Measuring the Security Harm of TLS Crypto Shortcuts

Drew Springall, Zakir Durumeric, and J. Alex Halderman University of Michigan

1

TLS on the Internet

2

Recent TLS Vulnerabilities

FREAK
Logjam/WeakDH
DROWN
CRIME/BREACH
BEAST
POODLE

Heartbleed

Allowed 64k memory disclosure
Including SSL private key
Allowed Man-in-the-Middle attack
Allowed retrospective decryption attacks

Exposure Window (Non-Forward Secret)

Exposure Window (Forward Secret)

6

Crypto Shortcuts

Session ID Resumption
Session Ticket Resumption
(EC)DHE Value Reuse

Session ID Resumption (Initial Connection)

Session ID Resumption (Initial Connection)

Session ID Resumption

◆ Session ID: database key for the server's cache

Client and Server store Data

♦ Session ID \rightarrow Session State (Cipher, Session keys)

◆ Server blindly determines the cache lifetime

Session ID Resumption

1111: •••••

Client

Server

Negotiate Parameters

Session ID: 1111

Session ID Resumption

1111: •

Client

Server

Negotiate Parameters

Session ID: 1111

Establish Shared Secret

Application Data

1111: ••••• 2222: •••• 3333: •• • •

Session Ticket Resumption (Initial Connection)

Session Ticket Resumption (Initial Connection)

Server

Client

Server

Negotiate Parameters

21

Client

Negotiate Parameters

Server

Client

Negotiate Parameters

Server

Client

Negotiate Parameters

Server

Client

Negotiate Parameters

Server

Session Ticket Resumption

◆ Ticket is encrypted/authenticated session state
◆ Client stores Domain→Session State + Session Ticket
◆ Server stores Session Ticket Encryption Key (STEK)

Session Ticket Resumption

Client #1

Client #2

Client #3

Client #n

Client

Negotiate Parameters

Server

(EC)DHE Key Exchange

Application Data

Client

Client #1 📂

Client #2 📂

Client #3 📂

Client #n 芦

Negotiate Parameters

Server

(EC)DHE Key Exchange

Application Data

◆ Not a resumption technique

 \blacklozenge Saves computing g^a or D_aG for each connection

Client

Client #1 📂

Client #2 📂

Client #3 📂

Client #n 📂

Negotiate Parameters

Server

(EC)DHE Key Exchange

Application Data

Methodology

9-week time period in Spring 2016
Used modified ZMap/ZGrab toolchain
Re-used scans from Censys project whenever available
Focused on Alexa Top Million domains

Alexa Top Million

1,527,644 unique domains over 9-weeks
539,546 remained in Top Million for entire period
369,034 ever supported HTTPS
291,643 presented a browser trusted SSL certificate
288,252 issued a session ticket, completed an (EC)DHE

KEX, or resumed a session
Measuring Longevity

Calendar

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
		А	В	А	В	В
В	A	A	В	A	В	В
В	A	A	В	Α	В	В
В	А	А				

37

◆ TLS on the Internet ♦ Background ♦ Methodology Longevity Study ♦ Sharing Study ♦ Nation-State Perspective ♦ Conclusions

(EC)DHE Value Longevity

Daily scans of Alexa Top Million
 DHE-only ciphers
 Golang ciphers (ECDHE preferred)

 Use the DH public value to determine when DH private value changes

(EC)DHE Value Longevity

Max span of a server KEX(in days)

(EC)DHE Value Longevity

DHE

ECDHE

Rank	Domain #	# Days
31	netflix.com	59
53	fc2.com	18
392	ebay.in	7
456	ebay.it	8
528	bleacherreport.c	om 24
580	kayak.com	13
592	cbssports.com	60
626	gamefaqs.com	12
633	overstock.com	17
730	cookpad.com	63

Rank Domain		# Days	
31	netflix.com	59	
74	whatsapp.com	62	
158	vice.com	26	
221	9gag.com	31	
322	liputan6.com	28	
353	paytm.com	27	
464	playstation.con	n 11	
527	woot.com	62	
528	bleacherreport.com	n 24	
615	leagueoflegends.co	m 27	

Session Cache Longevity

◆ Connect to domain

♦ Store Session ID \rightarrow Session State

♦ Attempt to resume session 1-second later (check validity)

♦ Attempt to resume session every 5-minutes

Continue until domain fails to resume or 24-hour passes

Session Cache Longevity

Max successful resumption delay (in minutes)

Session Ticket Longevity

♦ Connect to domain with Session Ticket extension
♦ Store Session Ticket → Session State
♦ Attempt to resume session 1-second later (check validity)
♦ Attempt to resume session every 5-minutes
♦ Continue until domain fails to resume or 24-hour passes

Session Ticket Longevity

Max successful resumption delay (in minutes)

STEK Longevity

Daily scans of Alexa Top Million
 Parse the ticket to extract the Key Identifier
 Maintain {domain: {key_id:[dates seen]}}

STEK Longevity

Max span of a STEK (in days)

STEK Lifetime

Rank	Domain	# Days	Rank	Domain	# Days
5	yahoo.com	63	31	netflix.com	54
19	qq.com	56	35	imgur.com	63
20	taobao.com	63	41	tmall.com	63
21	pinterest.com	n 63	53	fc2.com	18
28	yandex.ru	63	55	pornhub.com	a 29

* 63 days means used the same STEK on the first and last day of our study

Overall Exposure Window

◆ TLS on the Internet ♦ Background ♦ Methodology ◆ Longevity Study Sharing Study ♦ Nation-State Perspective ♦ Conclusions

(EC)DHE Value Sharing

 \diamond 10 connections to each Alexa Top Million domain

Group all domains that share at least one (EC)DHE value into a "service group"

(EC)DHE Value Sharing

.

Operator	# domains	Operator	# domains
SquareSpace	1,627	Atypon	167
LiveJournal	1,330	Affinity Internet	146
Jimdo #1	179	Line Corp.	114
Jimdo #2	178	Digital Insight	98
Distil Networks	174	EdgeCast CDN	75

Table 7: Largest Diffie-Hellman Service Groups

STEK Sharing

◆ 10 connections to each Alexa Top Million domain

 Group all domains that share at least one STEK ID value into a "service group"

STEK Sharing

-

Operator	# domains	Operator	# domains
CloudFlare	62,176	GoDaddy	1,875
Google	8,973	Amazon	1,495
Automattic	4,182	Tumblr #1	975
TMall	3,305	Tumblr #2	959
Shopify	3,247	Tumblr #3	956

Table 6: Largest STEK Service Groups

Session Cache Sharing

 \diamond No information available to client to determine directly \blacklozenge Complete probing is intractable (n² connections) \blacklozenge Probe up to 5 domains on same AS and 5 on same IP \blacklozenge Acquire session S_a from domain D_a \blacklozenge Attempt to resume S_a on D_b • Successful resumption indicates cache is shared Grow the service group transitively \bullet If S_a is valid on D_b and S_b is valid on D_c, conclude that S_a would be valid on D_c

Session Cache Sharing

Operator	# domains	Operator	# domains
CloudFlare #1	30,163	Blogspot #2	743
CloudFlare #2	15,241	Blogspot #3	732
Automattic #1	2,247	Blogspot #4	648
Automattic #2	1,552	Shopify	593
Blogspot #1	849	Blogspot #5	561

Table 5: Largest Session Cache Service Groups

◆ TLS on the Internet ♦ Background ♦ Methodology ◆ Longevity Study ♦ Sharing Study Nation-State Perspective Conclusions \frown

STEK reuse (days)

30

Cloudflare 40,323 domains < 24 hour STEK usage

Fastly 489 domains 63 day STEK usage (max measured)

STEX rever (days)

39

STEK reuse (days)

30

♦ Asymmetric Attack

◆ Fewer resources expended than a per-connection attack

♦ Asymmetric Attack

◆ Fewer resources expended than a per-connection attack

◆ Leverage in-place passive collections systems and processes

Asymmetric Attack
 Fewer resources expended than a per-connection attack
 Leverage in-place passive collections systems and processes
 Can gain via legal compulsion

 LavaBit

Asymmetric Attack
Fewer resources expended than a per-connection attack
Leverage in-place passive collections systems and processes
Can gain via legal compulsion
LavaBit

◆ Attack a 3rd party

♦ Gemalto, Belgacom, Juniper show willingness

Target Analysis

Allows Decryption of:

Allows Decryption of:

Search and Results

Search and Results

Google Search I'm Feeling Lucky

Allows Decryption of:

Many TLDs

 \blacklozenge Search and Results

♦ Many TLDs

Allows Decryption of:

Webapp Traffic

Search and Results
Many TLDs
Webapp Traffic

Allows Decryption of:

Search and Results
Many TLDs
Webapp Traffic
Non-HTTPS Traffic

Non-HTTPS Traffic
SMTP + STARTTLS
SMTPS
IMAPS
POP3S
Usefulness of Google's STEK

Allows Decryption of:

Search and Results
Many TLDs
Webapp Traffic
Non-HTTPS Traffic
Google for Work

Google for Work

 Millions of companies who use Google's Infrastructure

◆ E-Mail, webapp, etc

Hypothetical Attack

Obtain STEK (via technical or legal means)
 28 hour lifetime (issues for 14 hours)
 Use passive collection systems to collect connections
 Use STEK + connection to decrypt content
 All Google & Google For Work domains

◆ TLS on the Internet ♦ Background ♦ Methodology ◆ Longevity Study ♦ Sharing Study ♦ Nation-State Perspective ♦ Conclusions

Conclusions

Conclusions

🔰 Home 🦸 Moments

Ivan Ristic

Author of SSL Labs. Wrote Bulletproof SSL and TLS and a couple of other computer security books. Also wrote ModSecurity.

iii Joined February 2009

MacLemon @MacLemon · 7 Apr 2014 @ivanristic Would traffic using PFS ciphers be vulnerable to restrospective decryption if the server is affected by CVE-2014-0160? Guess no? 13 8 11

@MacLemon It depends on what's in the memory block. Leaked ticket key would compromise all sessions it signed.

.

....

13

Have an account? Log in -

XQ

Conclusions

Security Community

- TLS caveats exist and are important to understand
- Caveats should be more clearly communicated to others

Server Administrators

- ♦ Use HTTP/2
- ◆ Rotate STEKs frequently
- Store, distribute, and erase secrets securely

Measuring the Security Harm of TLS Crypto Shortcuts

Drew Springall, Zakir Durumeric, and J. Alex Halderman University of Michigan