
Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

International Journal of Software Engineering
and Knowledge Engineering
Vol. 18, No. 1 (2008) 37–64
c© World Scientific Publishing Company

MEASUREMENT IN SOFTWARE ENGINEERING:

FROM THE ROADMAP TO THE CROSSROADS

CARLO GABRIEL PORTO BELLINI∗ and RITA DE CÁSSIA DE FARIA PEREIRA†

Universidade Federal da Paráıba at João Pessoa, Brazil
∗bellini@ccsa.ufpb.br

†ritacfpereira@ccsa.ufpb.br

JOÃO LUIZ BECKER

Universidade Federal do Rio Grande do Sul at Porto Alegre, Brazil

jlbecker@ea.ufrgs.br

Received 25 December 2005
Revised 2 September 2006

Accepted 30 November 2006

Research on software measurement can be organized around five key conceptual and
methodological issues: how to apply measurement theory to software, how to frame
software metrics, how to develop metrics, how to collect core measures, and how to an-
alyze measures. The subject is of special concern for the industry, which is interested
in improving practices — mainly in developing countries, where the software indus-
try represents an opportunity for growth and usually receives institutional support for
matching international quality standards. Academics are also in need of understanding
and developing more effective methods for managing the software process and assess-
ing the success of products and services, as a result of an enhanced awareness about
the emergency of aligning business processes and information systems. This paper un-
veils the fundamentals of measurement in software engineering and discusses current
issues and foreseeable trends for the subject. A literature review was performed within
major academic publications in the last decade, and findings suggest a sensible shift
of measurement interests towards managing the software process as a whole — without
losing from sight the customary focus on hard issues like algorithm efficiency and worker
productivity.

Keywords: Software measurement; software management; software engineering; measure-
ment theory; complexity; interpretive data; triangulation.

1. Introduction

Historically, companies devote little attention to performance criteria for projects

and product development processes [67]. Nevertheless, only through the continuous

identification and correction of detours can an organization stand on the com-

37

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

38 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

petitive edge [18]. In fact, what is correctly measured is correctly managed [43];

moreover, without constant measurement there is no process management, and,

with no process management, there are no improvements [5, 50]. In other words,

management needs measurement for being accurate, but measurement needs man-

agement for having purpose [22]. Additionally, managing and improving relate to

two broad processes: planning (the effective path towards a goal) and controlling

(the efficient path to it) [63].

However, projects with unstable requirements, like those of software, are hard

to manage [69]. In particular, software teams are usually assembled afresh for each

new project, hindering the development of a shared work history by its members

[42]. Moreover, programmers — unlike physicians and engineers, for instance — do

not have professional standards to follow [92], and this is likely to be a major source

of negative influence over the teams. Software teams indeed constitute a challenge

for management [19, 105], and a typical effect is late intervention in problematic

projects [69]. As a matter of fact, the software industry deploys only a few metrics

from the many available for controlling the development process and predicting

product features [84, 110].

With this in mind, our work tries to build a comprehensive view of software mea-

surement, which would lie behind software management. Software measurement has

its roots in debates on the efficiency of computer programs and the productivity of

programmers, but in recent years the field is heading steadily towards more man-

agerial issues. Such a trend — which can be framed as departing from a concern

on hard matters such as the complexity of software algorithms and moving to-

wards softer issues like managing projects involving multi-disciplinary professional

teams — mirrors influences the field has experienced from knowledge areas previ-

ously kept at a distance, like human resources management, marketing, organiza-

tional theories, and research methods.

This paper discusses sequentially the following: the procedures effected for the

systematic review on software measurement; the foundations of measurement the-

ory, inasmuch as this theory sets the grounds for any endeavor of planning and

control for the software process; the scope of software metrics, recent developments

on the subject, and the prevalent method for identifying metrics; common proce-

dures, current debates and presumable trends for collecting and analyzing mea-

sures; a comprehensive view of the software measurement field built on the topics

previously presented, which exert the greatest potential impact on academic and

industry practices; and finally, the exhortation that the research’s theoretical de-

velopments should be subsequently applied to the software industry in order to see

whether there is a match between the state of the art and the state of the practice

(a particular application within the Brazilian software industry is currently under

way), as well as whether one (art or practice) should precede the other.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 39

2. The Systematic Literature Review

Mapping out the current state of a knowledge field demands a sound methodological

effort that should include explicit research questions and quality criteria to be

used for selecting the sources of information (the primary studies) and the specific

concepts to be collected [73]. In this sense in our enterprise we first set the following

research questions:

• How have the main concept areas concerned with software measurement devel-

oped so far?

• What is being researched at the frontiers on software measurement?

• What are the implications for research and practice from the trends in software

measurement?

We started by searching for the areas of interest related to measurement in soft-

ware engineering — typically the discipline that deals with software measurement

[26] — for this relying mostly on the Guide to the Software Engineering Body of

Knowledge [1]. We thus claimed that discussing software measurement should ad-

dress the foundations in measurement theory, alternative methods to collect and

analyze core measures, the concept of software metrics, and how to identify met-

rics. From this initial set of concept areas, leading publications related to such areas

were selected (journals, books, and technical reports or guides; conference proceed-

ings were not included in the search, due to papers wherein being probably still

under construction) based on the opinion of experts and on known rankings within

the academic community (e.g., [68, 85]). Table 1 synthesizes the major theoretical

sources of information, in which searches followed a systematic routine.

The next step was to search the primary studies for works dealing with the

concept areas previously identified — whenever applicable (availability of jour-

nal issues), the search started in 1990. Additionally, main references within each

publication were occasionally researched, as well as other publications of the au-

thors whose works were reviewed. Aided by electronic search engines, we started

by looking for the expressions in Table 2 within the articles’ titles. Although these

expressions were preferred beforehand, a complete search in all articles was done

in order to possibly find similar expressions in the titles, as well as other concepts

not included in the original search — that served merely to assemble a minimum

set of relevant primary sources. Two of us were then assigned to reading the result-

ing set of articles after the relevance was confirmed from their abstracts and the

conclusions.

After the selection of the primary sources, we followed a “bottom-up” approach

to content analysis for building the categories of interest: the set of categories

was developed as the study unfolded from the primary sources, so we devised the

whole picture of software measurement only after concluding the readings. Although

bottom-up approaches may lead to fortuitous schemes [53], we had no better frame-

work upon which to develop the categorization; moreover, it was our very intent

to let the primary sources drive the research as independently as possible from our

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

40 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

Table 1. Sources for the systematic literature review.

Category Title

Journal ACM Transactions on Software Engineering and Methodology

Advances in Engineering Software

Communications of the AIS

Empirical Software Engineering

IEEE Transactions on Software Engineering

Industrial Management and Data Systems

Information and Management

Information and Organization

Information and Software Technology

Information Systems Journal

Information Systems Research

International Journal of Human-Computer Studies

International Journal of Technology Management

Journal of Management Information Systems

Journal of Systems and Software

Journal of Systems Management

Journal of the Operational Research Society

Management Science

Measurement

MIS Quarterly

Book Applying Software Metrics [87]

Essentials of Project and Systems Engineering Management [39]

Rethinking Management Information Systems [30]

Software Engineering [97]

Software Engineering [110]

Report/Guide Guide to the Software Engineering Body of Knowledge [1]

assumptions. The discussion of the sources and the categories that emerged are

presented in the following sections, organized around the five key areas for framing

software measurement.

3. Measurement in Software Engineering

Measurement is essential for science [34], and in organizations it serves to help man-

age by fact, not by feeling [33]. In software engineering, it still lacks consolidated

terminology, principles and methods [2, 103], but it is said to address processes,

products and resources [26] and to be useful for (1) nourishing visibility and under-

standing, (2) establishing the grounds for improvements, and (3) planning, monitor-

ing, and controlling processes, products and resources [95]. It is also well accepted

that software measurement activities include direct and indirect assessments, as well

as predictions [26, 44, 64, 110]. Table 3 illustrates software measurement interests.

Measuring software involves knowing how to deploy measurement theory. In fact,

this theory, a branch of applied mathematics [104] rooted in developments made

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 41

Table 2. Searches within the articles’ titles.

Expression Possible results (Examples)

“analy” “[data/measure] analysis”,“analyze”,“analytical”

“assess” “[software] assessment”,“assess”

“collect” “[data/measure] collection”,“collect”

“control” “[process] control”

“develop” “[software] development”,“develop”

“eff” “effectiveness”,“efficacy”,“efficiency”

“error” “[measurement] error”

“instrument” “instrument”,“instrumentation”

“manag” “management”,“manage”

“measure” “measure”,“measurement”

“method” “method”,“methodology”,“methodological”

“metr” “metrology”,“metric”

“plan” “[process] planning”,“[software] plan”

“predict” “predict”,“predictive”,“prediction”

“process” “[software] process”

“quali” “quality”,“qualitative”

“quanti” “quantity”,“quantitative”,“quantify”

“valid” “validation”,“validity”,“validate”

during the 19th century but only truly matured in the last five decades or so [35],

is consistently developing in software engineering [24, 72]. It is closely related to

Stevens’ theory of scales [64, 81] and basically involves setting unequivocal relations

between an empirical measurement object and a symbolic system representing some

attribute of it that is of interest for measurement [23, 24, 26, 81, 102, 104], in order

for one to access the “real world” object by means of processing symbols equated

to its attributes [81] and reducing biases introduced by measurement error [106];

nevertheless, errors of a statistical nature — like the random measurement error

— are not of concern to measurement theory, and it is also taken for granted that

measurements are always discrete — that is, they exhibit limited precision [104].

The following non-exhaustive concepts are essential for framing the theory [23, 24,

35, 64, 104]:

• empirical relational system (ERS) — qualitative description of objects, relations

and operations representing the portion of reality where measurement takes place,

as well as the extant empirical knowledge about attributes of the objects one

wants to measure;

• formal/symbolic relational system (SRS) — description of the domains for the

measures on the objects’ attributes, as well as the relations of interest between

measures; systems ERS and SRS are linked by means of measures and scales

(discussed below);

• measure — formal mapping between the two systems, matching ERS elements

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

42 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

Table 3. Examples of software measurement interests. Source: adapted from [45].

Entity Attributes

Product Internal External

Specification size, reuse, modularity, redundancy,
functionality, syntactic correctness

understandability, maintainability

Design size, reuse, modularity, coupling, adher-
ence, inheritance, functionality

quality, complexity, maintainability

Coding size, reuse, modularity, coupling, func-
tionality, algorithm complexity, flow of
control

reliability, usability, maintainability,
reusability

Test data size, range quality, reusability

Process Internal External

Development
specification

time, effort, number of changes in
requirements

quality, cost, stability

Detailed design time, effort, number of defects in spec-
ifications

cost, cost effectiveness

Test time, effort, number of defects in coding cost, cost effectiveness, stability

Resource Internal External

Personnel age, cost productivity, experience, intelligence

Teams size, level of communication, structure productivity, quality

Organizations size, ISO certification, CMM level maturity, profitability

Software price, size usability, reliability

Hardware price, speed, memory size reliability

Offices size, temperature, light comfort, quality

with SRS numbers/symbols and observing the equivalence of relations between

the systems;

• admissible transformation — transformation that preserves the equivalence be-

tween empirical and symbolic relations;

• nominal scale — strictly one-to-one admissible transformations allowing exclu-

sively the empirical relation “equality”;

• ordinal scale — admissible transformations strictly on an increasing monotonous

function allowing exclusively the empirical relations “equality” and “order”;

• interval scale — positive linear admissible transformations (f(x) = ax+b, a > 0)

allowing exclusively the empirical relations “equality”, “order” and “difference”;

• ratio scale — positive similar transformations (f(x) = ax, a > 0) allowing the

empirical relations “equality”, “order”, “difference” and “relative difference”; and

• absolute scale — no transformation is meaningful except the identity (f(x) = x).

With the rigorous approach provided by theory [26], measurement in software

engineering is made easier to frame and manage. In particular, there is the need

to deepen and systematize our comprehension about the attributes of the objects

of interest, which will then give rise to a theoretical and formal system with which

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 43

an object and its attributes would be subsequently dealt with. This leads one to

address the more fundamental issue of understanding the concept behind the object

and the attributes, adopting a particular perspective for working with them and

standardizing it (for a case in software quality, see [64]).

Although measurement issues seem trivial at first, each concept may convey a

great deal of reflection and heated debate (e.g., [80, 81, 107]. The most fundamental

discussion is whether the object under empirical examination has attributes that

are conceptualized by current theories and that can be measured by the available

methods (that is, whether the values that are produced by measuring the object’s

attributes are within known value ranges and really reflect the nature of the ob-

ject). This exerts direct impacts on the purpose and on the use of measures. Our

perspective joins that of [81] and assumes that measures do not relate to “actual”

(intrinsic) attribute values (or true scores [34]), but to outcomes of procedures

currently deemed appropriate for getting purposeful information about real-world

objects; that is, given the likely endless philosophical debate on an object’s on-

tology, interpretation and subjectivity are in fact the very intrinsic ingredients of

every measurement attempt, and this helps explain why there should be a sound

conceptual framework underlying the software measurement endeavor.

Recent advances in measurement theory indicate the need for a probabilistic

version of it [102]. It is also of current concern in the discussion around a more

pragmatic and flexible deployment of scales and corresponding statistical proce-

dures [23, 24, 64], like in what can be called a weak measurement theory [83]; in

some cases, like in studies on the relation between information technology and orga-

nizational dimensions, less rigid scale transformations have been already frequently

performed — admissible transformations are indeed more of a mandatory (rather

than exclusive) nature [104]. And in what comes to specific deployments of mea-

surement theory to software engineering, bold developments are expected in the

field of quality [64].

Critiques were unveiled to applying measurement theory to software engineering,

since the theory would only provide the means for handling a set of classic mea-

surement issues [2]. The broader field of metrology, which covers theoretical and

practice-oriented issues alike, should in their view be considered when setting the

basis for developing and applying measurement instruments and processes. Metrol-

ogy would look after defining measurement principles, which in turn would help

negotiate methods and procedures for measuring. Symptomatically, current initia-

tives in software engineering would be lacking a consistent approach to effectively

address the instrumentation for measurement.

Irrespective of how one frames the deployment of measurement theory to soft-

ware engineering, its application should provide the means for developing measures

independently of whom is in charge of the process, as well as measures that address

solely the empirical object of interest [81]. Furthermore, the outcomes of measure-

ment must adhere to assessing and predicting the quality of products, processes

and resources.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

44 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

Source: adapted from [15], [18], [63], [92], [101], [110].

measurement for prediction

software process

planning
(effectiveness: cybernetic route to

the desired solution)

measurement for control
(efficiency: cybernetic route to

maximizing resource availability)

software product

managerial decision

Fig. 1. Measurement for software control and prediction.

4. Software Metrics

Software engineering and metrics are bound together [44, 54, 72]; in fact, metrics

constitute the dominant approach to measurement in software engineering [2]. In

[92] and [110], metrics are said to relate to process control — like the average effort

and time demanded when fixing defects — and to the prediction of product features

— like the number of operations associated to an object. More broadly, metrics are

key for vigorous research [114], serving as feedback and measurement tools for

assessing whether one is proceeding correctly [29], as well as drivers for engineering

and management processes [54]. They are organic to the software process [39, 54]

in the sense that they support information system (IS) managers in estimates,

technical tasks, project control, and process improvement [97]. In particular, metrics

are the only factor currently available for contrasting companies in terms of process

maturity [98]. Figure 1 synthesizes how metrics apply to software development.

The key for the effectiveness of metrics is the development of a metrics plan

describing who/how (tools, techniques, and personnel), what (is to be measured),

where/when (in the measurement process) and why metrics [95] (after all, they must

be useful [75]). At the same time, the abstraction level of measures should be ad-

dressed for building any metric, since not always — or almost never — it is possible

to measure software quality attributes directly; building unidimensional measures is

truly the outcome of robust theoretical and statistical modeling [28, 107]. Likewise,

the aggregation level of the work system of a software organization (e.g., busi-

ness unit, project, or component) should also be taken into account when making

the metrics plan [75]. The result is that the surrounding context of measurement

must be carefully assessed, given that software projects usually involve variables

of a highly dynamic, complex nature and presenting fuzzy relationships with other

variables [9].

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 45

Committing oneself to a metrics agenda means to be prone to change towards a

culture in which decisions are made based on relevant, accurate, practice-oriented

data [62]. This is in line with the assumption that the only rational way for im-

proving any process is by measuring specific attributes of it, developing a set of

metrics appropriate for the attributes and applying the metrics to provide signals

of improvement [97]. Moreover, choosing metrics, collecting data, discussing the re-

sults of measurement and taking due action take up time as well as other nontrivial

resources, and this only makes sense if such activities address specific improvement

goals [95]. Nevertheless, little is said about the successful implementation of metrics

in the realm of software process improvement [44, 62].

There is, however, some inadvertent use of terms like “measure” and “metric”

in the literature [118], the reason why we adopt and make explicit the conceptual-

ization in [97]:

• measures result from computing data from a software project, process or product,

and indicate in quantitative terms the magnitude of an attribute;

• metrics result from computing measures, and indicate in quantitative terms the

degree to which a system, component or process exhibits some attribute; and

• indicators result from computing metrics, and help us to develop insights on

software projects, processes and products.

A number of software metrics have been proposed over the years for a myriad

of interests, but sometimes complementary or conflicting rationales and empirical

evidences were assumed between works. The kingdom of metrics is indeed large

and complex, so in this short paper we present a general picture of some illustra-

tive cases. For instance, source-code metrics are among the most popular in some

scientific communications and industry practices [44], like metrics for algorithm

complexity and size; nevertheless, no current complexity metric addresses com-

pletely what is needed for controlling, managing, and maintaining software [27],

and metrics of this kind exhibit obscure relationships with software quality [110]

and programmer productivity [52]. On the other hand, attention is increasingly be-

ing paid to multidimensional metrics addressing the whole software endeavor, like

those on process and project management (e.g., [88]). In fact, it was already demon-

strated that, during IS implementation, heterogeneous factors play a role [108]. In

Fig. 2, factors influencing the software process are said to be in reverse order to their

implementation priority in practice. This means that the most important factors

(higher in the hierarchy) are seldom implemented, which is an explanation for why

many projects fail [60, 96, 109, 111], as well as why technological issues (appearing

at the bottom) are the first — and sometimes the only — concern in projects.

Figure 2 is rich in insights for understanding why so much attention is given

to technical attributes in projects (and, therefore, to technology-oriented metrics).

First, since the hierarchy is based on Maslow’s hierarchy of needs, in which higher-

level needs are only addressed when lower-level needs are satisfied, the fact that

technology is the dominant preoccupation in IS projects may mean that the

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

46 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

Source: adapted from [108], reproduced from [15].

lowhigh

technological factors

user factors

task factors

organizational factors

environmental factors

organizational

benefits

implementation

priority

easiness of

management and

change

likelihood of

association to

problems

low high

Fig. 2. Hierarchy of factors affecting IS implementation.

implementation of technology is currently ineffective (be it due to the technology

itself or to its application), thus preventing attention to be paid to higher needs.

Second, technology being the most desirable dimension for effortless management

may have an influence on developers not being incited to take care of other di-

mensions of the solution. Third, the natural tendency of connecting deficiencies in

implementation to the likelihood of lower-level needs not being fully satisfied per-

haps favors an approach whereby excessive attention is devoted to perfecting —

maybe endlessly — the fulfillment of the more fundamental needs. Other explana-

tions may relate to particular preferences of developers and the institutionalization

of practices in the profession and the industry.

Sound developments aimed at changing this state of affairs were recently made

in a research that compiled and extended critical social issues for the management

of customer teams during the co-development (with technology consultants and

suppliers) of software for one-of-a-kind enterprise information systems [14]. That

endeavor addressed the teams’ structure/organization and the personal traits of the

teams’ professionals (that is, the social subsystem of the socio-technical approach

to work design), and it ended up proposing a set of seven indicators, 27 metrics

and 88 measures that, together with current process/task and technology criteria

(the technical subsystem), help managers design, control and assess the teams. Al-

though targeted at a specific subset of social measures in the software field, such

an accomplishment works out factors largely neglected in research and practice.

According to [44], among the key trends and needs of the metrics field, one

can find a deeper approach to uncertainty and to combining heterogeneous subjec-

tive evidences, as well as some disregard to the traditional regression analyses —

which may obstruct a fuller understanding about causality. They also talk about

advancements in meta-analyses, mainly on (1) the mechanics of metric implementa-

tion programs, (2) the deployment of metrics in empirical software engineering, and

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 47

Legend: continuous arrows indicate direct, positive effect; dashed arrows indicate indirect, positive effect.
Source: [100].

senior
management
leadership

managerial
infrastructure

process
management

stakeholder
participation

quality
performance

Fig. 3. Metrics domains for the software endeavor.

(3) theoretical foundations of software metrics. There is also room for discussing

further challenges:

• maybe most academic research is not relevant in substance nor in scope for the

industry;

• little is known about the effectiveness of metrics (sound improvements are made

in [54]); and

• little is known about the true reasons why, notwithstanding current critiques,

metrics like lines of code, defect counts, cyclomatic numbers and function points

still have their place among the most popular standards.

Another arresting theme in software metrics is introducing to measurement the

very context in which measurement occurs [25]. In this sense, it is in increasing

obsolescence assessing software with no explicit regard to the environment in which

the software is handled; after all, choosing a particular project design gives rise to

inevitably circumscribing the quality attributes for the software [20]. There is indeed

some exhortation that the technical validation of a system should be performed only

after the validation of its very context [82], but this seems not trivial to understand

nor to effect.

What is clear, though, is that a comprehensive, quality-oriented management —

by means of metrics — of the software endeavor is in need. According to [100], the

key components of an organizational system oriented towards such a goal (product

quality and process efficiency) are (see also Fig. 3):

• senior management leadership — degree to which senior IS management spon-

sors improvements on quality and theorizes on quality initiatives for the systems

development organization;

• managerial infrastructure — structural property of the IS organization related

to creating an organizational setting oriented towards quality for the central

processes and work practices;

• process management — degree to which the key project and development pro-

cesses get defined, controlled and systemically improved; and

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

48 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

• stakeholder participation — degree to which the work practices are set in a way

that each group contributes with complementary knowledge to the other groups

involved.

5. Identification of Metrics

Measuring software should head steadily towards appropriate metrics for each ap-

plication context and directions on how to apply them [49], in order not to give

rise to unintended side effects [33, 112]. This challenges interpretations that some

measurement is better than none (as in [52]). The first and perhaps most important

procedure is to choose the measures that should be effected; after all, the outcome

of this decision propagates throughout the sequence of activities and is intrinsically

related to the very goals of the measurement system. From [58] and [118], one can

organize the following components for any measure:

• handle — an appropriate name for the measure;

• description — what the measure is and what are the goals of collecting it;

• relationship — how will the measure be related to the software process;

• history — what we know about the measure from previous experiences;

• expectation — what is expected from the measure in the future;

• source — where the measure is to be collected;

• tools — technology available for measurement support;

• observation — how will the measure be collected;

• frequency — when will the measure be collected;

• stakeholders — who will be involved with measurement;

• scale — measurement units;

• range — maximum and minimum values to be observed;

• threshold — control and triggering values for measurement;

• validation — data for validating relationship strength and accuracy;

• interpretation — how will the measure be screened;

• report — measurement documentation; and

• actions — events triggered by the measure.

Therefore, systematizing the selection of measures is crucial for the success of

metrics, and, according to mainstream, leading publications in software engineer-

ing, one can safely conclude that the Goal-Question-Metric (GQM) approach [11]

is the dominant alternative to doing it. In fact, GQM is frequently deployed in its

original or adapted formulation, or even combined with other models (e.g., [23, 25,

26, 75, 76, 95]). GQM defines, institutionalizes and systematically addresses mea-

surement programs that support the quantitative assessment of software products

and processes [49]. GQM involves the following:

• the design of corporate, division or project goals usually targeted at productivity

and quality issues and always tied to the organization’s ultimate goals;

• the development of questions that sharpen the goals, in order to make visible

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 49

Source: adapted from [110], [11].

GQM

goals

set quality goals

aligned to

project goals

questions

investigate

alignment between

actions, resources

and goals

metrics

define a set of

measures and

transformations to

address questions

calibration

work on

anomalous vectors

measures

work on

anomalous measures

actions/resources

measure attributes

of quality vectors

prediction

anticipate and

prevent anomalies

Fig. 4. Integrating GQM to measurement.

whether they were fulfilled or not, by means of identifying uncertainty points re-

lated to the goals — the underlying assumption is that reaching any goal involves

answering specific questions; and

• the identification of metrics related to measures to be collected which answer the

questions (deriving measures from questions which in turn are rooted in superior

goals gives GQM its top-down character).

Figure 4 shows how GQM can be the cornerstone for a measurement program.

Among the GQM variants, it is worth mentioning the work of [25], which was

supported by one of GQM’s fathers and extends the original framework. They

developed the GQM/MEDEA (GQM/MEtric DEfinition Approach) model, which

combines GQM to empirical hypotheses (empiricism is in fact present in many re-

cent developments and aspirations in software engineering [44, 45, 49, 54]); empirical

hypotheses then undergo experimental verification based on expected mathemati-

cal properties of the theoretical measures from the attributes of interest. The most

important contribution of GQM/MEDEA to the original framework would be es-

tablishing a systematic process to defining software product measures from GQM

goals. Moreover, the model makes explicit all decisions involved in planning the

measurement activity for building a predictive model; in fact, this recent model

emphasizes making directions — maybe in reaction to previous critiques from the

literature (e.g., [58]). The experimental-empirical character is also made apparent

when the authors name the mandatory traits of an effective software measurement

process (which would be integral to GQM/MEDEA): the process must be disci-

plined, rigorous and based on goals, with properties and experimental assumptions

accurately defined, and the process must also include comprehensive, experimental

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

50 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

validation. Synthetically, the new model addresses:

• a detailed description of the activities involved in defining the measures and

informational flows between activities;

• the integration of the definition of measures, the corporate goals and the devel-

opment context;

• the fact that measures should not be defined per se, but according to the theo-

retical context;

• the support for the rationale, interpretation and reuse of measures;

• the support for identifying problems that may occur during the definition of

measures, taking into account that the process is “human” intensive; and

• a conceptual model to be deployed in the implementation of a repository of

relevant knowledge for measurement.

GQM is not free from critiques. First, top-down methods are not easily espoused

by those who are assigned to implement it; while it is relatively straightforward to

set goals and develop the questions, it is extremely hard to measure them effectively,

and conflicts between developers and managers may then be easily brought into

existence [58]. The model also lacks an approach to connecting metrics that answer

the same question, as well as to guiding one through implementing the measures

[95]. Finally, GQM’s top-down character bypasses the actual measurement needs

that are known only at the bottom [58].

Bottom-up models for identifying metrics are also available, starting from mea-

surable items and then building management goals based on the measures. Such

models build a database of measures to be collected on each product according to

the following [58]:

• input measures — information about resources (personnel, computers, tools, etc.),

processes and activities performed;

• output measures — information about the production outcomes; and

• result measures — information about the use and the effectiveness (perceived

and actual) of the production outcomes in fulfilling requirements and satisfying

people.

What is behind the bottom-up approach is that the primary function of mea-

surement is to support the engineering tasks by raising questions and helping rich

insights to develop.

6. Measuring

Collecting and analyzing the measures are two fundamental processes of software

measurement intrinsically related to the previous discussion on measurement theory

— which provides the means to formalize such processes, a requisite for an effective

metrics plan. Given the intensive human involvement with software processes and

products, the instrumentation for collecting and analyzing measures in software

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 51

engineering owes much to methodological advances in the social sciences [24, 25,

49]; as a matter of fact, software development is socio-technical in nature [37].

6.1. Assembling the evidences

Collecting the measures — or what we here call the process of assembling the

evidences — is the way to efficiently gather data that provide the highest predic-

tive power for a set of stated goals [79]. According to [58], the collection of mea-

sures should follow the principles of (1) not being obtrusive, (2) being automated

whenever possible, (3) being based on public, explicit, unambiguous definitions,

(4) validating measures as soon as they are collected (and as close to the source

as possible), and (5) integrating the collected measures to a repository for future

validation. A robust collection of measures is vital for the empirical software engi-

neering field, since this field aims to build a reliable base of measures for profes-

sionals and researchers (Votta et al. mentioned in [49]). Important it is, however,

that the set of measures be valid (represents what it is intended to represent [40]),

inasmuch as no amount of data neutralizes a poor isomorphism between theoretical

constructs or latent variables and the methods used to measure them [34]. For this,

the largely neglected discipline on instrumentation for measurement in software

engineering demands greater care [2].

The process of collecting measures should be adapted to each organization [119]

and the subsequent implementation may take different forms — it depends on the

nature of the measures (in regard to an object’s attributes), on the researcher’s

knowledge about what is to be measured, on the purpose of collecting, and on the

appropriateness of the instruments. Thus, measurement may be direct or indirect

[64], objective or subjective [58, 95], based on theory or not [34], applied to people

or objects, and consist of different sorts and quantities of data [23]; but it should

not be left out of sight that measurement ought to be as focused as possible, that

is, collect exclusively the intended data that answer purpose-driven questions [118].

All this leads to the variety of methodological procedures available. A compre-

hensive review of collection techniques, however, is not workable in this piece of

text, so we next make reference to current literature discussions on measure collec-

tion with some emphasis on directions from the Guide to the Software Engineering

Body of Knowledge [1]. Another decision made in this paper for the discussion to be

more straightforward and focused on current developments was to exclude collec-

tion methods like automatic algorithm analysis (for measuring size, coupling, etc.)

or computational mechanisms for knowledge discovery in databases. Such a deci-

sion took into account the fact that software engineering is steadily incorporating

methodological developments from the social sciences [24, 25, 49] and that, for soft-

ware process improvement, organizational factors — measured with the support of

corresponding methods — are at least as important [38]. Finally, we opted not to

comment specific software packages developed for particular collection procedures,

like the increasingly available tools for automatically assembling measurement

instruments or performing Web-based data collection.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

52 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

A current debate deals with the measurement instruments themselves. Notwith-

standing the wealth of measures available and their potential applications, little

discussion is effected on measurement instrumentation for software engineering [2];

moreover, directions found in the literature or in practice are often misleading. In

fact, [23] and [24] criticize usual directions for being inflexible when constraining

a priori measures to particular scales (like nominal, ordinal, or ratio), since there

would be only a few cases where a given measure would be unequivocally tied to

one specific scale. As previously stated, scales and admissible transformations (data

analysis procedures) are closely related; but, due to the rigid direction of scales be-

ing univocally assigned to each measure a priori, data collection (and subsequent

data analysis) is forced to operate in strict, narrow limits that may subsequently

prove to be conservative in excess. A handy argument for advocating the contrary

is that it is always possible to move from a stronger to a weaker level of measure-

ment [104]; that is, if a stronger scale (say, ratio) is found incompatible with an

object’s attributes, it is possible to convert measurements to a weaker scale (say,

ordinal). Therefore, it is suggested that instruments for data collection do not follow

inexorably early scale assignments to measures.

Another subject of growing interest is the deployment of methods to collect

qualitative data; in [58], data collection includes gathering individual perceptions,

for instance by means of surveys (with structured questionnaires applied to statis-

tically significant samples) or in-depth interviews (with semi-structured interview

protocols applied to select individuals). Techniques for group discussion such as fo-

cus groups (small groups of peers assembled for the lively debate of ideas) are also

of interest for qualitative measurements [13]; the expert estimation [12, 42, 65, 66,

119, 120] is of special concern — in what comes to estimating the effort in software

development, qualitative expert estimation is indeed the dominant approach [65].

The instrumentation for data collection is decisive in these cases — similarly to

what was previously said about selecting appropriate scales for measurement. For

instance, when using instruments for in-depth interviews, face and content valida-

tion are of need [21, 28, 61] before and after pre-tests [113]. Notwithstanding the

collection of measures in such a case having no statistical meaning, the collection

only ends when the answers of a number of individuals converge to the same con-

structs. In surveys — like for collecting statistically significant information about

customer satisfaction with a given software package — instrument development also

requires expediency in validation procedures [6]; that is, surveys require rigorous

statistical analysis for defining appropriate samples and — additionally to face and

content validation, and pre-tests — pilot tests and construct validation (conver-

gent, discriminant, and nomological validation [7, 21, 28]) need to be on the agenda

(construct validation, however, may depend on the research’s purpose and stage).

Data collection for developing metrics may also be done with direct searches in

databases [41, 58, 119, 122], what is best known as the collection of secondary data

[89]. Moreover, building and maintaining a metrics repository [57] or experience

base [84] is an important decision for future projects [70, 110], mainly when the

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 53

Table 4. Methods for collecting measures in software engineering. Source: adapted from [89].

IS Methodology/Method Proposition in Software Engineering

Library research Review on the history, the state of the art, and the state of the
practice of measures and measurement procedures, as well as on the
changing knowledge about the measurement objects.

Literature analysis Meta-analyses for consolidating terms, methods in particular
applications, and objects of interest for measurement.

Case study Qualitative, longitudinal analysis of the behavior of an object’s
attributes.

In-depth interviews Semi-structured interviews for capturing the perception of select
experts about the nature of an object’s attributes.

Survey Structured interviews for capturing the perception of a sample of
practitioners about the behavior of an object’s attributes.

Laboratory experiment Experimental control over an object’s attributes being measured
during simulation.

Field experiment Quasi-experimental control over an object’s attributes being
measured in real life.

Secondary data Search in databases of measures collected by previous purpose-
driven, comparable processes, in order to understand the behavior
of an object’s attributes and the correlation with other measures.

organization is committed to learning from previous enterprises [121]; but keeping

the database relevant through continuous assessments is also needed [40]. Lastly,

the deployment of less usual methods in software engineering, like case studies, may

be a strategy [58].

As a contribution, in Table 4 we adapt the categories in [89] for research methods

in the IS field, indicating which could be used (and the main concerns of each) for

the collection of measures in software engineering.

6.2. Producing the evidences

The analysis of measures — or what we here call the process of producing the

evidences — comes straightforward from their collection. Exhibiting the stigma of

hard work [110], it is nevertheless usually handled with insufficient care [57, 58],

notwithstanding the sound benefit to be perceived if performed within efficient

feedback mechanisms that leverage organizational processes [54].

Before the actual analysis, collected measures sometimes must follow a

“purifying” path. Although the collection of measures should be ideally based on a

deliberate process supported by appropriate techniques, the measures may not be

ready for analysis. In fact, formatting the data into a friendlier, scale-adherent de-

sign should precede measure interpretation [58]. For instance, after fulfilling audio

recordings during in-depth interviews (as for measuring initial perceptions on the

performance of changes effected to the software process), the discourses should be

formatted into appropriate media for particular content analysis procedures [8] to

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

54 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

be later deployed. One alternative is to reproduce the measures into a word process-

ing application or codify them into a package for semantic, quantitative analysis

[47]. In either case, the transcription must adhere to the interface with the target

medium and — more importantly — follow some relation prescribed by measure-

ment theory governing the equivalence between the recorded items in audio format

and the text being built. From this example, we should observe that moving mea-

sures between media for analytical purposes conveys also a collection process that

must comply with all the previous assumptions from measurement theory — since

an accurate transcription of items between representation systems is envisioned,

with no interference from deploying the instrument for data “collection”.

Developments made in the field of statistics are incorporated by software engi-

neering whenever appropriate [24], and as such a laborious process is also expected

when preparing the measures for multivariate analysis. Before choosing and apply-

ing the most appropriate methods available (see [55] for a comprehensive review),

tests like the ones for sample adequacy and adherence to particular probability

distributions should be performed. Such procedures are here not regarded as of a

genuine analytical nature (although they truly support the analyses), since per se

they do not add information to knowledge nor to decision making based on the

measures effected — the ultimate purpose of software metrics [58]. Those proce-

dures are more oriented towards supporting simulations, exploring scale attributes,

or indicating the need for changing the set of measures (e.g., excluding values or

fitting the data to certain statistical procedures in sub-samples), thus guiding the

analyst throughout the mathematical maneuvers and conceptual reasoning. What

truly distinguishes the analysis is not the deployment of one mathematical method

or another, but the incorporation of theory and subjective interpretation to what

is measured — which is then ready for scientific scrutiny.

Like what happens for the collection process, formatting the measures and ana-

lyzing them rely on numerous factors, among which the type of data collected and

the purpose/nature of the analyses [25, 41]. Nevertheless, in all cases measurement

theory is helpful for accuracy, conceptual consistency, and process objectiveness

[24]. Methodological rigor and pragmatic usefulness thus resultant will root the

effective application of metrics for the purposes in mind [54].

An important discussion regarding the analysis of measures concerns the very

deployment of measurement theory and the various types of scales (e.g., [23, 24,

26, 64]). As mentioned before, the theory predicts particular relationships between

scale types and measures, according to the nature of the latter, and each type in-

cludes admissible and non-admissible transformations. Naturally, if we assume that

one can hardly seize impromptu the nature (and the scale type) of a measure, then

it is also true that an arbitrary decision made before the analyses (during the collec-

tion of measures) will block a whole set of transformations potentially suitable for

the measures (Table 5 reproduces some scale types and corresponding directions).

Nevertheless, a more pragmatic standpoint is championed in [23], reckoning the

chronic doubt on the nature of some measures and allowing — not without explicit

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 55

Table 5. Examples of relating scales to statistics. Source: [23].

Scale Type Appropriate Statistics (Examples) Type of Appropriate Statistics

mode
Nominal frequency

contingency coefficient
nonparametric

median
Ordinal Kendall’s tau

Spearman’s rho

Interval
mean

Pearson’s correlation
nonparametric and parametric

Ratio
geometric mean

coefficient of variation

and meticulous speculations about possible side effects — greater freedom for the

analyst to handle them. Such a flexible stance, although not being clearly the main-

stream perspective in software engineering, is widely espoused or at least accepted

as producing minor hurdles in other knowledge areas — in which one frequently

finds, for instance, the computation of arithmetic means for Likert scales. In fact,

[104] puts that “there is no need to restrict the transformations in a statistical

analysis to those that are permissible”, but also “an appropriate statistical analysis

must yield invariant or equivariant results for all permissible transformations”.

Another debate deals with how causes and effects are investigated. One issue is

that correlations between measures (which, once detected, enable one to perform

a whole set of statistical procedures and conceptual inferences) merely suggest the

simultaneous occurrence of those measures — and nothing about antecedents and

consequents [44]. Therefore, studies in which nomological networks of constructs

are not exhaustively investigated with advanced methods like structural equations

modeling [51] are not able to postulate genuine causal reasoning.

The authors in [44], with their developments on Bayesian belief networks, claim

to have made progress on this regard (causes and effects) and other delicate subjects

like the role of uncertainty and lack of information (measures). The authors’ model

was implemented as a graphic tool which makes transparent to the user the complex

Bayesian mathematics behind the intrinsic propagations of probability. The tool

takes as input values the outcomes of measurement and depicts the effects from the

measures in the complex relationships between components (previously modeled).

Summarily, the benefits from using such a model include:

(1) the explicit modeling of “ignorance” and uncertainty in estimates, as well as

cause-and-effect relationships;

(2) the unveiling of assumptions originally hidden;

(3) reasonable predictions even with the lack of important data;

(4) what-if analyses;

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

56 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

(5) the deployment of probability distributions objectively or subjectively derived;

and

(6) rigorous mathematical semantics.

Several other studies make comparisons or devote critiques to particular statistical

methods, usually those that can be applied to multiple variables simultaneously

(e.g., [13, 25, 56, 71, 119]); but since no clear alignment between those studies was

unveiled in our literature review, the present paper does not delve into them.

Finally, regardless of the method, the outcomes from the analyses must be fed

back to the organization and especially to the point where measures were collected

[58]. Such a feedback should be understood as lessons learned to integrate the

repositories of metrics [57] and project knowledge [121], in order to serve as a

source for future processes of measure collection and analysis.

6.3. The crossroads in the future of software engineering

Software engineering faces a critical decision in what comes to its role in the collec-

tion and the analysis of measures: in spite of the steady incorporation of methods

from other knowledge areas like the social sciences, we find but a few publications

(mainly targeted at the IS audience) where instrument validation is of real con-

cern. If the field aims to understand, apply, and become the reference in the canons

of software measurement, much more than current exegeses are needed; academic

practice should be improved or at least communicated in detail.

Additionally, it is unclear whether software engineering and information systems

will remain separate or merge into a single domain in the near future, not only in

what comes to measurement issues (concepts, objects of interest, procedures, and

so on), but also in terms of the required expertise for its professionals in academy

and industry. Take, for instance, new development approaches like the agile method

of eXtreme Programming: its assumptions on informality, prototyping, and pair

programming [99, 117, 46] have been typical in research on human-computer in-

teraction, IT-business alignment, and inter-rater validity; the assumption that the

agile practices should be implemented as an indivisible whole is not in line with the

needed operational flexibility in industry [3], which is a design rule at least since

the contingency approach to management came about in the late 1960s [36]; and

the espoused practice of avoiding documentation is clearly against good project

principles [91]. Further challenges in the field (like performing meta-analyses, pro-

moting the need for empirical studies, and setting the principles for experimental

replication) can be found elsewhere [10].

7. Conclusions

Measurement is of primary importance for organizations, supporting them in initia-

tives for improvement and superior business performance [18, 43, 50, 5, 67]. Notwith-

standing, measurement is a complex endeavor involving multiple dimensions of the

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 57

objects under analysis, as well as sometimes incongruous conceptualizations from

measurers [90]. Remarkably in the software field — software here also understood

as a component of information systems [111], which pervade the modern organiza-

tion — measurement was traditionally dealt with from a shortsighted perspective,

focusing mainly on hard issues like algorithm complexity and programmer produc-

tivity; nevertheless, it is well-known that software development is socio-technical in

nature [37]. Lately, however, software engineering started to face profound changes

in its framing of the measurement activity; effects of such a new realm span het-

erogeneous dimensions of measurement, like the objects of interest — for instance,

the context in which a system should be effective in future — and the methods for

collecting and analyzing measures. Concerning the new methods, it is of note that

the social sciences are increasingly serving as a source of methodological treatments

to be applied to software processes and products [24, 25, 49], and a noisy debate

about the statistical bases of current methods is under way.

For practice, it is critical that software measurement still makes extensive use of

orthodox measures — like those of algorithm complexity and programmer produc-

tivity — but also that the field is deeply interested in incorporating developments

from research fronts like the organizational studies, marketing, human resources

management, and, foremost, research methods. In this sense, project management

and individual issues — like customer satisfaction, personnel development, and

work environment and climate — are increasingly the focus of research thrilled by

the foreseeable benefits of managing the whole software endeavor. Practitioners are

asked to contribute with experimenting the new metrics in real-world projects (if

they do not do it already), in order to gauge their effectiveness and effects on pro-

cess efficiency, product quality and social responsibility, as well as to test whether

important constraints like schedule and costs are not inadvertently overrun.

Particular directions concern the development and application of instruments

for collecting measures. First, practice-oriented measures should be developed con-

sistently, that is, based on a robust and agreed-upon belief on the effective relation

between the empirical and the symbolic relational systems. They must also address

exclusively the empirical object of interest and be as independent as possible from

the measurer. And second, professionals should not feel inhibited to deploy scale

transformations for the purpose of supporting the analysis of collected measures

whenever the nature of the objects’ attributes is not clear enough and given that

such transformations seem to purify one’s comprehension. This is not to say that

freewill rules, but that real-time business demands (like from customers, employees,

partners, or the technology) must correspond to, if not optimal, at least discretion-

led, satisfactory outcomes from operations and management. Summing up, and

inasmuch as a change in culture is integral to the implementation of metrics [62],

positive instrumentation should support the software organization.

It is clear that our research’s findings need to be surveyed in the software in-

dustry in order to see whether there is a match between the art and the practice,

as well as whether one (art or practice) should incorporate the other’s premises.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

58 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

Gaps between the academy and the industry in the software and the IS fields

are reportedly common (as in [115] and [48]) and it is prudent not to misjudge

one based on any assumption of what it should be. As technology develops and

changes fast [77, 31], and given that IS research has long followed, with a natural

delay, developments made in the industry [16] and that practitioners do not use to

read or consider academic research [93], the occurrence of such gaps is not surpris-

ingly new. Indeed, the rigor-versus-relevance debate is familiar (e.g., in [4, 17, 32,

78, 74]). In particular, an arresting theme for empirical research is to investigate

the very implementation of metrics in software process improvement initiatives (as

identified in [62]), since metrics are essential for contrasting companies on process

maturity [98].

In what comes to future theoretical research, the primary need is doubtlessly

to consolidate terminology, principles and methods for measurement in software

engineering, as denounced in [103] and [2], and subsequently continue to unify

previous research outcomes by means of, for instance, meta-analyses. Our study

tried to make bold developments in this sense. Even though subjectivity is still

endemic to measurement (not only regarding its epistemological base, but also due

to the generous current involvement with qualitative measures), one cannot ignore

that it is of pressing need that the software community once for all agrees on

the core assumptions. Besides the theoretical implications, one can easily devise

productivity problems that may otherwise continue to happen.

Another theoretical issue that should be investigated in depth concerns the

cultural components that are to influence or to be changed by the implementation

of a metrics plan. Software teams already work in a performance-oriented way

[94], but enforcing the adoption of, say, best practices in measurement is not to

be without objections by the knowledge workers [105]. Moreover, organizations are

regarded as routine-preserving structures [86, 116], maybe because it is harder to

dissolve knowledge in order to learn something new (in this case, moving to a

metrics culture) than to learn something for the very first time [59].

Finally, we agree that software engineering is engaged in a thorough, open in-

vestigation of its bases, and by means of merging with other knowledge areas —

notably human resources management, marketing, organizational theories, and re-

search methods — it is moving towards a more complete perspective on software

development and consequences for the organizational information systems.

References

1. A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L. Tripp (eds.), Guide to the

Software Engineering Body of Knowledge — Trial Version 1.00 (IEEE Computer
Society Press, Los Alamitos, 2001).

2. A. Abran, A. Sellami, and W. Suryn, Metrology, measurement and metrics in soft-
ware engineering, in Proc. 9th Int. Software Metrics Symposium, IEEE, Sydney, 3–5
September, 2003.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 59

3. P. J. Ågerfalk and B. Fitzgerald, Flexible and distributed software processes: Old
petunias in new bowls? Commun. ACM 49(10) (2006) 27–34.

4. L. M. Applegate and J. L. King, Rigor and relevance: Careers on the line, MIS

Quarterly 23(1) (1999) 17–18.
5. D. E. Avison and G. Fitzgerald, Information systems development, in Rethinking

Management Information Systems: An Interdisciplinary Perspective, eds. W. L. Cur-
rie and B. Galliers (Oxford University Press, New York, 1999), pp. 250–278.

6. E. Babbie, Métodos de Pesquisa de Survey (Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil, 1999) [in Portuguese: “Survey Research Methods”].

7. R. P. Bagozzi, Y. Yi, and L. W. Phillips, Assessing construct validity in organiza-
tional research, Administrative Science Quarterly 36(3) (1991) 421–458.

8. L. Bardin, Análise de Conteúdo, Edições 70 (Lisbon, 1977) [in Portuguese: “Content
Analysis”].

9. M. O. Barros, C. M. L. Werner, and G. H. Travassos, Supporting risks in software
project management, J. Systems and Software 70(1–2) (2004) 21–35.

10. V. R. Basili, Is there a future for empirical software engineering? in Proc. ISESE’06,
ACM, Rio de Janeiro, Brazil, 21–22 September, 2006.

11. V. R. Basili and H. D. Rombach, The TAME project: Towards improvement-oriented
software environments, IEEE Trans. Software Engineering 14(6) (1988) 758–773.

12. S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, Using an expert panel to
validate a requirements process improvement model, J. Systems and Software 76(3)
(2005) 251–275.

13. S. Beecham, T. Hall, and A. Rainer, Software process improvement problems in
twelve software companies: An empirical analysis, Empirical Software Engineering

8(1) (2003) 7–42.
14. C. G. P. Bellini, M.E.T.R.I.C.S. — Model for Eliciting Team Resources and

Improving Competence Structures. A Socio-technical Treatise on Managing Cus-
tomer Professionals in Software Projects for Enterprise Information Systems, Ph.D.
dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2006.

15. C. G. P. Bellini, J. L. Becker, and D. Borenstein, Towards a better understanding of
stakeholders’ roles in software customization, Int. J. Computers, Systems and Signals

5(1) (2004) 16–31.
16. I. Benbasat, D. K. Goldstein, and M. Mead, The case research strategy in studies of

information systems, MIS Quarterly 11(3) (1987) 369–386.
17. I. Benbasat and R. W. Zmud, Empirical research in information systems: The prac-

tice of relevance, MIS Quarterly 23(1) (1999) 3–16.
18. J. H. Blackstone Jr., L. R. Gardiner, and S. C. Gardiner, A framework for the

systemic control of organizations, Int. J. Production Research 35(3) (1997) 597–609.
19. J. T. Boardman, Wholes and parts — A systems approach, IEEE Trans. Systems,

Man and Cybernetics 25(7) (1995) 1150–1161.
20. J. Bosch and L. Lundberg, Software architecture — Engineering quality attributes,

J. Systems and Software 66(3) (2003) 183–186.
21. M. C. Boudreau, D. Gefen, and D. W. Straub, Validation in information systems

research: A state-of-the-art assessment, MIS Quarterly 25(1) (2001) 1–16.
22. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, and L. Tripp, The guide to the

software engineering body of knowledge, IEEE Software 16(6) (1999) 35–44.
23. L. C. Briand, K. El Emam, and S. Morasca, Theoretical and empirical validation of

software product measures, Technical Report ISERN-95-03, 1995.
24. L. C. Briand, K. El Emam, and S. Morasca, On the application of measurement

theory in software engineering, Empirical Software Engineering 1(1) (1996) 61–88.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

60 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

25. L. C. Briand, S. Morasca, and V. R. Basili, An operational process for goal-driven
definition of measures, IEEE Trans. Software Engineering 28(12) (2002) 1106–1125.

26. M. E. Bush and N. E. Fenton, Software measurement: A conceptual framework,
J. Systems and Software 12(3) (1990) 223–231.

27. J. K. Chhabra, K. K. Aggarwal, and Y. Singh, Code and data spatial complex-
ity: Two important software understandability measures, Information and Software

Technology 45(8) (2003) 539–546.
28. G. A. Churchill Jr., A paradigm for developing better measures of marketing con-

structs, J. Marketing Research 16 (1979) 64–73.
29. D. S. Corbin, Establishing the software development environment, J. Systems Man-

agement 42(9) (1991) 28–31.
30. W. L. Currie and B. Galliers (eds.), Rethinking Management Information Systems:

An Interdisciplinary Perspective (Oxford University Press, New York, 1999).
31. W. L. Currie and I. A. Glover, Hybrid managers: An example of tunnel vision and

regression in management research, in Rethinking Management Information Sys-

tems: An Interdisciplinary Perspective, eds. W. L. Currie and B. Galliers (Oxford
University Press, New York, 1999), pp. 417–443.

32. T. H. Davenport and M. L. Markus, Rigor versus relevance revisited: Response to
Benbasat and Zmud, MIS Quarterly 23(1) (1999) 19–23.

33. C. Dekkers and P. McQuaid, The dangers of using measurement to (mis)manage:
Measuring the software process, in Proc. ASQ’s Annual Quality Congress (American
Society for Quality, Milwaukee, 2002), pp. 551–560.

34. R. F. DeVellis, Scale Development — Theory and Applications (Sage, Newbury Park,
1991).

35. J. A. D́ıez, A hundred years of numbers. A historical introduction to measurement
theory 1887–1990. Part I: The formation period. Two lines of research: Axiomat-
ics and real morphisms, scales and invariance, Studies in History and Philosophy

Sciences 28(1) (1997) 167–185.
36. L. Donaldson, The normal science of structural contingency theory, in Handbook of

Organization Studies, eds. S. R. Clegg, C. Hardy, and W. R. Nord (Sage, London,
1996), pp. 57–76.

37. L. M. Duvall, A study of software management: The state of practice in the United
States and Japan, J. Systems and Software 31(2) (1995) 109–124.

38. T. Dyb̊a, Enabling software process improvement: An investigation of the importance
of organizational issues, Empirical Software Engineering 7(4) (2002) 387–390.

39. H. Eisner, Essentials of Project and Systems Engineering Management (John Wiley
and Sons, New York, 1997).

40. K. El Emam, Software engineering process, in Guide to the Software Engineer-

ing Body of Knowledge — Trial Version 1.00, Chap. 9, eds. A. Abran, J. W.
Moore, P. Bourque, R. Dupuis, and L. L. Tripp (IEEE Computer Society Press, Los
Alamitos, 2001), pp. 137–154.

41. W. M. Evanco and R. Lacovara, A model-based framework for the integration of
software metrics, J. Systems and Software 26(1) (1994) 77–86.

42. S. Faraj and L. Sproull, Coordinating expertise in software development teams,
Management Science 46(12) (2000) 1554–1568.

43. A. V. Feigenbaum, How to manage for quality in today’s economy, Quality Progress

34(5) (2001) 26–27.
44. N. E. Fenton and M. Neil, Software metrics: Successes, failures and new directions,

J. Systems and Software 47(2–3) (1999) 149–157.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 61

45. N. E. Fenton and M. Neil, Software metrics: Roadmap, in Proc. 22nd Int. Conf. on

Software Engineering, ACM, Limerick, 4–11 June, 2000, pp. 357–370.
46. N. V. Flor, Globally distributed software development and programming, Commun.

ACM 49(10) (2006) 57–58.
47. J. M. Ford, T. A. Stetz, M. M. Bott, and B. S. O’Leary, Automated content analysis

of multiple-choice test item banks, Social Science Computer Review 18(3) (2000)
258–271.

48. M. B. Franzen and C. G. P. Bellini, Arte ou prática em teste de software? Revista

Eletrônica de Administração 11(3) (2005) [in Portuguese: “Art or practice in software
testing?”].

49. A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G. Oldano, and E. Orazi, Apply-
ing GQM in an industrial software factory, ACM Trans. Software Engineering and

Methodology 7(4) (1998) 411–448.
50. R. A. Gardner, Resolving the process paradox, Quality Progress 34(3) (2001) 51–59.
51. D. Gefen, D. W. Straub, and M.-C. Boudreau, Structural equation modeling and

regression: Guidelines for research practice, Commun. AIS 4 (2000) 1–76.
52. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering

(Prentice-Hall, Englewood Cliffs, 1991).
53. R. L. Glass, I. Vessey, and V. Ramesh, Research in software engineering: An analysis

of the literature, Information and Software Technology 44(8) (2002) 491–506.
54. A. Gopal, M. S. Krishnan, T. Mukhopadhyay, and D. R. Goldenson, Measurement

programs in software development: Determinants of success, IEEE Trans. Software

Engineering 28(9) (2002) 863–875.
55. J. F. Hair Jr., R. E. Anderson, R. L. Tatham, and W. C. Black, Multivariate Data

Analysis (Prentice Hall, Upper Saddle River, 1998).
56. N. Hanebutte, C. S. Taylor, and R. R. Dumke, Techniques of successful application

of factor analysis in software measurement, Empirical Software Engineering 8(1)
(2003) 43–57.

57. W. Harrison, A flexible method for maintaining software metrics data: A universal
metrics repository, J. Systems and Software 72(2) (2004) 225–234.

58. W. Hetzel, The measurement process, in Applying Software Metrics, eds. P. Oman
and S. L. Pfleeger (IEEE, Los Alamitos, 1997), pp. 72–93.

59. G. H. Hofstede, Cultures and Organizations (Harper Collins, London, 1994).
60. R. Hoving, Executive response: Project management process maturity as a “secret

weapon”, MIS Quarterly Executive 2(1) (2003) 29–30.
61. J. Hussey and R. Hussey, Business Research (Palgrave Macmillan, New York, 1997).
62. J. Iversen and L. Mathiassen, Cultivation and engineering of a software metrics

program, Information Systems Journal 13(1) (2003) 3–19.
63. M. C. Jackson and P. Keys, Towards a system of systems methodologies, J. Opera-

tional Research Society 35(6) (1984) 473–486.
64. M. Jørgensen, Software quality measurement, Advances in Engineering Software

30(12) (1999) 907–912.
65. M. Jørgensen, A review of studies on expert estimation of software development

effort, J. Systems and Software 70(1–2) (2004) 37–60.
66. M. Jørgensen, K. H. Teigen, and K. Moløkken, Better sure than safe? Over-confidence

in judgement-based software development effort prediction intervals, J. Systems and

Software 70(1–2) (2004) 79–93.
67. R. S. Kaplan and D. P. Norton, The Balanced Scorecard (Harvard Business School

Press, Boston, 1996).

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

62 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

68. P. Katerattanakul and B. Han, Are European IS journals under-rated? An answer
based on citation analysis, European Journal of Information Systems 12(1) (2003)
60–71.

69. M. Keil, J. Mann, and A. Rai, Why software projects escalate: An empirical analysis
and test of four theoretical models, MIS Quarterly 24(4) (2000) 631–664.

70. T. M. Khoshgoftaar, E. B. Allen, and D. L. Lanning, An information theory-based
approach to quantifying the contribution of a software metric, J. Systems and Soft-

ware 36(2) (1997) 103–113.
71. T. M. Khoshgoftaar and N. Seliya, Fault prediction modeling for software quality

estimation: Comparing commonly used techniques, Empirical Software Engineering

8(3) (2003) 255–283.
72. S. R. Kirk and S. Jenkins, Information theory-based software metrics and obfusca-

tion, J. Systems and Software 72(2) (2004) 179–186.
73. B. Kitchenham, Procedures for performing systematic reviews, Joint Technical

Report — Keele University Technical Report TR/SE-0401 and National ICT
Australia Ltd., Technical Report 040011T.1, 2004.

74. A. S. Lee, Rigor and relevance in MIS research: Beyond the approach of positivism
alone, MIS Quarterly 23(1) (1999) 29–34.

75. H. K. N. Leung, Quality metrics for intranet application, Information and Manage-

ment 38(3) (2001) 137–152.
76. M. Lindvall, R. T. Tvedt, and P. Costa, An empirically-based process for software

architecture evaluation, Empirical Software Engineering 8(1) (2003) 83–108.
77. F. Lopes and P. Morais, Lessons learned from the teaching of IS development,

J. Information Technology Education 1(2) (2002) 103–112.
78. K. Lyytinen, Empirical research in information systems: On the relevance of practice

in thinking of IS research, MIS Quarterly 23(1) (1999) 25–28.
79. S. G. MacDonell and A. R. Gray, Software engineering management, in Guide to

the Software Engineering Body of Knowledge — Trial Version 1.00, Chap. 8, eds.
A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L. Tripp (IEEE Computer
Society Press, Los Alamitos, 2001), pp. 121–135.

80. L. Mari, The meaning of “quantity” in measurement, Measurement 17(2) (1996)
127–138.

81. L. Mari, Epistemology of measurement, Measurement 34(1) (2003) 17–30.
82. J. G. McDaniel, Improving system quality through software evaluation, Computers

in Biology and Medicine 32(3) (2002) 127–140.
83. S. Morasca, Foundations of a weak measurement-theoretic approach to software

measurement, in Proc. 6th Int. Conf. on Fundamental Approaches to Software

Engineering, Warsaw, 7–11 April, 2003, pp. 200–215.
84. J. Münch and J. Heidrich, Software project control centers: Concepts and approaches,

J. Systems and Software 70(1–2) (2004) 3–19.
85. N. A. Mylonopoulos and V. Theoharakis, Global perceptions of IS journals,

Commun. ACM 44(9) (2001) 29–33.
86. R. Nelson and S. G. Winter, An Evolutionary Theory of Economic Change (Belknap

Press, Cambridge, 1982).
87. P. Oman and S. L. Pfleeger (eds.), Applying Software Metrics (IEEE, Los Alamitos,

1997).
88. J. S. Osmundson, J. B. Michael, M. J. Machniak, and M. A. Grossman, Quality

management metrics for software development, Information and Management 40(8)
(2003) 799–812.

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

Measurement in Software Engineering 63

89. P. Palvia, E. Mao, A. F. Salam, and K. S. Soliman, Management information systems
research: What’s there in a methodology? Commun. AIS 11 (2003) 289–309.

90. S. C. Palvia, R. S. Sharma, and D. W. Conrath, A socio-technical framework for
quality assessment of computer information systems, Industrial Management and

Data Systems 101(5) (2001) 237–251.
91. D. Parnas, Agile methods and GSD: The wrong solution to an old but real problem,

Commun. ACM 49(10) (2006) 29.
92. R. Pavur, M. Jayakumar, and H. Clayton, Software testing metrics: Do they have

merit? Industrial Management and Data Systems 99(1) (1999) 5–10.
93. J. M. Pearson, A. Pearson, and J. P. Shim, The relevancy of information systems

research: The practitioner’s view, Information Resources Management Journal 18(3)
(2005) 50–67.

94. A. Peled, Creating winning information technology project teams in the public sector,
Team Performance Management 6(1/2) (2000) 6–14.

95. S. L. Pfleeger, Maturity, models, and goals: How to build a metrics plan, J. Systems

and Software 31(2) (1995) 143–155.
96. M. T. Pich, C. H. Loch, and A. De Meyer, On uncertainty, ambiguity, and complexity

in project management, Management Science 48(8) (2002) 1008–1023.
97. R. S. Pressman, Software Engineering: A Practitioner’s Approach (McGraw-Hill,

New York, 2001).
98. A. Rainer and T. Hall, A quantitative and qualitative analysis of factors affecting

software processes, J. Systems and Software 66(1) (2003) 7–21.
99. B. Ramesh, L. Cao, K. Mohan, and P. Xu, Can distributed software development be

agile? Commun. ACM 49(10) (2006) 41–46.
100. T. Ravichandran and A. Rai, Quality management in systems development: An

organizational system perspective, MIS Quarterly 24(3) (2000) 381–415.
101. L. D. Richards and S. K. Gupta, The systems approach in an information society:

A reconsideration, J. Operational Research Society 36(9) (1985) 833–843.
102. G. B. Rossi, A probabilistic model for measurement processes, Measurement 34(2)

(2003) 85–99.
103. F. Ruiz, M. Genero, F. Garćıa, M. Piattini, and C. Calero, A proposal of a software

measurement ontology, in Proc. 4th Argentine Symposium of Software Engineering,
SADIO, Buenos Aires, 1–3 September, 2003.

104. W. S. Sarle, Measurement theory: Frequently asked questions, in Disseminations of

the International Statistical Applications Institute, ed. W. S. Sarle, ACG, Wichita,
1995, pp. 61–66.

105. H. Scarbrough, The management of knowledge workers, in Rethinking Manage-

ment Information Systems: An Interdisciplinary Perspective, eds. W. L. Currie and
B. Galliers (Oxford University Press, New York, 1999), pp. 474–496.

106. F. L. Schmidt and J. E. Hunter, Theory testing and measurement error, Intelligence

27(3) (1999) 183–198.
107. A. H. Segars, Assessing the unidimensionality of measurement: A paradigm and

illustration within the context of information systems research, Omega 25(1) (1997)
107–121.

108. N. G. Shaw, Identifying relationships among factors in IS implementation, Commun.

AIS 11 (2003) 155–165.
109. H. J. Smith and M. Keil, The reluctance to report bad news on troubled software

projects: A theoretical model, Information Systems Journal 13(1) (2003) 69–95.
110. I. Sommerville, Software Engineering (Addison-Wesley, Harlow, 2001).

Final Reading
April 9, 2008 18:57 WSPC/117-ijseke 00357

64 C. G. P. Bellini, R. C. F. Pereira & J. L. Becker

111. I. Stamelos, L. Angelis, M. Morisio, E. Sakellaris, and G. L. Bleris, Estimating the
development cost of custom software, Information and Management 40(8) (2003)
729–741.

112. P. Stein, By their measures shall ye know them, Quality Progress 34(5) (2001) 72–74.
113. D. W. Straub, Validating instruments in MIS research, MIS Quarterly 13(2) (1989)

147–169.
114. D. W. Straub, D. L. Hoffman, B. W. Weber, and C. Steinfield, Toward new metrics

for net-enhanced organizations, Information Systems Research 13(3) (2002) 227–238.
115. P. A. Todd, J. D. Mckeen, and R. B. Gallupe, The evolution of IS job skills: A

content analysis of IS job advertisements from 1970 to 1990, MIS Quarterly 19(1)
(1995) 1–27.

116. P. S. Tolbert and L. G. Zucker, The institutionalization of institutional theory, in
Handbook of Organization Studies, eds. S. R. Clegg, C. Hardy, and W. R. Nord, Sage,
London, 1996, pp. 175–190.

117. P. Wagstrom and J. Herbsleb, Dependency forecasting in the distributed agile
organization, Commun. ACM 49(10) (2006) 55–56.

118. D. Wallace and L. Reeker, Software quality, in Guide to the Software Engineering

Body of Knowledge — Trial Version 1.00, Chap. 11, eds. A. Abran, J. W. Moore, P.
Bourque, R. Dupuis, and L. L. Tripp, IEEE Computer Society Press, Los Alamitos,
2001, pp. 165–183.

119. I. Wieczorek, Improved software cost estimation — a robust and interpretable
modelling method and a comprehensive empirical investigation, Empirical Software

Engineering 7(2) (2002) 177–180.
120. C. Wohlin and A. A. Andrews, Prioritizing and assessing software project suc-

cess factors and project characteristics using subjective data, Empirical Software

Engineering 8(3) (2003) 285–308.
121. M. H. Zack, Managing codified knowledge, Sloan Management Review 40(4) (1999)

45–58.
122. K. Zhu and K. L. Kraemer, E-commerce metrics for Net-enhanced organizations:

Assessing the value of e-commerce to firm performance in the manufacturing sector,
Information Systems Research 13(3) (2002) 275–295.

