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Abstract
I tried to create a model that simulates the spread of a disease that does not have a medicine.
I observed the effects of varying parameters, then introduced a concept of deflections which
mimic social distancing and social gatherings. I finally made an attempt to evolve these deflec-
tions based on a performance metric.

1 Introduction

During February 2020, the outbreak of COVID-19 was starting to become a pandemic. I recognized
that this percolation is a complex systems problem. I started this project with the goal of developing
a model that simulates COVID-19-like epidemics and study the behaviour of the agents in order
to determine the best behaviours to mitigate the spread of the disease, hence, the name DisCease.

I created a modified SIR model[2] and considered it as the base model. I observed the outbreak
patterns and then applied various techniques to the model which helps to reduce the spread of the
disease. These techniques are listed below and explored in the Methods section.

e Length based social distancing.

e Perfect deflections with overlap and without overlap.

e Social distancing triggered after 20% of the population gets diseased.
e Social distancing only between unlike-agents.

e Evolved deflections.

I observed that some of these techniques yielded better results than the base model. The
project is deployed at https://discease.akhilez.com/|and I made the entire code open sourced
on GitHub at https://github.com/Akhilez/DisCease

2 Background

Some ideas that inspired this project include the SIR Model[2], Herd Immunity|2], and Genetic
Algorithms.[5]

2.1 SIR model

The Sir Model is a popular model created to predict the number of infections, recoveries and
deaths caused by a certain disease. The SIR model consists of three sets of people which act as
dependent variables. The groups of people being monitored include S(t), I(t) and R(t), which
are the number of susceptible, infected, and recovered people with respect to time (t), which is
an independent variable. The number of Infections increases whenever the Susceptible and the
Infected have contact, and the person infected moves from the Susceptible group into the Infected
group. For some value (3, the rate of new infections is SSI. This results in the first differential
equation
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In addition to this change in state, an Infected person can also be moved into the Recovered

set at a rate of yI. This results in two different equations
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By using all of the equations above, I can summarize the total population as
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By choosing different values for the three different unknowns, and plotting the number of diseased,
Susceptible, and Infected I can monitor and predict how a disease can spread over time.


https://discease.akhilez.com/
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2.2 Herd Immunity

Herd immunity|2] occurs when a large portion of the population has gotten and has become immune
to a disease, making it harder for a virus to spread. Herd Immunity is a way to protect the
vulnerable people within the population. To reach the goal of herd immunity, a large portion of the
population must cooperate. Since depending on people catching and recovering from the disease
is not a reliable way of building immunity, vaccinations are the popular spread of immunization.
Once a certain portion of the population is immunized, viruses can be eradicated.

3 Methods

3.1 System Description

Our modified SIR model consists of a 2D box-like environment with circular agents running around.
I chose 100 agents to be good enough for the selected size of the environment. Adding more agents
to the environment made it overcrowded and difficult to not catch the disease. Each agent has a
location, velocity and an acceleration vector[4]. The dynamics of the system change the acceleration
of the agent only, but not its velocity or location, resulting in higher fluidity in its motion. The
environment adds drag to the moving agents. Each side of the environment is walled, which makes
the agents bounce off when hit. All agents are set to overlap with each other, meaning, they do
not collide, but pass through. I later change this behaviour to observe its effect.

In our base model, each agent will be initialized with a random location and acceleration vector.
They continue in a straight line for a short distance and change their acceleration vector, flinging
them in a new direction. This behaviour makes more sense in this simulation than a simple random
walk.

3.2 Life-Cycle of An Agent

An agent can be in one of 4 states - healthy, diseased, recovered and dead. Every agent starts out
healthy. Each agent has a circular field of vision around it with radius greater than its own body as
seen in Figure Every other agent that lies inside this field of vision is the agent’s neighbour.
When the agent is healthy and its neighbour diseased, there exists a probability proportional to the
contagionRate with which the agent gets infected. As the number of diseased neighbours increase,
this probability gets accumulated and it becomes more likely for the agent to get infected. When an
agent is diseased, it recovers from the disease with a probability proportional to the recoveryRate,
it also may die with a probability proportional to deathRate. When an agent is dead, it has no
effect on the dynamics of the rest of the system. When an agent is recovered, it will become
healthy /susceptible with a probability proportional to the recoveryLossRate. Also note that when
an agent is recovered, it cannot get diseased until it becomes healthy again.

3.3 Social Distancing

Next, I introduced a concept of social-distancing[3]. Here, agents define a circular boundary around
them with radius less than their visual field as seen in Figure No other agent can move inside
this boundary. This ensures that the agents always maintain a certain distance from each other.
This is a loose approximation of social distancing.

(b) Social Distancing: The three agents
here, two healthy and one diseased, show

(a) Visual field of an agent. their social distance boundary.

Figure 3.1



3.4 Deflections

The social distancing approach discussed above is too strict and not flexible to simulate realistic
social-distancing. So, I introduced a concept called deflections that enable more flexible social
distancing behaviours. When an agent sees a neighbour, it can take an action of moving towards
it, or an action of moving away from it. I termed these actions as deflections. Deflections are rules
specific to each agent which dictate whether to move towards or away from another agent in its
vicinity and how strongly. A repulsive force is represented as a negative scalar while the attractive
force is represented as a positive scalar.

An agent can act differently based on the state of its neighbour. For example, the agent would
like to move towards a healthy agent and away from a diseased agent. Likewise, the agent can have
different behaviour based on its own state. For example, a diseased agent might want to move away
from a recovered neighbour and get attracted towards another diseased agent. Finally, I end up
with a force value for each pair of states except the dead state i.e. {(healthy, diseased), (healthy,
recovered), ...}, a total of 9 scalar values. They are represented in a 3x3 matrix where each row
represents the state of the agent and each column representing states of its neighbour. I can see
these deflection matrix in the Figure When there are more than one neighbour in the visual
field, then the deflection force vectors from all the neighbours are summed and normalized for the
final deflection force.

One can imagine how perfect deflections for an agent might look like. I defined perfect deflec-
tions as attraction on the pairs: {(healthy, healthy), (healthy, recovered), (recovered, recovered),
(diseased, diseased)} and repulsion on pairs: {(healthy, diseased), (recovered, diseased)}. This
deflection matrix can be seen in Figure This ensures that no healthy or recovered agent tries
to stick around with a diseased agent, thus, reducing the spread of the disease.

3.5 Herd Immunity

I modeled herd immunity[2] by changing the deflection of (recovered, recovered) to repulsion in
the perfect deflections. With this, the recovered agents try to spread around in the environment.
Because recovered agents cannot get diseased directly, it lowers the overall probability of disease
percolation.

The type of deflections and their effects on the percolation is not limited to the experiments I
have conducted, there may be more interesting permutations of deflections. One more interesting
permutation includes perfect deflections with repulsion between healthy agents. This shows a social
distancing phenomenon not only between different groups but also between the individuals of the
same group.

3.6 Evolution

One major question I asked ourselves is ”Can I evolve deflections?”. I then made an attempt to
test the hypothesis. I ran the simulation for 400 episodes where each episode is 1500 time-steps.
3.6.1 Genes

I considered the deflection matrix as the genes of the agents. The genes remain unchanged through-
out the agent’s lifetime. The system starts out with random deflections.

3.6.2 Performance Metric

After each episode, the agents’ score is calculated from the formula below:

nEpisodes (5)
score =
nDiseased + nSpread

Here nEpisodes is the number of episodes the agent survived. nDiseased is the number of times
the agent got diseased. And nSpread is the number of neighbours the agent spread its disease to.

This formula penalizes the score of the agents that get diseased often or that spreads the
disease often. It rewards the agents which survive the episode. This way, I can drive the evolution
to maximize survival and minimize death.

3.6.3 Selection Mechanism

After each episode, I select the agents for next episode with the following criteria:

e 50% of the agents of the next episode are taken directly from the best half of the previous
episode.



e 40% of the agents are mutated copies of the agents of the previous episode picked with a
probability proportional to its score. This is also called roulette wheel probability. The
mutation is performed by adding a small random value between in the range [-0.1, 0.1] to the
deflections element-wise.

e 10% of the agents are new agents with random deflections.

The idea behind this approach is that as agents with genes that try to attract towards diseased
agents will tend to get infected, this will result in a low score. But the agents that repel diseased
agents will have lower probability of getting infected, scoring higher. In this way, the system will
eventually leave out the agents with bad genes and propagate the fitter genes through the episodes.
In practice, however, this kind of evolution is not monotonic. The following section contains further
details on this.

4 Results

I ran the simulation and took observations for many parameter combinations. Due to a large
number of possibilities in varying the parameters, I filtered out the most interesting combinations
and assigned serial numbers (SN{1, 2, ...}) to them. I ran the simulation for 1500 time-steps.
They are as follows:

e Base model

SN1: Vanilla base model
SN2: High death rate

SN3: High recovery rate
SN4: Low recovery rate
SN5: High contagion rate
SN6: High recovery loss rate
SNT7: Social distancing

e Perfect deflections model

SN8: Vanilla perfect deflections

SN9: No overlap between the agents
SN10: Social distancing
SN11: Social distancing after 20% of the population gets diseased
SN12: Social distancing disabled for like-agents (with same state)
SN13: 3x increase in deflection force

SN16: Repulsion between recovered agents
e Evolutionary model

SN14: Beginning of the evolution
SN15: End of the evolution
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Figure 4.1: Performance of all cases
SN1: The base vanilla model is tuned to match the standard SIR model as seen in Figure

I will be comparing other cases with this base model to make judgements. SN2: From the
Figures [I.1] and4.2D] I see that when death rate of a disease is high, then the disease doesn’t spread



as much. This is good for the goal of this project, but many agents die in the process. SN3: A
better outcome is seen in the next case where I increased the recovery rate to a high value. As in
Figure the spread is small because as agents get infected, the soon recover and do not further
spread the disease. SN4: I then lowered the recovery rate and the outcome was disastrous as seen
in Figure SN5: Having high contagion rate is not as bad as having low recovery rate, this
is seen in the Figures and Figure SN6: However, the worst case of all turned out to be
the one where the recovered agents lose their immunity quickly. As seen in Figure the number
of diseased agents does not drop throughout the run. SN7: When I enabled length based social
distancing, the system took longer to reach outbreak (the point in the population graph where
number of diseased is equal to the number of healthy) as seen in Figure Although social
distancing helped prolong the spread of the disease, the system still had an outbreak. Increasing
the social distance made the outbreak happen later in time.
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(e) SN5: High contagion rate (f) SN6: High recovery loss rate
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Figure 4.2: Population graphs of base model variants

SN8: When I introduced perfect deflections into the system, many interesting patterns emerged.
All the healthy and recovered agents form small groups from randomness. They resist coming
close to diseased agents, which form their own groups. Formation of these groups is analogous to
forming social gatherings between healthy agents and restraining diseased agents into quarantine
cells. Ideally, this type of behaviour will restrict the spread of the disease completely and that
is what I see in some simulations shown in Figure However, there is one major flaw in this
system. Whenever an agent inside a group of healthy ones gets infected, then almost all the agents
in that group get infected. The diseased population suddenly bursts into a large number. I see this
in Figure [4.3cl Sometimes, this system spreads the disease and follows a similar trend to the base
model, this is seen in Figure



I then modified this model with a few variations. SIN9: I removed the overlapping rule and
made the agents collide with each other. I observed a pattern that is very similar to swarm or
flock where a large group of agents move in sync and form a macro-organism. However, due to this
change, the gap between two agents becomes smaller on the whole and the probability of being in
the vicinity of a diseased agent rises. SNN10: I also added length based social distancing among
all agents which had a similar effect to the previous case. SN11: I then enabled social distancing
after 20% of the population gets diseased. This is better than the base model, but suffers the
problems of SN9. SN12: Now, I enabled overlapping and added length based social distancing to
agents of different state. This produced the most robust model I have seen in our experiments as
seen in the Figure In half of the cases, the disease does not even cause an outbreak, similar
to the Figure SIN13: Since the perfect deflection model is so good, I tried increasing the
strength of the deflections by 3. The agents immediately become flock-like and form dense groups.
The disease-burst problem gets worse in this scenario and majority of the population gets diseased
at once.
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Figure 4.3: Population graphs of deflection model variants

SN14 & SN15: Finally, I ran the evolutionary algorithm and the results were quite outstand-
ing. The evolution started off with random genes as shown in Figure[{.4a] The population graph at
the beginning of the evolution is seen in Figure which is similar to the base model as expected.
After 400 episodes, the model evolved genes shown in Figure [£.4b] that are somewhat similar to
the perfect deflections defined as Figure I also see in Figure that the evolved model per-
forms better than the same model at the beginning of the evolution and is slightly better than
the base model, but much weaker than the model of perfect deflection (SN8). The model learned
to maintain social distancing in order to prevent the disease. This shows that the evolutionary
algorithm works. The population graph of the evolved model is similar to that of SN&, the system
with perfect deflections. The mean score of all the agents in the system keeps increasing overtime
as seen in the Figure due to the selection process.

One striking difference that I see in the evolved genes is that the deflection between the recovered
agents is repulsive. This is exactly what I did to achieve herd immunity. It was surprising to see
the evolution figure that out.
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Figure 4.6: Population graphs of evolutionary model.

Conclusion

I have successfully demonstrated that social distancing is a key factor in preventing the percolation
of a disease in a highly active and dynamic system. I also demonstrated that herd immunity helps
in this process. Furthermore, I evolved the system itself to mitigate the spread and it resulted
in a system with social distancing and herd immunity. One issue with the evolutionary process I
found is that it follows preferential attachment[1] where the agents of the higher score will always
remain in the system even if they have a few bad deflections in their genes. Another issue is that

the

evolved system will always have agents with random deflections due to the selection process.

These limitations will never let evolution reach 100% perfection.
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