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capacity influenced the impact of an intervention aimed at improving their problem solving 
proficiency. The sample included a total of 179 grade 6 and 7 students from a middle school 
located on the West Coast. The results suggest that gains from the problem solving intervention 
were moderated by working memory capacity, with students with higher initial working memory 
capacity showing the largest gains on problem solving proficiency.

Background 

Gaining proficiency in problem solving (PS) is a key outcome in K-12 mathematics (NCTM, 

2014). Proficiency in PS operationalized herein as the ability to successfully solve cognitively 

demanding mathematics word problems has been shown to be related to numerous factors such 

as metacognition, executive function (EF), content knowledge, strategic thinking, and affective 

characteristics such as student beliefs (Chapman, 2015; Rhodes et al., 2023; Schoenfeld, 2013). 

Specifically, PS requires that students decode tasks, transpose problem information using mental 

models, process information, and implement plans (Singer & Voica, 2013), all of which involve 

cognitive (particularly EF) processes. However, despite increasing evidence of the various 

cognitive and affective factors that influence PS, little remains known about how best to improve 

PS performance in students (Lester & Cai, 2016).  

Working memory (WM), considered a keystone EF ability (Friedman & Miyake, 2017), has 

been implicated as a critical factor in mathematics (e.g., Bull & Lee, 2014; Raghubar et al., 

2010). WM is a mental workspace used to maintain short-term focus of attention and manipulate 

this information, often in the service of accomplishing complex cognitive processing (Baddeley 

& Hitch, 1974). A relationship between WM ability and academic achievement comes from both 

theoretical accounts (e.g., Miyake & Shah, 1999), as well as empirical studies demonstrating 

correlations between mathematic performance and WM ability, including meta-analyses (e.g., 

Friso-van den Bos et al., 2013) and longitudinal studies (Alloway & Alloway, 2010). EF skills 

can depend on contextual factors, and with appropriate training and scaffolding can be developed 

and strengthened.  
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Naturally then, it has been posited that strengthening WM might in turn improve math 

performance. However, much is still unknown about the precise contribution of WM to math, 

and in particular to mathematical PS proficiency. This includes whether, and how, variations in 

WM may affect targeted math interventions. Understanding these connections can inform future 

math pedagogy, such as whether differentiated WM support is needed. Thus, the purpose of the 

present study was to investigate the role of WM capacity as moderator of gains in mathematical 

PS, in the context of a larger PS intervention study. Guiding this work, we posed the following 

mathematical problem solving performance?  

Theoretical Framework 

Working memory is a critical factor in many theories of information processing and 

cognition (e.g., Anderson et al., 1997; Meyer & Kieras, 1997). It has been linked to the ability to 

focus attention, in the face of distractors, to important information and 

current goal, especially in the formation of new concepts and how multiple concepts relate such 

as is required for mathematics (or any) learning (Cowan, 2014). This idea is further supported by 

research demonstrating a relationship between individual variation in working memory capacity 

(the number of items one can retain) and mathematics ability (e.g., Friso-van den Bos et al., 

2013; Raghubar et al., 2010). Additionally, evidence suggests that developing EF skills, 

including WM, support the development of math learning and problem-solving, and vice versa 

(Clements et al., 2016; Zelazo et al., 2017). Recent evidence also supports the combined 

importance of metacognitive ability and EF (along with student beliefs and prior content 

knowledge) in the support of proficient PS (Rhodes et al., 2023). Yet little is known how 

individual differences in WM ability may impact math PS proficiency.   

Description of Intervention 

 The present study was part of a larger study which aimed to improve mathematical PS 

performance in middle school students. In this larger study, students in an intervention group 

used a PS application that scaffolded and targeted EFs and metacognition within a four-phase 

attack strategy that was based on the work of Pólya (1945/2014). Scaffolds and supports 

included breaking the problem down into the four phases noted above, asking students what they 

notice and wonder about the problem, prompting students to explicitly consider what the 

problem was asking them to do, having students journal their plans for solving the problem while 
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providing them with sample sentence stems, and having students explain and record their 

solution. The results come from a larger Pre vs. Post assessment (separated by about five 

months) study which showed that the intervention group significantly improved on mathematical 

PS performance when compared to students in a business-as-usual control group, as measured by 

the PS measure described below (see Rhodes et al., in preparation). Thus, the purpose of the 

present study was to expand this work by exploring whether the gains seen in the intervention 

group were moderated by working memory. 

Methodology 

Participants 

The participants in the study were 6th and 7th grade students from a single school, referred to 

herein as Beach View. Beach View Middle School is located in a large, suburban school district 

from a West Coast State. All mathematics teachers at the school were offered the chance to 

participate in the study, along with all students enrolled in classes taught by participating 

teachers. Of these students, 92 6th grade students and 87 7th grade students completed both 

measures and are included in the analyses reported herein. The students self-identified as girl (n 

= 103), boy (n = 66), non-binary or prefer to self-identify (n = 5), prefer not to say (n = 3). 

Students self-identified (note multiple categories could be selected) as African-American or 

Black (n = 19), Hispanic, LatinX, or, Mexican (n = 131), Asian (n = 19), Chaldean or Middle 

Eastern (n = 69), Native American or Alaska Native (n = 5), Pacific Islander (n = 3), White 

(Non-Hispanic; n = 17), self-identified (n = 34), or prefer not to say (n = 33).  

Measures and Scoring 

Executive Function. The Adaptive Cognitive Evaluation (ACE;) was used to measure 

s; evidence supporting ACE as a valid measure of EF is presented in existing 

literature (Younger et al., 2022). The ACE is comprised of gamified, computer-based versions of 

well-known tasks that measure core EFs such as working memory, cognitive flexibility, and 

inhibitory control. Within the present study, working memory was the variable of interest and 

was measured using a change detection task (Luck & Vogel, 1997), with the key measure of 

-spatial working memory capacity (i.e., the number 

of visuo-spatial items one can hold in mind at one time). K was calculated using the standard 

formula computing hits minus false alarms in the set size 2 condition, thus scores can range from 
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0 to 2. The set size 2 condition was used given average performance in the set size 4 condition 

fell below chance levels of performance.  

Problem Solving Measure. Problem solving was measured using a 3-item test that consisted 

of problems that were written by Illustrative Mathematics (IM) and that was administered 

outside of the application used as part of the intervention. The items were chosen based on three 

criteria. Specifically, the problems 1) had a high degree of cognitive demand as assessed by the 

Smith and Stein (2018) framework; 2) align to priority standards within the district's pacing 

guides; and 3) offer opportunities for students to show or explain their process for solving the 

thinking, slight modifications were made to the directions of those problems. Given that the 

intervention was aimed at supporting students in learning the process of problem solving rather 

than any specific content or type of problem, problems were not explicitly aligned to any aspect 

of the intervention outside of the three aforementioned criteria. 

two ways: accuracy (total correct solutions) and understanding (the level of correct relevant 

kappas were calculated to measure interrater agreement on the understanding scoring: .961 and 

.703 for 6th grade and .880 and .842 for 7th grade, for accuracy and understanding, 

respectively. This alignment to the problem-solving framework and interrater agreement 

provides evidence of validity and reliability related to the PS measure used.  

Data Analysis. To start, 1-tailed Pearson correlations were used to examine the relationships 

between WM baseline (Pre-Test) scores and student scores on the PS measure. Given individual 

differences in WM have been shown to correlate with academic performance, including general 

mathematic ability, we were interested in examining whether changes in problem solving were 

 (WM 

capacity) scores for 6th grade and 7th grade independently (to account for presumed 

developmental differences across the grades). A median split procedure was used, for each grade, 

such that - -

PRE K score. Separate two by two multivariate analyses of variances (MANOVA) were 

calculated for the IM Accuracy and IM Understanding dependent variables, using the factors of 

wave (Pre vs. Post assessment) and the between-subjects WM group factor (low vs. high).  
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Results

Pearson correlations were low and non-significant when comparing WM baseline (Pre-Test) 

to pre-test PS scores (n = 179) with r = -.019, p = .399 for accuracy, and r = .056, p = .229 for 

understanding. However, the correlations comparing WM baseline (Pre-Test) scores to PS scores 

on the post-test were stronger, and significant, with r = .157, p = .018 for accuracy, and r = .207, 

p = .003 for understanding. In addition, we found small and significant correlations between PRE 

K scores and improvement in IM Accuracy and Understanding (Post minus Pre scores, on each 

measure, r = .150, p = .045 and r = .188, p = .012, respectively. At the multivariate level, 

Mahalanobis Distance was used, and one outlier was noted and removed and the MANOVA was 

re-run. The final results are reported below. 

Figures 1 and 2 show mean scores by wave (pre vs. post) and WM group for IM Accuracy 

and Understanding, respectively. 

PRE WM capacity (K) scores, in both the IM Accuracy and Understanding measures. The 

interactions for wave by WM group were significant, for both IM Accuracy F (1,176) = 6.113, p 

= .014, p2 = .034 and IM Understanding F (1,176) = 8.042, p = .005, p2 = .044.  

Table 1. 
Mean and Standard Deviation Scores for IM Accuracy and Understanding  
 

N Pre: IM 
Accuracy 

Post: IM 
Accuracy 

Pre: IM 
Understanding 

Post: IM 
Understanding 

Below Median K 
Group 

92 .674 (.64) .842 (.61) .348 (.34) .553 (.41) 

Above Median K 
Group 

86 .657 (.67) 1.11 (.62) .414 (.33) .811 (.54) 
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Figure 1.
IM Accuracy Scores by WM group and Time (Pre vs. Post)

Figure 2.
IM Understanding Scores by WM group and Time (Pre vs. Post)

Discussion

moderated the impact that a PS intervention (aimed at all students)

effectiveness of the PS intervention. Although students in both the below-median WM group and 

students in the above-median WM group significantly improved their PS performance across 

accuracy and understanding, that improvement was significantly higher for students in the 
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above-median WM group. Significant correlations between WM scores and gains in PS 

strengthens this argument.  

In seeking to interpret these results, it is important to note that baseline WM was not 

correlated to PS scores at pre-test, but was correlated to PS scores at post-test, with students in 

the above median WM baseline group showing significantly more growth. In addition, prior 

research suggests that problem solving involves numerous cognitive processes such as decoding 

data, creating mental models, and applying techniques to solve problems (Singer & Voica, 2013) 

 all of which are likely to put a high demand on working memory. Taken together, we theorize 

that students with higher WM capacity may have more effectively encoded, and then retrieved, 

the intervention scaffolds when needed from long-term memory. When the WM demands of 

doing so are taken into account, in conjunction with the cognitive demands inherent to problem 

solving, it stands to reason that students with a high WM capacity would be better equipped to 

retrieve and utilize the scaffolds when they were no longer being explicitly provided to them. 

Although students in the below-median WM group still improved their PS performance, the fact 

that they improved less than students in the above-median WM group may suggest that they 

were able to retain and utilize only a subset of the scaffolds, and/or were less effective in 

applying those scaffolds outside of the intervention itself.  

Students with higher WM may also be better equipped to deal with the relatively high 

cognitive load (WM demands) inherent in the PS intervention platform. In other words, they 

were better able to process the multitude of information presented in each of the four-phases of 

the intervention program and thus better utilized the embedded scaffolds. This could also explain 

the results presented here, either alone, or in conjunction with the above explanation about 

transfer of the scaffolds to situations where they were not present.  

 These results have broad implications for classroom instruction related to mathematical 

PS in the middle grades. Specifically, they provide evidence that WM is critical to consider when 

designing PS interventions. The results may also suggest that teachers and researchers need to 

explicitly consider how to support students in retaining and transferring WM scaffolds beyond 

intervention conditions to ensure that they can apply these skills to other class activities and 

assessments. Teachers should be cognizant of varying levels of WM capacity in their students 

and provide EF scaffolds and supports in the moment. This will in fact inform future iterations of 
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the broader intervention, such that additional supports will be provided to reduce cognitive load 

and WM demands during different phases of the program.  

General approaches include awareness of extraneous load in math problems (e.g., overly 

complex, or unneeded wording), build in more time to process problems, and add prompts for 

solving this 

lessened without changing the rigor of problems. In conclusion, the results suggest that WM is 

an important variable to consider in for improving PS proficiency in middle school students.  

Limitations and Avenues for Future Research 

 

measured at a single point in time and was, therefore, treated as a trait-based variable. However, 

new research has suggested that EFs may be state-based. Thus, future studies should consider 

utilizing in-the-moment measure of EFs or measuring EFs at numerous points during studies 

rather than just at pre- and post-test. Secondly, the design of the present study limited the 

researchers  ability to explore causal effects and thus future studies may consider how to gain 

more nuanced understandings of these relationships through true experimental designs and/or the 

use of qualitative methods such as cognitive interviews. Other future studies could explore the 

efficacy of differentiating the types of EF scaffolds given during mathematics PS instruction 
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