
We wish to thank the Allen Institute for Immunology founder, Paul G. Allen, for his vision, encouragement, and support. immunology.alleninstitute.org

Advancing Open Science: Web-Based Applications for Real-Time Exploration of Large-Scale Omics Data
Christian M. La France, Lucas T. Graybuck, Vitalii Tereschenko, Yousef Aggoune, Madeline Ambrose, Aldan Beaubien, James Harvey, Nicole Howard, Neelima Inala, 
Ed Johnson, Autumn Kelsey, Melissa Kinsey, Jessica Liang, Paul Mariz, Stark Pister, Sathya Subramanian, Anne Vetto, Zachary J. Thomson, Peter J. Skene, and Paul Meijer

Overview
Scientific research reaches a broader audience when it is open, 
transparent, and accessible. To facilitate open data access the Allen 
Institute for Immunology has developed a framework which enables 
bioinformaticians to deploy Python-based web applications to visualize 
large-scale data. This includes a single-cell RNA sequencing UMAP 
explorer for real-time interactive visualization of millions of cells. 
Leveraging next-generation file formats, WebGL rendering, and optimized 
algorithms, this UMAP Explorer dramatically increases scalability while 
maintaining ease of development. This app is deployed publicly with our 
Immune Health Atlas (1.8M cells with 33K genes from 10x Genomics 3' 
scRNA-seq). 

Data Structures

Chunked and compressed multidimensional arrays 
optimized for for cloud environments with many 
concurrent users

Technical improvements

Google Cloud storage of Zarr (up to hundreds of GB 
per app)

Plotly Dash handles server-side code in Python for 
app structure and data management

WebGL rendering of up to 6 million points by 
offloading rendering tasks to the client GPU, 
reducing server trips and browser memory usage

Schematic of UMAP Explorer: The Python server running a 
Plotly Dash app (A) retrieves data from Zarr in cloud storage (B) 
and sends it to the browser only once when needed (C). Updates 
to the app that do not require new data are handled in the 
browser (D). This simple restructure removes redundant trips to 
the server leading to a more responsive UI and increases 
scalability from ~200k points to ~6 million points.

Data storage

App components

Plot rendering

Gene expression data: (A) Data retrieval efficiency is 
prioritized over storage efficiency using a Zarr dense matrix. 
(B) Once expression data are retrieved for a selected gene, 
converting the 1D expression array to a sparse array is fast and 
reduces data sent to the browser. For 1.8 million cells, plotting 
gene expression takes about 3-5s, vs 8-10s for a sparse 
matrix.

Certificate of Reproducibility
Meijer P, Howard N, Liang J, Kelsey A, Subramanian S, Johnson E, et al. Provide 
Proactive Reproducible Analysis Transparency with Every Publication. arXiv [cs.CE]. 
2024. 

UMAP Explorer: Screenshot of the UMAP Explorer with the Immune Health Atlas 
which displays A) an interactive UMAP plot with >1.8 million cells and >33,000 
genes. B) Pseudobulk gene expression plot displaying median expression of each 
gene and fraction of cells in each group expressing each gene.

(A) (B)

*Apps work best on a desktop computer. Mobile performance is variable.

Integration and traceability

Cell annotations: Text annotations for each cell are encoded 
as integers then compressed with run-length encoding. This 
decreases the amount of data sent over the network and is fast 
to decode in the browser for plotting. These data are sent to the 
browser once per session when the app loads initially.
Original data (~65MB sent over network with each plot update):

[“T cell”, “T cell”, “B cell”, “Monocyte”, “Monocyte”, “Monocyte”, … cell n]

Encoded data (~8MB sent over network once per session):
Code: {0: “T cell”, 1: “B cell”, 2: “Monocyte”, … n: cell n}
Run-length encoded: [0, 1, 2, … cell n]
N occurrences: [2, 1, 3, … cell n]

This hybrid approach allows for the simplicity of Python development 
with the scalability of a custom-made web app. The app can be 
developed and maintained by a bioinformatician without extensive 
front-end development expertise. The app is easily deployed in our 
data platform HISE (Human Immune System Explorer).

Conclusions

R/Python web frameworks 
typically favor ease of 
development over scalability, 
often causing frequent server 
trips, redundant data 
retransmissions, and 
requiring all data to be 
loaded into memory, resulting 
in poor scalability.

(A) (B)

Tools

These improvements significantly increase the scalability of large 
data apps in a form that can be maintained by a bioinformatician. 
Additional apps for new modalities are on the way! Explore data 
and apps from the Immune Health Atlas here:

(A)

(B)
(C) (D)

All analysis and data 
from raw data ingestion 
to final visualization are 
fully traceable with our 
Certificate of 
Reproducibility 
framework. 

Traceable analysis Visualization development

For more data and apps, visit: explore.allenimmunology.org

https://explore.allenimmunology.org/

