for the Yala Season in the irrigated areas of the Kirindi Oya and 
Menik Ganga. ..................................................................................................................... 31 

 
 
LIST OF TABLES 

 
Table 1 : Average monthly cloud cover percentages for Landsat 8 images over the four 
basins. ................................................................................................................................ 11 
Table 2: Number of partially clouded images used for each basin and each season. .......... 11 
Table 3: Meteorological data inputs to the PySEBAL model ................................................ 14 
Table 4: Change in length of season (LOS) compared over pre-2010 and post-2010-time 
period and difference in LOS presented for each basin. ...................................................... 21 
Table 5: Mean AGBP in kg/ha for irrigated areas within each basin for the Maha season ... 28 
Table 6: Mean AGBP in kg/ha for irrigated areas within each basin for the Yala season ..... 28 

 
  



v 
 

LIST OF ABBREVIATIONS 
 

ADB  Asian Development Bank 

AGBP Above Ground Biomass Production 

CDZ  Cauvery Delta Zone 

CWP  Crop Water Productivity 

CWSI Crop Water Stress Index 

DOI  Department of Irrigation 

DSS  Decision Support System 

ETa  Actual Evapotranspiration 

FAO  Food and Agriculture Organization 

GEE  Google Earth Engine 

GLDAS Global Land Data Assimilation System 

HI  Harvest Index 

IHE Delft IHE Delft Institute for Water Education 

IWMI  International Water Management Institute 

IWPIP Integrated Water Productivity Improvement Project 

MIWRDM Ministry of Irrigation and Water Resources and Disaster Management 

MODIS Moderate Resolution Imaging Spectroradiometer 

NASA National Aeronautics and Space Administration 

NDVI  Normalized difference vegetation index 

PySEBAL Python implementation of SEBAL 

RWD  Relative Water Deficit 

SRTM Shuttle Radar Topography Mission 

TA  Technical Assistance 

WP  Water Productivity 

 



1 
 

I. INTRODUCTION 

 
1. The ADB is committed under its Water Operational Plan 2011-2020 to undertake 
expanded and enhanced analytical work to enable its developing member countries to 
secure deeper and sharper understanding of water issues and solutions. IHE Delft, in 
collaboration with IWMI and FAO, will support ADB in achieving this objective. 

 
2. The activities proposed under the current study build on the work previously 
undertaken by IHE Delft and IWMI in cooperation with the Asian Development Bank (ADB) 
to assess crop water productivity and to assess water resource status in selected countries 
in Asia.   

 
3. Through the current study, IHE Delft in partnership with its subcontracted partner, 
IWMI, will support (a) ADB’s lending and non-lending assistance in the water sector, and 
(b) the design of irrigation projects at an early stage at selected candidate projects. 

 
4. IHE Delft and IWMI and aim to support ADB’s lending and non-lending assistance 
in the water sector by creating (i) comprehensive, (ii) comprehensible, and (iii) accessible 
information on available water resources and their current uses in major river basins.  IHE 
Delft and IWMI aim to support the design of, or investments in irrigation schemes at project 
start by (i) providing baseline data for parameters related to land and water productivity, 
and (ii) identifying suitable interventions. 

 
5. Assistance is being provided to Projects in 7 countries. The nature of the support 
provided in each is determined through close consultation with ADB Project Officers, and 
tailored to the project requirements.  In some locations, this may take the form of water 
accounting assessments to characterize water use and availability, while in others 
emphasis may be place on water productivity (either crop or biomass water productivity), 
or on irrigation performance assessments, to target investments. 

 
6. This document is the Final Report for the Sri Lanka case study, and as such it 
details the activities undertaken by IWMI to support the Integrated Water Productivity 
Improvement Project. 

II.   PROJECT BACKGROUND 

7. In February 2018, the Ministry of Irrigation and Water Resources and Disaster 
Management (MIWRDM) approached the Asian Development Bank (ADB) with a project 
proposal to improve irrigated agriculture and water productivity and enhance resilience to 
climate change in the Uva and North Western Provinces of Sri Lanka. A transactional 
technical assistance (TRTA) from ADB’s Technical Assistance Special Fund was 
subsequently allocated to MIWRDM for the project.  

 
8. Referred to as the Integrated Water Productivity Improvement Project (IWPIP), 
the objective of the Project is to improve water management within selected river basins in 
Sri Lanka, and take up irrigation subprojects for investment incorporating the objectives of; 



2 
 

(i) improved management of water resources; (ii) modernization of irrigation infrastructure; 
and (iii) promotion of modern crop production and marketing systems. 

 
9. The project focus is on river basins that are mostly located within the North 
Western and Uva provinces. These river basins straddle the dry and intermediate climatic 
zones and have large numbers of smallholder farmers cultivating under both medium to 
large and small irrigation systems, as well as rainfed conditions. They are identified as 
areas which are (i) vulnerable to climate change; (ii) requiring interventions in irrigation and 
water resources management to develop resilience to climate change; and (iii) not currently 
covered by ongoing or planned interventions. 

 
10. Project preparation is being carried out over 48 months between April 2019 to 
March 2021 and involves several tasks including: (i) selection of basins and sub projects, 
(ii) preparation of river basin management plans, (iii) sub project feasibility studies, and (iv) 
detailed design of investments. 

 
11. Following project inception, the TRTA team and the MIWRDM identified three 
priority river basins in three provinces: (i) Deduru Oya and Mi Oya in the North Western 
Province, and (ii) Kirindi Oya which straddles the Uva and Southern Province.  As part of 
the TRTA, the International Water Management Institute (IWMI) was contracted by ADB to 
assist in the selection of river basins, and to support basin planning activities, as well as to 
provide information on water availability and land use mapping for three river basins, 
Deduru Oya, Mi Oya and Kirindi Oya. 

 
12. The current study, reported here, builds further on this analysis undertaken by 
IWMI in support of the TRTA; outputs of the analysis are used in the activities detailed in 
this report.  

III.   SCOPE OF SERVICES 

13. There are 25 basins that lie partially in North Western, Uva, and Southern 
Province. The total gross area of the basins is 37,000 km2 which is 56% of the total area of 
Sri Lanka. The basins have an estimated irrigation area of 280,000 ha consisting of 150,000 
large and medium schemes and about 130,000 ha of small schemes. Selection criteria for 
the priority river basins have been prepared by the TRTA, and 7 basins have been short 
listed; of these, 3 priority basins have been selected for investment (the Mi Oya, Deduru 
Oya, and Kirindi Oya); The priority river basins are estimated to incorporate investment sub 
projects for about 30% of the total investment.  

 
14. During the implementation of this study a fourth basin (Menik Ganga which 
straddles the Uva and Southern Province) was also identified as a priority basin.  Following 
this decision, it was incorporated into the analysis and is also presented here. 

 
15. Through discussions with ADB, IWMI and IHE Delft, it was agreed that the ADB 
program to support Water Accounting in River Basins and Water Productivity in Irrigation 
Schemes would be used to (i) support the selection and planning of the follow-on river 
basins, and (ii) inform the selection of sub projects for investment.  IWMI has agreed to 
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undertake a remote sensing-based assessment to provide the information needed for this 
purpose. 

 
16. The first will be achieved through an assessment of trends and changes in crop 
phenology and vegetation growth in irrigated areas using the Normalized Difference 
Vegetation Index (NDVI) across the 25 river basins over a 20-year period using moderate 
spatial resolution (250m) remote sensing data from the MODIS satellite; and the second 
through the use of higher spatial resolution (30m) Landsat data and a spatial and temporal 
assessment of two parameters related to water deficits and crop growth.  

 
17. In terms of the first parameter, a “Relative Water Deficit” indicator was agreed 
upon to identify spatial variations in water availability as a proxy for potential issues in water 
delivery during the irrigation seasons. ADB have requested that this indicator to be 
calculated as the difference between reference ET (i.e. water unlimited ET during crop 
development), and actual ET (ETa). For the second parameter the Above Ground Biomass 
Production (AGBP) will be used as a proxy indicator for crop growth. 

 
18. IHE Delft and IWMI have proposed to use the pySEBAL approach (detailed in IHE 
Delft and IWMI, 2020) for analyses at the irrigation command scale to derive the data on 
AGBP and ETa; this approach uses satellite images and weather data as inputs.  PySEBAL 
processes the surface energy balance and plant growth at landscape level with a grid of 30 
m independent of crop type information. The ETa and AGBP can be estimated without any 
a priori information on the type of crop and type of soil.  This approach, and the pySEBAL 
tool in particular, have been developed through, and widely used in other similar studies 
funded by ADB and implemented by IHE Delft and IWMI.   

 
19. During subsequent discussions IWMI has agreed to contribute to additional 
activities as follows: 

a. Selection of tanks and tank cascades: investigate potential approaches to link 
the location of small tank cascades to the water deficit outputs; 

b. Support to WEAP modelling for large and medium sized tanks: use of the 
water deficit and ETa data to compare and validate the seasonal deficits 
output from the model; 

c. Support to a TA on groundwater: use of the water deficit data to select 
locations for solar powered piezometers within the priority river basins.  

This additional analysis is presented in a separate report (Report B). 
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IV.     VEGETATION GROWTH AND WATER DEFICIT ASSESSMENT 

A. Background: Site Description 
 

20. Sri Lanka is a tropical island of mild climate without extremes. Most of the 
country’s land area consists of tropical plantation. In the past century the pattern of land 
use has changed with forest cover reduced from 70% in 1901 to 24% in 1996. Removal of 
forests for plantation agriculture was the greatest cause of land cover changes. The major 
agricultural crops are paddy rice, tea, rubber and coconut. Rice is usually irrigated, although 
some rain-fed rice cultivation is practiced. The rainfall distribution in Sri Lanka is influenced 
by monsoons, the intertropical convergence zone (ITCZ), convection, orography, easterly 
waves and cyclonic wind circulations. Paddy rice is the third largest consumer of fresh water 
resources in Sri Lanka (Bastiaanssen and Chandrapala, 2003).  
 
21. Within Sri Lanka, a typical irrigation system consists of a series of catchments 
each with a tank (or reservoir) at the head, from which water is diverted for irrigation. The 
return flow from the irrigated land forms the inflow for the tank downstream. The tank 
cascade systems have multiple uses including domestic supply and irrigation as well as 
sustaining natural vegetation. There is wide variation in the size of cascades, ranging from 
a few small tanks to the large cascades which may involve multiple large and small tanks 
and sometimes inter basin transfers. Individual irrigation schemes within the cascades are 
a wide mix of sizes and characteristics. 

 
22. The irrigated paddy farming is typically supplied with water through the extensive 
number of small and medium tanks that capture monsoonal rains. There are approximately 
533 major irrigation schemes under the Department of Irrigation serving an extent of about 
340,000 ha; in addition, there are nearly 25,000 minor irrigation schemes which fall under 
the Department of Agrarian Services, serving an area of around 162,000 ha. These lands 
together with the Mahaweli project which was commenced with the target of providing 
irrigation facilities to 265,000 ha of new land and 100,000 ha of existing agricultural lands 
indicate the magnitude of irrigated agriculture in the country. The total land under paddy 
cultivation in 2010 was 1,065,000 ha, which is approximately 16% of the total area of Sri 
Lanka (Wijesekera, 2015). 
 
23. This study calculates and analyses vegetation growth across the 25 river basins 
(Figure 1) over a 20 year period, as well as the water deficits and AGBP within the four 
priority river basins (Deduru Oya, Mi Oya, Kirindi Oya and Menik Ganga; Figure 1). Two of 
the four priority basins are located in Southeast of the Island (Kirindi Oya and Menik Ganga) 
and the other two are located in Northwest of the Island (Mi Oya and Deduru Oya).  
 
24. The Kirindi Oya basin has a catchment area of 120,300 ha and receives an 
average annual rainfall of 1455 mm. The Menik Ganga basin has a catchment area of 
127,200 ha and receives average rainfall of 1576 mm.  Both the Southeast basins receive 
the majority of the annual rainfall during the northeast monsoon period from November to 
January and remain mostly dry from June to September.  The topography of the basins 
varies from hilly regions in the north and coastal flat plains in the south. Forests are the 
dominant land cover type in these basins, while rice and sugarcane are the major crops 
grown. The higher crop water requirement of rice, sugarcane and the climatic condition of 
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these basins gives rise to water deficit issues in the farming systems (Abeysingha et. al., 
2017).  
 

 

Figure 1: Topography of Sri Lanka along with the boundaries of the 25 basins to be 
analysed, with the four which have been identified as priorities for investment highlighted 
in red (Source: SRTM and IWMI estimates). 

 
25. In the Northwest, the Mi Oya basin has a catchment area of 102,400 ha and it 
receives 1250 mm average rainfall annually, while the Deduru Oya basin has a catchment 
area of 262,300 ha and receives average annual rainfall of 1600 mm.  The first half of the 
year is the dry season in these basins. The topography of the basins varies from hilly 
regions on eastern boundary (elevation 700 m), to coastal flat plains on the western. More 
than 90% of the land in these basins is devoted to agriculture, consisting of mainly coconut 
and paddy rice. The basins contain a number of small and large tanks. There are also a 
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large number of private lift irrigation schemes, notably in the downstream reach of the water 
channels (Samarasinghe et. al, 2000; Wickramaarachchi, 2004).  

 
26. Paddy (rice) is the major crop cultivated in the irrigated areas in Sri Lanka. Paddy 
is cultivated during two seasons; the Yala season (April to August), and the Maha season 
(mid-October to mid-March) As most of the rainfall is received during the second half of the 
year, the Maha is known as the wet season (and is the primary cropping season), and the 
Yala is the dry season crop.  

 
27. The distribution of average monthly rainfall and potential evapotranspiration for 
the 25 basins over 2014-2018 is presented in Figure 2. An average rainfall of 2,200 mm is 
received per year, with potential evapotranspiration accounting for up to 90% of the annual 
rainfall. The rainfall has a bimodal distribution; The Maha season received around 55-60% 
of annual rainfall and October, November and December are typically the wettest months. 
Since the evaporative demand (ETp) is lower than the rainfall received during the Maha 
season, a positive water balance indicates greater water availability.  
 
28. The Yala season receives up to 40-45% of the annual rainfall, and April, May and 
June are the wettest months in the season. As the evaporative demand is higher than 
during the Maha season months, a negative water balance leads to lower water availability 
for crop growth during the season.   

 
Figure 2. Distribution of average monthly rainfall (P) and potential evapotranspiration (ETp) 
for the 25 basins during 2014-2018; a) absolute monthly estimates of P and ETp; b) 
cumulative estimates of P and ETp, and, c) the water balance (P–ETp). 
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B. Summary of the approach 

 
1. Analysis of irrigated crop phenology  

29. Remote sensing data has been used to characterize vegetation growth and 
phenology within the irrigated areas over the 25 river basins (Figure 1). The objective of 
this analysis is to identify trends and changes using the Normalized Difference Vegetation 
Index (NDVI) over the past two decades, to assist in prioritizing basins for investment (i.e. 
to assist in identifying where agricultural production may have remained static or 
decreased). The steps followed in the analysis are summarized in the flow chart in Figure 
3.  

 

 

Figure 3. A flowchart showing the describing the processing steps for the phenology 
analysis for the 25 river basins.  

30. Given the areal extent of the analysis and the time period of interest, 16-day 
MODIS 250 m NDVI data have been used for the period 2000–2018.  Prior to analysis, the 
16-day composite data have been interpolated to daily intervals using a spline smoothing 
function. These were subsequently aggregated to monthly and annual datasets.  

 
31. The only available land cover map for Sri Lanka which details irrigated areas 
(IWMI, 2013; Figure 3) was used to select MODIS NDVI pixels corresponding to irrigated 
croplands within each basin. 
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32. MODIS NDVI is used to study the crop phenology. Phenology is the study of 
periodic events in the crop life cycle such as the start of the season (SOS), the end of the 
season (EOS), and the length of the growing season (LOS) and how these events are 
influenced by seasonal and inter-annual variations in climate (such as droughts) or 
agronomic factors (such as irrigation). Analysis of phenology metrics over the irrigated 
areas can provide several insights into crop performance.  

 
33. Cropland phenology analysis was performed to characterize the cropping 
seasons, including start, end, and length of the growing season for each pixel over the 
2000-2018 period. Analysis was performed using the R programing language using 
functions available through the greenbrown package (Forkel and Wutzler, 2015).  

 
34. The mean NDVI for each of the basins was extracted and used as input to the 
phenology analysis. A spline function was applied to smooth the data and to improve 
analysis of the seasonal variations present in the NDVI data. 

 
Figure 4: Data used for the phenology analysis; a) Mean NDVI over 2000-2018 with basin 
boundaries; b) Irrigated crop map (IWMI, 2013) and c) Mean NDVI for the irrigated areas.   
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Figure 5: Illustration of phenology parameters (start of season, SOS; end of season, EOS 
and length of season (LOS)) for irrigated rice fields in Sri Lanka derived from the time-series 
of NDVI data. SOS, EOS and LOS are shown as day of the year. 

 
35. For the purpose of this analysis, several phenology related parameters were 
obtained using the ‘greenbrown’ package in R using the NDVI time series as input. Three 
key indicators (start of season – SOS, end of season – EOS, and length of season – LOS) 
were derived to improve understanding of any potential changes in the cropping patterns 
across the basins.  
 
36. An analysis of trends in the mean NDVI was performed for the irrigated areas over 
the 2000-2018 time period. A Mann-Kendall trend analysis was conducted on the monthly 
NDVI estimates to identify the presence of any long-term trends.  

2. Water Deficit Analysis  

37. Water Productivity (WP) is a performance indicator that can be used for 
monitoring, evaluating, and diagnosing agricultural water management practices; the 
concept is described in detail in the technical manual developed through this project (IHE 
Delft and IWMI, 2020). 

 
38. WP focuses on the consumed water; the water productivity of agricultural activities 
can be quantified on the basis of crop yield harvested and net water consumed.  Remote 
Sensing (RS) based assessment of WP focuses on actual evapotranspiration (ETa) to 
estimate net water consumption. IHE Delft and IWMI, through discussions with ADB, have 
agreed to use the pySEBAL tool for this purpose. 

 
39. pySEBAL is a library of python codes used to implement the Surface Energy 
Balance Model (SEBAL) from spatial data including spectral reflectances, climatic 
parameters, and altitude as inputs to estimate the surface energy balance components 
(Bastiaanssen et al., 1998a, 1998b). The outputs include parameters related to the energy 
balance, vegetation and biomass, the ET, and WP. 
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C. pySEBAL Implementation 

40. SEBAL is a single-source model that uses visible, near-infrared and thermal 
infrared data collected mainly by sensors on board earth observation satellites 
(Bastiaanssen, 2000). SEBAL has the advantage over conventional methods of estimating 
ET from crop coefficient curves or vegetation indices in that crop development stages do 
not need to be known, nor do specific crop types.  

1. Data inputs 

41. A full specification of data requirements for the PySEBAL model are detailed in 
IHE-Delft and IWMI (2020).  Only data which are specific to the current analysis are 
discussed further. 

 
42. Spectral radiances in the visible, infra-red and thermal range of the 
electromagnetic spectrum are the main input to the SEBAL model. Data from the Landsat 
satellites are typically used as inputs to pySEBAL; the high spatial resolution (30m) of the 
data provides sufficient detail to characterize the spatial patterns of biomass production 
and water deficits across the command area, and the revisit time of 16 days can, under 
cloud free conditions, provide sufficient coverage of an irrigation season. 

 
43. Four Landsat images from three consecutive paths (see Figure 1) and three rows 
are needed to cover the entire area of the four basins: Mi Oya, Deduru Oya, Kirindi Oya 
and Menik Ganga. The data are available for download at no cost from the USGS Earth 
Explorer website (https://earthexplorer.usgs.gov/).  

 
44. A total of 337 Landsat 8 images were downloaded and processed for a five-year 
period (2014-2018; see Annex A for image details and Table 1  for summary). Images with 
a threshold of less than 75% cloud cover on land were downloaded and further interpreted 
to ensure the images with low cloud cover had usable data over the selected basins.  

 
45. Acquiring cloud free images during each month with only a single satellite 
overpass in every 16 days is a challenge (Landsat 7 data are not available for Sri Lanka). 
Therefore, only Landsat 8 are available for the analysis, and consequently, it was 
necessary to include images with higher than the usually acceptable cloud cover amounts. 
A list of the selected images for this study with the information on cloud cover and the image 
viewer link is provided in Annex A. In some of the months (May, June and July in 2015 and 
2016) no usable images were available during the growing season due to cloud cover. 

 
46. Cloud cover over the period of analysis is summarized in Figure 6 for the Maha 
and Yala seasons over the period 2014-2018. Table 2 presents the number of images 
available over each growing season for the four priority basins. On average, there are 15 
to 17 images available for analysis each season, except for the Yala season of 2015 and 
2016, where 10 or less images were available in all basins. It is important to note that none 
of the images were cloud free with cloud cover of 30% typically observed for each season 
in every basin. 
47.   
 

https://earthexplorer.usgs.gov/
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Table 1 : Average monthly cloud cover percentages for Landsat 8 images over the four 
basins.  

 2014 2015 2016 2017 2018 
Jan 39.34 28.67 24.30 22.20 63.59 
Feb 14.85 49.81 19.91 71.30 25.61 
Mar 19.48 46.64 15.91 39.28 19.78 
Apr 28.01 20.88 39.24 15.83 45.14 
May 36.12 72.02 38.91 66.62 48.13 
Jun 46.80 73.99 73.65 41.32 52.60 
Jul 46.05 44.72 46.29 39.95 68.78 
Aug 84.42 47.22 50.98 42.92 48.03 
Sep 65.22 55.83 48.90 70.97 32.32 
Oct 50.21 52.71 34.28 47.66 53.45 
Nov 90.41 56.56 52.73 56.83 26.68 
Dec 83.04 69.58 40.98 27.27 25.52 

 
 

Table 2: Number of partially clouded images used for each basin and each season.  

Maha Season Mi Oya Deduru Oya Kirindi Oya Menik Ganga 
2014 15 15 16 16 
2015 16 16 17 17 
2016 17 17 17 17 
2017 18 18 17 17 

Yala Season 
2014 18 18 15 15 
2015 9 9 10 10 
2016 9 9 8 8 
2017 18 18 15 15 
2018 17 17 15 15 

 
 



12 
 

 

 



13 
 

 

 

Figure 6: Cloud cover percentage during Maha and Yala growing seasons for the two 
northern (Mi Oya and Deduru Oya), and the two southern (Kirindi Oya and Menik Ganga) 
river basins 
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48. A time-series of meteorological parameters are required to implement the 
pySEBAL model; these are needed to calculate the soil water balance and Penman 
Monteith Standard Reference Evapotranspiration (see IHE Delft and IWMI (2020) for full 
details).  

 
49. Instantaneous (hourly) and daily average data from the NASA Global Land Data 
Assimilation System (GLDAS v2.1; https://ldas.gsfc.nasa.gov/gldas) were acquired for the 
command areas and used as input to the pySEBAL model.  GLDAS is an assimilated global 
data product from satellite and ground-based observations, with data available at 0.25-
degree spatial resolution and at 3 hourly intervals. The parameters used are listed in Table 
3.  

Table 3: Meteorological data inputs to the PySEBAL model 

Parameter Symbols Unit 
Downward shortwave radiation SWdown W/m2 
Wind speed Ws m/s 
Air temperature Tair °C 
Pressure P Mb 
Relative humidity Rh % 

 

50. A Land use/land cover (LULC) map or a map depicting the location of irrigated 
areas, or boundaries of the irrigation systems, is needed to ensure that the analysis is 
limited to the relevant areas. As no recent or high resolution LULC map was available for 
the study area, a previously generated irrigated area map (IWMI 2013) was used to identify 
the areas of irrigated single, double and continuous/three cropping regions (Figure 7) for 
further analysis.  
 
51. According to this map the greatest areas of double cropped land are located in 
the Kirindi Oya Ganga (left basin, left panel of Figure 7), downstream of the large reservoir 
in the south of the basin. The Menik Ganga basin (right hand basin, left panel) has mostly 
single cropped land with some rain fed areas. Similarly, in the Mi Oya basin (top basin, right 
panel of Figure 7) irrigated single cropping is the dominant irrigated system, and rain fed 
areas are also extensive.  The Deduru Oya basin (lower basin, right panel) has more 
irrigated area under double cropping situated closer to the water channels.  

 
52. Following the collection and preparation of the various input datasets, the 
pySEBAL model was implemented according to the steps shown in Figure 8. The acquired 
Landsat 8 data was pre-processed to create cloud masked Top of Atmosphere (TOA) 
reflectance. The pre-processing included conversion from Digital Number (DN) to TOA 
reflectance, cloud removal using the Quality Assessment (QA) band provided along with 
the data, and mosaicking the same image path tiles. These pre-processing steps (Steps 1 
and 2, Figure 8) are performed inside pySEBAL.  
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Figure 7: Map of irrigated areas for the four basins (Left panel Kirindi Oya and Menik Ganga, 
right panel Mi Oya and Deduru Oya; Source: IWMI 2013).  

 
 

 
Figure 8: The pySEBAL methodological framework (Source: IHE Delft and IWMI, 2020). 

 
2. Cloud masking and gap filling 

53. The pySEBAL approach is dependent on the availability of cloud free satellite 
images of the land surface during the period of interest for the selected project sites. While 
the Landsat satellites data archive is one of the most useful data products to monitor the 
Earth’s surface at a high spatial resolution, given the temporal coverage of 16-day, the 
degree and extent of cloud coverage is always a challenge and will vary from region to 
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region.  Due to the proximity to the coast and the monsoon climate, the irrigated areas in 
the four basins show a high degree of cloud cover throughout the year.  

 
54. The images selected for analysis still contain cloud cover of varying amounts (see 
Table 1 , Figure 6). In the standard pySEBAL implementation, areas covered by clouds are 
identified, masked out and subsequently filled using a linear interpolation algorithm. While 
this is a suitable approach for land cover classes which are relatively static between 
consecutive image dates (e.g. forests), using a linear interpolation algorithm can result in 
inaccurate estimation of ETa. This is due to the fact that the cloud-free image acquisition 
dates could be 32 days apart, or more in Sri Lanka where cloud cover is common during 
the cropping season. Moreover, some rain events may occur in between satellite images, 
the effects of which are not recorded in a subsequent image, and therefore those 
evaporation amounts are not fully accounted for. Hence, linear interpolation does not 
suitably capture the effect of vegetation growth following the last image and does not reflect 
for any antecedent soil moisture (Irmak et al., 2012).  

 
55. We therefore applied an approach to the crop coefficient (“kc”) image obtained 
from pySEBAL; the approach uses the pySEBAL cloud mask image, and adds an extra 
processing step. The gaps in the kc image following the cloud masking are filled using a 
linear, time-weighted interpolation of the kc values from the previous image and the nearest 
following satellite image date which has a valid kc estimate, adjusted for vegetation 
development. In gap filling procedure, the interpolated values for the clouded and cloud-
shadowed areas are adjusted for differences in residual soil moisture between the image 
dates which occur as a result of heterogeneities in precipitation (for example localized 
showers) in inverse proportion to the Normalised Difference Vegetation Index (NDVI), and 
by adding an interpolated ‘basal’ kc from the previous and following satellite image dates. 
The procedure is explained in detail in Irmak et. al., (2012).   

3. Water Deficits and Biomass Production 

56. The ET deficit is an essential performance parameter that is output from the 
pySEBAL approach. The ET deficit is calculated as the ratio of the potential 
evapotranspiration (ETmax) which represents the water unlimited ET during crop 
development, and the actual (measured ET; ETa). The ET deficit is a direct expression for 
any water shortage the crop is experiencing on a pixel by pixel basis, and it can help to 
assess (without any further information on canal flows) whether the crop has sufficient 
moisture in the root zone.  This information is useful in understanding and interpreting 
irrigation performance across a command area. 
 
57. Through discussions with ADB, the ET deficit was normalised (i.e. so that the 
values varied between 0 and 1, where 0 indicates no deficit and 1 indicates high deficit) 
and referred to as a “Relative Water Deficit” (RWD). The RWD was calculated according to 
Equation 1 where ETa/ETmax is the ratio of the actual ET (based on the satellite images 
and derived through the pySEBAL model; see IHE Delft and IWMI 2020 for full details) to 
the maximum evapotranspiration).   



17 
 

𝑅𝑅𝑅𝑅𝑅𝑅 = (1 − �
𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
�) 

Equation 1 

58. The Relative Water deficit (RWD) index can be used to identify the areas that 
suffer the most from lack of irrigation water availability and access, as it broadly shows 
where irrigation water has been insufficient to meet the crop water requirement (Steduto et 
al., 2012); assessment of the RWD can provide insights into deficit conditions across the 
command area for a particular crop (in this case paddy rice), over a particular season (in 
this case the Maha and the Yala seasons).  The RWD often correlates with other 
biophysical parameters such as biomass and ETa. For example, regions with high RWD 
translate to low crop biomass production, which in turn gives an indication of the areas 
where there are yield losses due to limited water supply.  
 
59. The second parameter calculated from the remote sensing data is the Above 
Ground Biomass Production (AGBP).  The calculation of AGBP is primarily based on the 
relationship between the absorbed light and carbon assimilation by the plant. This 
relationship in most plants is relatively constant. This ratio, termed light use efficiency, is 
used to convert remote sensing-based estimations of light absorption to gross primary 
productivity (GPP).  Consequently, the net primary productivity (NPP) is calculated after 
subtraction of carbon lost to autotrophic respiration (AR) from the GPP. NPP is then used 
to estimate dry biomass production using a conversion factor from organic carbon to dry 
organic biomass. The AGBP is an output from the pySEBAL approach, and full details of 
the algorithms and inputs used to calculate this and related parameters can be found in 
IHE Delft and IWMI (2020). 

D. Presentation of Results 
 

1. Analysis of irrigated crop phenology  

60. The objective of the 25 basin phenology analysis was to help in selecting 
additional/follow on basins for investment.  The analysis of the NDVI time series for the 
irrigated pixels across the 25 basins broadly demonstrates either a unimodal, or a bimodal 
phenology curve, corresponding to one or two irrigation seasons, the Yala (April to August) 
and/or the Maha (October to March) respectively.  A high year-to-year variability in the 
monthly NDVI estimates and cropping seasonality is also evident, which indicates that 
vegetation growth varies from year to year. 
 
61. The NDVI phenology curves for most of the basins (and for most of the years) 
demonstrate a clear distinction between both the seasons following the example given in 
Figure 5. However, some basins show exceptions.  For example, the time-series of the 
NDVI from an irrigated field in the Mi Oya basin (Figure 9) lacks a clear separation between 
the end of the Maha and the beginning of the Yala seasons (which would be identified 
through the decrease in NDVI to the season start level, enabling the end of the season to 
be detected) is absent, as the start of the Yala season immediately follows the end of the 
Maha season. In these cases, the inter-season NDVI between Maha–Yala is only indicated 
by a small dip in the curve. 
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Figure 9: Mean NDVI time-series for the Mi Oya basin (2000-2018) showing the Maha and 
Yala cropping seasons separated by an insignificant change in NDVI profile, thus 
representing an unimodal curve. 

 
62. In comparison, a clear distinction can be seen between the end of the Yala season 
and the beginning of the subsequent Maha season as NDVI drops down to values lower 
than 0.3.  Similar trends can be seen in basins such as Maha Oya, Katupila Ara, Malala 
Oya, Manik Ganga, Kirindi Oya, Kalagaam Aru, Deduru Oya, Walawe Ganga, Kurunde Ara 
and Karambalan Oya (see Figure 1 for basin locations). 

 

 
Figure 10. Mean NDVI profile in Karanda Oya Basin showing absence of distinct seasonal 
changes in NDVI. 

 
63. Of the 25 basins, some basins, such as the Karanda Oya (Figure 10) do not show 
distinct seasonal changes in the NDVI, where end of the season NDVI does not decrease 
below 0.5. This may be due to the presence of continuous tree cover around the irrigated 
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areas as shown in Figure 11 below. This results in the signal for the irrigated areas being 
“diluted” with the relatively constant high NDVI from the surrounding forest. 
 

 
Figure 11. Presence of tree cover in and around irrigated fields in the Karanda Oya basin. 
The grid represents the 250 m irrigated pixels. The location of Karanda Oya basin is shown 
in the left panel in cyan; the black dot indicates the location of the grids.  

 
64. To understand the trends in the irrigated crop phenology parameters, we analyzed 
the start of the season (SOS), end of the season (EOS), and length of the season (LOS) 
parameters for all of the 25 basins. Figure 12 shows the SOS, EOS and LOS presented as 
the deviation from the long-term mean for the Kirindi Oya basin. The results indicate that 
the SOS dates show less year-to-year variability, while the EOS and LOS both showed 
higher variability, suggesting that while the start of the season is relatively constant over 
the 18-year time period, the length of the growing season and thus the end of the season 
are much more variable.  
 
65. The LOS was found to be around 20 days shorter prior to 2010 compared to the 
long-term mean. During this decade (2000-2010), the cropping season ended earlier. Since 
2010, the data show that the irrigation season ended later, resulting in an extension to the 
length of the growing season by approximately a month during the more recent years. Other 
basins showed a similar trend in the LOS parameter. 
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Figure 12: Deviation from the mean for each of the crop phenology parameters analysed: 
Start of season (SOS), End of season (EOS) and Length of season (LOS) for the cropping 
seasons (Maha + Yala) in the Kirindi Oya basin, Sri Lanka over the period 2000 – 2018. 

 
66. A comparison of the mean LOS for the irrigation seasons during more recent 
years (2010 onwards) against the pre-2010 mean, shows that since the year 2010 the LOS 
has extended up to 30 days.  The LOS data for each basin is presented in (Table 4). The 
observed extension in the length of the growing season in irrigated areas may have 
occurred as a result of divergent factors, and needs to be interpreted with caution. While 
increasing availability of irrigation water and improved agricultural practices (including an 
“interseason” crop) may be a factor, recent analysis has also highlighted an extended 
length of season as a result of recurrent droughts in Sri Lanka during the irrigation season 
(Abeysingha and Rajapaksha, 2020). 
 
67. In order to interpret the potential reasons for the extension in the LOS, a trend 
analysis has been performed on the NDVI for each basin; droughts (particularly when 
persistent) would appear as a reduced mean NDVI. Results of the trend analysis show that 
12 out of the 25 basins demonstrate a significant increase in NDVI over the 2000 – 2018 
period at 95% confidence interval (p-value < 0.05). These basins are identified in the last 
column of Table 4; for each of these it is unlikely that the extension the LOS is as a result 
of drought. 
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Table 4: Change in length of season (LOS) compared over pre-2010 and post-2010-time 
period and difference in LOS presented for each basin.  

 
Basin Average 

LOS (2000-
2010) 

Average 
LOS (2011-
2018) 

LOS 
extension 

NDVI 
trend 
increase 

Andella Oya 172 168 -4 Yes 
Maduru Oya 182 183 1 Yes 
Magalavatavan Aru 181 182 1 Yes 
Karanda Oya 191 194 3  
Katupila Ara 184 187 3  
Heda Oya 195 198 3  
Karambalan Oya 186 190 3  
Maha Oya 190 194 4 Yes 
Mundini Aru 179 184 5 Yes 
Kumbukkan Oya 204 211 7 Yes 
Gal Oya 182 190 8 Yes 
Wila Oya 194 203 9  
Kalagamu Aru 183 193 10  
Mi Oya 188 199 11  
Namadagas Ara 172 185 12  
Deduru Oya 190 202 12 Yes 
Rathambala Oya 173 186 13 Yes 
Kurunde Ara 167 180 13  
Kala Oya 189 205 16 Yes 
Bagura Oya 181 199 18  
Menik Ganga 214 234 20 Yes 
Pannala Oya 164 185 22  
Walawe Ganga 204 229 25 Yes 
Kirindi Oya 204 230 26  
Malala Oya 198 227 30  

Average 187 198 11  
 
 

2. Crop Water Consumption  

68. The pySEBAL based analysis (encompassing the estimation of Above Ground 
Biomass Production (AGBP), and water deficits) has been performed in this study to assist 
in the identification and prioritization of opportunities to improve the productive use of water 
through improved supply within the tank systems of selected basins in Sri Lanka.  
 
69. Seasonal water consumption during the Maha and Yala cropping seasons is 
presented in Figure 13 to Figure 16. These seasonal ETa calculations are based on the 
cloud free pixels available within each Landsat tile; for the four priority basins cloud cover 
was persistent during the seasons analyzed (Table 1). It does not include spatial gap filling 
for the cloud masked areas. Therefore, ETa values may seem lower than expected in 
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seasonal aggregates, because multiple times within a season the pixels might have been 
cloud covered and masked out. Moreover, due to the unavailability of cloud free images 
during the Maha 2018 and the Yala 2015 and 2016 seasons (see Table 2), it was not 
possible to perform the analysis for these years. While the actual values should thus be 
treated with caution, the data still provide a spatial overview of relative differences between 
locations, as well as broad seasonal patterns.  
 
70. Analysis of the data across all four basins highlights a few key points; i) the rainfed 
cropping region demonstrates a higher seasonal ETa consistently during the Maha season 
when compared to the Yala (dry) season, ii) the double cropping areas (Figure 7) had 
consistently higher seasonal Eta, iii) the Maha season of 2015 had higher mean ETa than 
other years, iv) the Maha seasons of 2017 had lower mean ETa than other years, v) the 
Yala season demonstrates greater variability in ETa between years as compared to the 
Maha season. 
 
71. In addition, examining the four basins individually highlights that: i) the 2014 and 
2015 Maha season demonstrated higher seasonal ETa in both the Mi Oya and Deduru Oya 
basins across all cropping systems, while the 2017 Maha season demonstrated lower 
seasonal ETa for irrigated areas in these basins, and ii) the 2017 Yala season had lower 
seasonal ETa across the Mi Oya and Deduru Oya basins.  

 

 
Figure 13: Spatiotemporal distribution of seasonal ETa during the Maha season in the Mi 
Oya and Deduru Oya. 
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Figure 14: Spatiotemporal distribution of seasonal ETa during the Yala seasons in Mi Oya 
and Deduru Oya. 

 
Figure 15: Spatiotemporal distribution of seasonal ETa during Maha season in Kirindi Oya 
and Menik Ganga. 
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Figure 16: Spatiotemporal distribution of ETa during the Yala season in the Kirindi Oya and 
Menik Ganga. 
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3. Relative Water Deficit 

72. In order to interpret the spatial distribution of water deficits across the command 
areas, maps showing the frequency with which a pixel experienced different levels of water 
deficits (mapped as percentage of deficit days over the Maha and Yala seasons based on 
the RWD index) are displayed in Figure 17 to Figure 20 for the Mi Oya and Deduru Oya, 
and the Kirindi Oya and Menik Ganga respectively. The colour indicates the percentage of 
time a given pixel was deficit.  
 

 

Figure 17: Frequency of water deficits in irrigated areas during the Maha season each year 
in Mi Oya (top basin) and Deduru Oya (bottom basin).  

73. Varying levels of deficit from low, to high, are evident across each basin and each 
year during the Maha season (Figure 17). It should be noted that for 2018 the data does 
not cover the entire season as the analysis was only conducted for the first half until January 
2019, due to data availability. Hence while useful for identifying spatial patterns, the data 
should not be compared to the previous years. 
 
74. In both the Mi Oya and Duduru Oya higher deficits are evident at the lower end of 
the basin (the portions in the west near the coast) for all years except 2016.  This pattern 
is also evident during the drier Yala season (Figure 18). In contrast to the Maha season, 
more persistent deficits are evident during the Yala season, both spatially and temporally.  
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Figure 18: Frequency of water deficits in irrigated areas during the Yala season each year 
in Mi Oya (top basin) and Deduru Oya (bottom basin). 

75. The Kirindi Oya and Menik Ganga basins exhibit more spatially distinct clusters 
of longer and shorter deficits (Figure 19) than the northern basins.  This is likely due to the 
different nature of the irrigated areas and cropping systems in these basins (see Figure 7) 
and well as the fact that these two basins are affected by a different monsoon weather 
pattern than the northern basins. The irrigated double crop regions in the Kirindi Oya (left 
basin Figure 19),  typically demonstrates lower deficits than the irrigated areas in the rest 
of the basins. In general, less persistent deficits are observed in 2016 and 2017. 
 
76. Overall, both the Kirindi Oya and Menik Ganga exhibit higher deficits during the 
Yala season (Figure 20) when compared to the Maha season (Figure 19).  Following the 
rainfall distribution, water stress is likely to be highest during the later part of the Yala 
season (the months of June, July and August). However, given the cloud cover challenges 
the results are only available for the entire season, rather than monthly, so it is not possible 
to separate out sections of the season. Within the basins, as with the Maha season, the 
deficits vary spatially with the irrigated areas in the lower portion of the Kirindi Oya basin 
(which are located south of a large reservoir) demonstrating less persistence deficits than 
the rest of the irrigated areas. The 2016 Yala season exhibited extreme deficit across the 
entire basin; this was a drought year. 
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Figure 19: Frequency of water deficits in irrigated areas during the Maha season each 
year in Kirindi Oya (left basin) and Menik Ganga (right basin) 

 
Figure 20: Frequency of water deficits in irrigated areas during the Yala season each year 
in Kirindi Oya (left basin) and Menik Ganga (right basin). 
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4. Above Ground Biomass Production 

77. AGBP summaries for the Maha season are displayed in Table 5 for irrigated areas 
in all four basins. These data demonstrate that during the Maha season the AGBP was 
variable across the basins, with the northern basins (Mi Oya and Deduru Oya) exhibiting 
higher values for the first 3 years. All four basins show an increasing trend in production 
over the Maha season over the four-year period, with mean AGBP values increasing 
between 2014 and 2017. While increases occur in all basins, they are largest for the two 
southern basins, Kirindi Oya and Menik Ganga; by 2017 all basins show similar mean 
AGBP in the order of 11,000 kg/ha. 

Table 5: Mean AGBP in kg/ha for irrigated areas within each basin for the Maha season 

 
 

 
 
 
 

 
Table 6: Mean AGBP in kg/ha for irrigated areas within each basin for the Yala season 

Yala Mi Oya Deduru Oya Kirindi Oya Menik Ganga 

2014 5,766 6,516 5,016 5,582 
2015 9,757 10,484 8,392 8,914 
2016 9,699 9,813 6,798 6,577 
2017 9,690 9,450 7,397 6,471 
2018 8,382 9,099 9,552 9,700 

 
 
78. AGBP summaries for the drier Yala season (Table 6) demonstrate i) considerably 
lower production values than during the Maha season, and ii) greater variability from year 
to year across all four basins.  These results are expected given the greater dependency 
on irrigation water during the Yala season. 
 
79. The AGBP across the irrigated areas of the four basins ranges from a minimum 
of 5,016 kg/ha during the Yala season, to a maximum of 12,806 kg/ha during the Maha 
season. In general, the Deduru Oya had higher AGBP estimates and the Kirindi Oya and 
Menik Ganga had lower AGBP estimates; these findings are in line with the FAO reported 
mean rice yields from the districts within these basins during the Maha and Yala seasons 
(FAO 2020).  
 
80. The spatial distribution of the AGBP data are shown in Figure 21 Figure 24. It 
should be noted that for 2018 the AGBP does not cover the entire Maha season as the 
analysis was only conducted for the first half until January 2019, due to data availability. 

Maha Mi Oya Deduru Oya Kirindi Oya Menik Ganga 

2014 10,816 11,168 8,915 9,230 
2015 10,228 11,685 9,892 9,449 
2016 10,488 11,806 9,652 9,020 
2017 11,936 11,858 11,879 11,340 



29 
 

Hence while useful for identifying spatial patterns, the data should not be compared to the 
previous years. 

 
81. For the northern basins (Mi Oya and Deduru Oya), the locations with higher values 
(>10,000 kg/ha) are typically located in the irrigated double cropped areas in Figure 7. This 
is particularly evident in the Deduru Oya basin (Figure 21 and Figure 22) during both 
seasons. In these basins, 2017 demonstrates higher AGBP values than other years. 

 
82. For the southern basins Kirindi Oya and Menik Ganga (Figure 23 and Figure 24), 
the highest values are also typically located in the irrigated double cropped areas in Figure 
7. In particular, the areas in the lower Kirindi Oya basin, downstream of a large reservoir 
have consistently higher values than other irrigation areas. 

 
Figure 21: AGBP (kg/ha) for the Maha Season in irrigated areas within the Mi Oya (top 
basin) and Deduru Oya (bottom basin).  



30 
 

 
Figure 22: AGBP (kg/ha) estimates for the Yala Season in the irrigated areas of the Mi Oya 
(top basin) and Deduru Oya (bottom basin). 
 

 
Figure 23: AGBP (kg/ha) for the Maha season in irrigated areas of the Kirindi Oya and 
Menik Ganga. 
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Figure 24: AGBP (kg/ha) for the Yala Season in the irrigated areas of the Kirindi Oya and 
Menik Ganga. 
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V. SUMMARY AND KEY FINDINGS 

83. In this study, remote sensing techniques have been used to undertake two levels 
of analysis: 1) lower spatial resolution data has been analyzed over a long time period (18 
years, 2000-2018) across 25 river basins to characterise changes and trends in crop 
phenology, and 2) higher spatial resolution data has been used over a shorter time period 
(5 years, 2014-2018) across 4 priority river basins to estimate and analyse the water 
consumed and plant biomass produced. The objective of first level of analysis is intended 
to support the selection and planning of follow-on river basins, while the objective of the 
second, more detailed assessment to inform the selection of sub projects within the four 
priority basins for investment.   
 
84. This report has presented the modelling approach and input data used, and 
presented the key outputs. A second report (Part B) interprets the results further to meet 
the second objective. To this end, the data presented in Part A (this report) will be further 
analyzed against the location of tanks and reservoirs, in order to support the selection of 
irrigation infrastructure for improvement in part B. Part B investigates potential approaches 
to link the location of small tank cascades as well as medium and large systems to the 
water deficit outputs. 

 
85. A large number (337) of Landsat images have been processed for the purpose of 
this report using the pySEBAL approach. The frequent monsoonal and convectional rainfall 
events over the island of Sri Lanka has presented a challenge in the acquisition of cloud 
free images, necessitating the use of images with higher than normally acceptable cloud 
cover. The results thus need to be used with caution, and analyzed in terms of the relative 
patterns and extremes presented in the spatial and temporal variables, rather than the 
specific values. 
  
86. The crop phenology analysis over the full irrigation cropping season (Maha + 
Yala) over the time period 2000-2018 highlighted several interesting results. The Maha 
irrigation season started consistently (around mid-October) during the 18-year period, 
demonstrating low year-to-year variability and no changing trend. However, the end of the 
season (Yala) was observed to occur around August but demonstrated high variability. 
Subsequently, a high variability was observed in the total length of the combined Maha and 
Yala seasons, with an increase in the cropping season by, on average, 11 days over the 
18-year period and across all areas. On average, the total length of the irrigation seasons 
was found to gradually increase since 2010.  

 
87. Out of the 25 river basins, 8 basins (Kalagamu Aru, Mi Oya, Namadagas Ara, 
Deduru Oya, Rathambala Oya, Kurunde Ara, Kala Oya and Bagura Oya) demonstrated an 
increase in the LOS of up between 10 and 20 days. 

 
88. Further to this, out of the 25 river basins, 5 basins (Menik Ganga, Pannala Oya, 
Walawe Ganga, Kirinidi Oya, and Malala Oya) demonstrated an increase in the LOS of 
greater than 20 days. 
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89. The observed extension in the length of the growing season in irrigated areas may 
have occurred as a result of divergent factors, and needs to be interpreted with caution. 
While increasing availability of irrigation water and improved agricultural practices 
(including an “interseason” crop) may be a factor, recent analysis has also highlighted an 
extended length of season as a result of recurrent droughts in Sri Lanka during the irrigation 
season (Abeysingha and Rajapaksha, 2020). The above results should thus be used as a 
starting point to guide further assessments. 
 
90. The trend in the NDVI over 2000-2018 was assessed to determine if the extension 
in LOS was due to drought or other factors. Based on this, 13 river basins are identified 
where the LOS either remained the same, or the LOS increased but there was no significant 
increasing trend in the NDVI. These include Karanda Oya, Katupila Ara, Heda Oya, 
Karambalan Oya, Wila Oya, Kalagamu Aru, Mi Oya, Namadagas Ara, Kurunde Ara, Bagura 
Oya, Pannala Oya, Kirinidi Oya, and Malala Oya. These basins may be ranked a higher 
priority for further assessment and potential investment. 

 
91. The data on water deficits for the priority basins shows that in for the northern 
basins, both the Mi Oya and Deduru Oya exhibit higher deficits in the lower end of the basin 
(the portions in the west near the coast) for all years except 2016.  This pattern is also 
evident during the drier Yala season.  In addition, in contrast to the Maha season, more 
persistent deficits are evident during the Yala season, both spatially and temporally. 

 
92. The two southern basins, Kirindi Oya and Menik Ganga, exhibit more spatially 
distinct clusters of longer and shorter deficits than the northern basins.  This is likely due to 
the different nature of the irrigated areas and cropping systems in these basins as well as 
the fact that these two basins are affected by a different monsoon weather pattern. The 
irrigated double crop regions in the Kirindi Oya typically demonstrates lower deficits than 
the irrigated areas in the rest of the basin. In general, less persistent deficits are observed 
in 2016 and 2017. 
 
93. Overall, both the Kirindi Oya and Menik Ganga exhibit higher deficits during the 
Yala season when compared to the Maha season, although the deficits vary spatially with 
the irrigated areas in the lower portion of the Kirindi Oya basin (located south of a large 
reservoir) demonstrating less persistent deficits than the rest of the irrigated areas. The 
2016 Yala season exhibited extreme deficit across the entire basin; this was a drought year. 
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