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Abstract—Deep Reinforcement Learning is a branch of ma-
chine learning techniques that is used to find out the best
possible path given a situation. It is an interesting domain of
algorithms ranging from basic multi-arm bandit problems to
playing complex games like Dota 2. This paper surveys the
research work on model-free approaches to deep reinforcement
learning like Deep Q Learning, Policy Gradients, Actor-Critic
methods and other recent advancements.

I. INTRODUCTION

Reinforcement Learning (RL) is one of the core branches
of Artificial Intelligence, first popularized in 1961 by Marwin
Minsky’s popular paper titled “Steps Towards Artificial Intel-
ligence” [1]. Any algorithm that learns to achieve a task by
trial and error can be considered as Reinforcement Learning.

Most RL applications are Game players. It might seem as
if RL is not particularly useful to the real world. However RL
can solve real world problems, for example, Google applied
a RL algorithm to cool down their data center by 40% [2].
Also RL is used in drug development [3]. And it is used in
a myriad of control tasks like moving a robotic arm [4]. In a
sense, RL algorithms encapsulate a primitive type of general
intelligence as it learns to play in complex environments. Our
world can also be seen as a highly complex RL environment
and we are all agents trying to maximize our personal rewards.
So RL algorithms when scaled up could unlock the potential
of Artificial General Intelligence [5].

The aim of this study is to outline the significant research
works done on different optimizations methods used in model-
free RL. We will see how Q Learning algorithm learns to play
Atari games in Section 2. Then we will see how Policy Gra-
dient method targets the modeling and optimizing the policy
directly in Section 3. Section 4 dives into the combination of
Q Learning and Policy Gradients called Actor-Critic Method.
In Section 5, we will see further developments in the three
ideas discussed in the first three sections and discuss how
the improvements were made and which algorithm suits what
kind of learning task. Finally, in Section 6, we will briefly
discuss other approaches and recent advancements in Deep
Reinforcement Learning.

A. The Reinforcement Learning Framework

The main characters in reinforcement learning are the agent
and the environment, wherein an agent learns by interacting

with the environment it lives in. Here, the environment is the
observable world. A state of the environment is a snapshot
of the observable world at a given time-step. An agent is the
player or the RL algorithm itself. The agent takes an action
from the action space in the environment at each time-step,
which results in a change in the environment. This action is
decided by our algorithm. A reward is received by the agent,
which indicates how good or bad the action was. The goal
of the agent is to execute the optimal sequence of actions in
order to gain maximum rewards.

For example, in Chess, the chessboard and all the pieces are
the environment and the player is the agent. Winning a chess
game would give a positive reward, and losing a pawn would
give a negative reward.

B. The Deep in Deep Reinforcement Learning

The very first RL programs were under the branch of
Dynamic Programming [6] [7]. Interestingly however, the
early research on RL was actually loosely based on Neural
Networks back in 1954 by the Godfather of Al research,
Marwin Minsky, along with Farley and Clark [8]. Their work
involved building an analog machine with components called
SNARC:Ss (Stochastic Neural-Analog Reinforcement Calcula-
tors) which learns by trial-and-error. Even Rosenblatt, the
pioneer of neural networks used terms like “rewards” and
“punishments” indicating that he was inspired by RL. Today,
the most powerful Reinforcement Learning algorithms rely on
Neural Networks. In fact, Deep Learning has revolutionized
many fields since 2011. After DeepMind’s Atari paper in
2013 [9], numerous Reinforcement Learning approaches were
published.

A neural network is a large-scale differentiable mathe-
matical function with many coefficients or weights that can
be tuned in many iterations by a differentiation algorithm
called back-propagation. A typical neural network performs
a series of operations segmented in “layers” where each layer
typically takes an n dimensional matrix as input, applies matrix
multiplication, addition and a non-linearity function to the
input and outputs a matrix of m dimensions. Each layer has
its own parameters or weights which are matrices with which
the input gets multiplied. These weights are set to random
values initially and the network learns optimal weights over
the training period. They learn their weights by calculating a



loss value for each input-output and updates its parameters to
minimize this loss value. The learning happens by calculating
the partial derivative of the loss value with respect to each of
the parameters in the network. Then the derivative is multiplied
with a small value between 0-1 called the learning rate and
is subtracted from the weight. This process is called gradient
descent and the idea of updating the weights layer by layer
is called back-propagation [10] All of its parameter tuning
happens only by passing in the right data. So these neural
networks act as complex function approximators. They learn
sophisticated patterns in data which may not be feasible to
learn by traditional machine learning algorithms. This is the
reason why Deep Learning brought a revolution in the field
of RL.

C. Taxonomy of RL Algorithms

There are two types of RL algorithms. One is model-based
RL and the other is model-free RL [11]. A model-based
algorithm tries to “understand” how the world works. It often
does this by predicting the next states and rewards and then
takes optimal actions. Although model-based algorithms are
mostly better than model-free, they tend to easily inject bias
in its understanding of the world model.

However, it is not necessary to learn a model to get good
enough policy. The agent can instead learn a sequence of
actions directly using algorithms like Policy Gradients, Q-
learning and Actor-Critic. These algorithms are called model-
free RL algorithms and they rely on real samples from the
environment and don’t try to create a model of the world to
find the optimal policy.

There are other types of RL algorithms that don’t quite
fit into a traditional tree like taxonomy like Hierarchical
RL, Exploration and Curiosity based RL and Combination of
Monte Carlo Tree Search with Q Learning.

II. DEEP Q LEARNING

The first paper that took off with the Deep Learning
revolution is the DeepMind’s “Playing Atari with Deep Re-
inforcement Learning” which learned to play multiple Atari
games at a super-human level performance [9]. DeepMind
used an algorithm called Deep Q Learning with some smart
tricks to learn multiple games with the same model. The model
takes in the last 4 frames of the game as raw pixel values and
outputs a “value” for each action the agent can take which
says how values each action is. This value is also known as
the Q value.

Q(s) = f(Als) (1)

Where f is a function of set of all actions A given a state s.
The model architecture consisted of a series of Convolutional
Neural Networks (CNNs) which are type of layers designed
to work well with images. Then the output from CNNs is
flattened and passed through a series of Fully Connected
Layers. The last layer would have 4 or so outputs depending
on the number of actions. Each hidden layer has ReLU as the
activation or non-linearity function and the last layer uses tanh
non-linearity.
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Fig. 1. A screenshot from a famous Atari game called Breakout. The agent
moves the paddle left or right and bounce the ball at different angles to smash
all the bricks at the top.

To train a network to learn the Q value, we need the correct
Q values. The correct Q values are nothing but discounted sum
of rewards.

n
Qr = ZVF%E =r+Y'r o+ Q)
i=t

Where ~y is a small quantity close to 1 like 0.99, r; is the
reward observed at time-step ¢ and n is the length of the
episode. These terms are just recursions of itself. Luckily, we
don’t need to compute the recursion every time. The terms
after the first term can be replaced with Q value of the next
state. However, we will use the maximum predicted Q value
of the next state from out neural network and don’t interact
with the environment for future rewards. This means that we
are using the predicted value of next state to improve the
prediction of the value of the current state. This prediction
on prediction is called bootstrapping which we will use again
in Section 4.

Qe =1t +7.Qi41 3)

The neural network in the beginning of its training will be
initialized randomly. So, it predicts random Q values for each
action and learns to predict accurately over the training period.
If we decide to only take the action for the highest predicted
Q value, we could get stuck in learning. This is because
the network might randomly give highest Q value to some
sub-optimal action in the beginning. If the agent wins the
episode, then the sub-optimal action gets positively reinforced
and makes it the highest value for the next episode. This
continues and the optimal action might never get a chance to
be selected. This is a famous problem of choosing Exploration
vs Exploitation.



One solution to this problem is to use an epsilon e proba-
bility exploration which this paper has used. We would define
a small number between 0 and 1 called € which defines the
probability of exploration. This means that with probability e,
we take a random action. We take the action with highest
Q values rest of the times. In the Atari paper, DeepMind
used a decaying € where € starts off as 1 because all actions
are randomly valued and with every epoch, € is decreased.
Overtime, the network gets better at predicting the Q values,
so we take the highest Q valued action - exploitation.

There is one more problem that the Atari paper has solved.
The agent quickly forgets what it has learned. Because the
learning is completely on-line i.e. the learning happens right
after taking an action, the gradients oscillate and produce too
much of noise. For example, lets take an environment where
there is a pit in some random direction (left or right) around the
agent. The agent has to figure out where this pit is located and
move opposite to that. If in the first episode, the pit is located
in the left, and the agent moves left, it loses the game. Here
the parameters get updated so that going left is penalized and
learns to go to the right. However, if in the next episode, the
pit is located in the right and if the agent chooses to the right,
the agent loses the game again. This time, the gradients get
reset back to the original because now going right is penalized
and the agent learns to go left. Overall, the agent did not learn
anything. It forgot what it has learned. This is generally not
how supervised algorithms learn. In supervised algorithms, the
learning happens in batches. The gradients add up in the batch
and an overall gradient update is made at once. This is taken as
motivation and used in this framework. The researchers let the
agent run in the environment for some number of episodes and
all the transitions are recorded in an experience buffer. Then a
random subset of action samples from the experience buffer is
taken and trained upon. After training, they let the agent run
in the environment again and the experiences are queued into
the experience buffer. In practice, as the queue size is limited,
old experiences are deleted to accommodate new experiences.
This way, a batch learning scheme was applied in the Atari
paper. This approach of training on old experiences is termed
as experience replay.

ITII. PoLICY GRADIENTS

Instead of dealing with the complexity of value functions of
state action pairs, Policy Gradient algorithms simply learn to
predict the action to take or a probability distribution over the
set of actions. One of the first policy gradient algorithms based
on neural networks is REINFORCE [12] by Ronald J Williams
and it was practically put in terms of deep learning framework
by Sutton et all [13]. A policy is a function that maps states
to the best actions. It is the plan of action to be taken to gain
the most rewards. This algorithm involved a neural network
where the input is the state of the environment and the output
is a probability distribution of all the actions that the agent
could take. The network could also output real valued actions
directly like seen in [14] which we’ll see in the next section.
An action is sampled with the probability distribution ie action

with highest probability will be picked the most. Since the
weights of the neural network are set to random initially,
the agent would take random actions. Occasionally, the agent
gains a reward, say by winning the game. Then the actions
that lead up to the winning action are considered as “good”
actions and we reinforce them. However, not all actions in
the episode lead to the win, some of them might be bad,
but on overall, most of the actions lead to the winning of
the episode. This is the principle behind the REINFORCE
algorithm - although there are bad actions, in a long term,
good actions get reinforced. However, not all actions are given
the same weight. In environments like balancing a pole on a
cart, the actions that lead to the fall of the pole are at the end
of the episode. These ending actions must be given less credit
or ignored because they didn’t help us win the episode. In this
case, the actions in the beginning of the episode must be given
higher credit and each succeeding action gets exponentially
lower credit. This might be opposite in the environments like
playing tic-tac-toe where the last move is the most significant
one in which case, the actions at the end of the episode gets the
highest credit. This problem of crediting the actions is called
the problem of credit assignment.

To train the weights of the model, we need to compute some
loss value out of the probability distribution and then minimize
that value. Consider multiplying the probability value with the
reward and summing them all for an episode. Now we want
to maximize this value. However, neural networks work well
with loss that minimizes. So we will multiply this value with
-1 and minimize it. Now, out loss function becomes:

J = —Zw(st,at).rt.ct (4)

t

Where J is the loss, 7(s;, a;) is the predicted probability value
for the state s and action a at time-step ¢. r; is the reward
observed and c; is the credit assigned to that time-step. This
loss works, but there it can be improved to train better. Instead
of using the immediate reward only, we could use return. A
return is a discounted sum of future rewards.

Ro=Y 4" )
t

Here -y is a small value like 0.99 and ¢ is the time-step. We can
also change it to use log(7 (s, at)) instead of 7(s¢, a;). When
a probability value close to 1, the log value is close to 0 and
when the probability value is close to 0, the log probability
value is close to negative infinity. This gives a nice scaled
value to the network to learn without which we would need a
lot of precision points to store small probability values. Now
our loss function becomes

J=— Zlog(w(sh at)).Ry.ct (6)
t

IV. ACTOR-CRITIC

Policy Gradient algorithms is usually better or equally as
good as Deep Q Learning. However, the main disadvantage
of Policy Gradient is that it requires a complete run of an



episode to determine the loss and backpropagate. This is also
called Monte Carlo method of Reinforcement Learning. This
gets challenging really quick when we use it for long running
episodes like in the game of chess. The reward may be gained
so far into the future that any action in the beginning makes
equal sense. Moreover, the value networks can potentially be
highly biased, but with low variance. On the other hand, the
advantage of DQL is that it can be trained in a truly online
fashion and they can be less biased, but can potentially have
high variance. It makes sense to combine the best of Policy
Gradients and the Q Learning method.

The Actor-Critic paper by Mnih et al (A3C) does just
that [15]. It consists of two networks. A policy network that
predicts the policy or the action probabilities. A value network
which predicts the state values. Note that in the Deep Q
Learning above, we discussed a neural network that predicts
state-action values, but here we predict state value. This is
because the action is already selected by the policy network,
so we don’t need values for each action, but only state. We
could however use state-action values, but it is usually not
used as it takes longer to train.

In our policy gradient loss function, we used the return
R to multiply with the log probabilities. We use the same
approach here, but instead of using just the return values, we
will use use (R; — V(s¢)) where V(s;) is the value of state
s at time step ¢ that is predicted by the value network. This
new term is called Advantage. The value network, as usual
tries to predict the expected discounted sum of rewards. And
the term (R; — V(s;)) will give us the value of how much
(more or less) rewards did we actually observe compared the
rewards we expected. This is why the term Advantage comes
in the name of A2C - Advantage Actor-Critic. For example,
for a state if we predict the state value as +4, that means
that on average, we got reward as 4 for that particular state.
And if the actual reward on taking a predicted action (from
actor network) is, say +10, then we beat our expectation by
10 - 4 = +6. This means that the predicted action led the
agent to gain 6 additional rewards than usual. So the action
must be reinforced. This is what advantage term does to the
training behaviour - learn by beating the expected rewards. At
the same time, the value network learns that the value of the
state is not 4, but 10. This makes the value function predict
accurate rewards, trying to match what the actor would do.
This brings an adversarial relationship between the actor and
the critic which is the key idea behind the Actor-Critic method.

When it comes to online vs Monte-Carlo training, the A3C
paper introduces an n-step online training. They say that in a
completely online training, the value predictions by the value
network are of high variance. However, given an n time-steps
(less than the length of the episode), the Q network can predict
better state value for the (n+1)th state. This is the idea behind
n-step online training.

For the first n time-steps, the predicted state values, rewards,
and predicted actions are stored in a buffer along with one
additional value - the predicted state value of (n+1)th state.
This (n+1)th state value is used as the discounted sum of

rewards for all the states after n time-step when calculating
the returns R.

R=ri4+~vry +72r3+...+7"+f/(5n+1) @)

Here V (s, 1) is the predicted value of the state s at time-step
n+1 We are essentially bootstrapping the policy network using
the prediction from the value network. This seems to smoothen
the training loss and also help train as fast as twice the speed
of Monte-Carlo training.

In practice, we do not use two different neural networks for
actor and critic. We use a single Neural Network with two
heads. The input would be the state and the neural network
gets forked into two different heads where one head outputs
the policy and the other predicts the state values. Both the actor
and critic share the initial layers of the neural network. The
critic’s head is usually detached from the computational graph
so that its gradients do not flow through the shared layers. This
is done because we don’t want the actor and critic rub against
each other and mess up the initial layers. We want only the
actor’s gradients to flow through the shared layers for better
training speed.

The loss function of the actor is similar to Policy Gradient
but with Advantage. (loss function here)

Jo=—1xy*x(R—v(s))*7(a]|s) (8)

The critic’s loss function is simply the Mean Squared Error
of the predicted value and the observed discounted sum of
rewards.

J. = (R—v)’ 9)

In the Atari paper, the authors used a technique called ex-
perience replay which samples random timesteps form the
experience buffer to train. We could use the same principle
here as well. However, most Actor Critic approaches use a type
of neural network called Recurrent Neural Network (RNNs).
RNNs work on sequences of data. It does use batched data, but
batches of sequences. So randomly sampling timesteps would
require storing the hidden weights or cell states of the RNNs in
the experience buffer along with their gradients which is not
desirable. So the authors here introduced a training scheme
where multiple different environments are setup in parallel.
The neural network is shared among all the environments.
There would be multiple agents each running in their respec-
tive environment and producing different experiences. All of
these agents produce the gradients asynchronously which will
then be summed or averaged and updated. This is why the term
Asynchronous comes into the name of the algorithm A3C -
Asynchronous Advantage Actor Critic.

V. FURTHER DEVELOPMENTS
A. Prioritized Experience Replay

We have seen that in Deep Q Learning, experience replay
was introduced to solve the problem of catastrophic forgetting.
A naive way of experience replay is to use random sampling
from the experience replay buffer. We could make this better
by giving more sampling probability to the experiences that



led to a win. However, if we do this, the network might see
the same winning experiences again and again and might
overfit the policy to those experiences. This leads to poor
performance on varied experiences. Schaul et al has proposed
a new and complex technique [16] to solve this problem. For
every episode the agent plays, they would store loss value
associated with that episode along with the experience itself
in the experience buffer. When sampling the experiences for
training, the team would assign higher sampling probability to
the episodes that had higher loss value. This means that the
experiences that the network performed poorly will be trained
more. After a while of training, the network becomes good at
the episodes that it was poor on. Then the whole experience
buffer is refreshed with new loss values and the sampling is
done again with new loss values. This proved to be an effective
approach to catastrophic forgetting.

B. Distributed Q Learning

An important advancement of DQL is Distributed Q Learn-
ing. Bellman’s equation states that given a state and an
action, the next state is always deterministic. However, in
some environments, there may be some random variable that
injects randomness into the state transitions. The prediction
of the value of a state action becomes difficult if the next
state is also dependant on randomness. Thus, to solve this
problem, Bellemare et al introduced a concept of Distributional
Q Learning. In this algorithm, instead of predicting a single
Q value for a state action pair, the model predicts a whole
distribution. Different parts of the distribution associates to Q
values of different state transitions.

C. Trust Region Policy Optimization

The problem with vanilla policy gradient is that with the
gradients take a huge step in the parameter update that the
parameters go beyond the curvature of the loss function and
end up with unusually high loss. This also happens because
unlike supervised learning, the loss function is highly noisy
and not smooth or monotonic. Consider a loss function which
looks like yy = x? where Y-axis represents the loss and the
X-axis represents the weight. When the loss is very high,
taking a fairly large step in X-axis towards would yield lower
loss. However, as x approaches the origin, taking larger steps
is highly risky as the step update goes beyond the origin
which is the lowest loss value and overshoots into high loss
region. So the loss functions could be quite sensitive and the
parameter updates need to be made more carefully. This is
the idea behind developing Trust Region Policy Optimization
(TRPO) [17]. There are two new things here. (1) Instead of
using logarithm of action probabilities in the loss function,
this approach uses.

mo(alsn)
q(alsn)

(2) The weight updates are constrained within their KL diver-
gence value.

ESNpeold [DKL(T‘-QOM("S)‘|7r9('|8))] <9d

J=E4uq 0010 (Sns @) (10)

(1)

This means that we always need to maintain a copy of what
the previous weights were.

D. Proximal Policy Optimization

The problem with TRPO is that the KL divergence con-
straint can be an overhead to the algorithm and sometimes can
lead to unusual training behavior. So the idea behind Proximal
Policy Optimization (PPO) [18] is to include this constraint
directly into the loss function. From the loss function of TRPO,
the log probability is replaced with 7,(6) as follows

mo(at|st)
0514 (at |st)

We can see that the ratio r;(6) is greater than 1 if the updates
are more likely to be newer than the previous weights. If it
is between 0-1, then the updates are likely to be close to the
previous weights. Instead of constraining the updates, the idea
here is to clip the returns to a smaller values so that the updates
don’t go too far from the previous weights. The value to be
clipped is included in the loss function as below.

r(0) = 12)

LELIP(0) = By [min(ry(0) Ay, clip(re(6),1 — €, 1 + E)At)l

13)
Essentially, the loss value gets flattened out when returns R
gets too high, hence flattening the gradient updates. When R
is negative, the loss flattens out before R approaches 0 without
which the gradients would be too small to have a meaningful
change in the weights. Finally, the PPO objective function
is much simpler to calculate than finding the complex KL
Divergence from TRPO. It is shown that this helps train faster
and also outperforms TRPO.

E. Deterministic Policy Gradients

So far we have seen the actions as discrete set of classes.
These actions could be like up”, ”down”, ”jump”, ’shoot” etc.
But some RL tasks involve continuous actions. For example,
training a robotic arm to control a rubik’s cube will involve
a lot of continuous actions like rotating the wrist by 20.4
degrees and index finger by 3.9 degrees etc. We cannot use a
Q Learning approach here because it excepts the actions to be
limited. Otherwise, the model would have to predict a Q value
for infinitely large number of actions. We could discretize the
actions, but there is no upper or lower bound to the action
value. Moreover, if the model needs to produce multiple action
values, then the actions could quickly go into thousands in
number. So, Q Learning is clearly not the right approach. This
is what this paper [14] tries to solve using Policy Gradients.
It is similar to the regular Actor-Critic, except that the critic
in this case predicts the Q value for the given state and action
rather than just the state. It uses separate models for the
actor and critic. The states, actions and rewards are randomly
sampled, the actions that actor takes are put into the critic
network, then the losses and gradients are determined and then
the parameters are updated for both models. The loss on the
critic is

1
J = ﬁZ@i — Q(s4,ai|09))? (14)



Yi =1+ VQ/(SiH’M/(St+1|Q“/)|9QI) (15)
Its gradient on the loss function is as follows.
Vi d =Eqnps [VorQ(s, al09) smsy amu(siion)]  (16)

Since these actions are continuous numbers and not individual
classes, the gradient directly helps in tuning the action values.
This makes the policy deterministic as opposed to stochastic
from previous approaches [19].

E Soft Actor-Critic

The problem with TRPO and PPO is that their sampling
efficiency is low. Meaning, every time you want to train the
model, you need to play episodes in parallel and create a batch
of training data. We could store the batches in memory but it
is usually not done because when used with RNNS, random
sampling loses the data related to hidden or cell states ie it
requires sequential data. DDPG ditches this idea and uses
random batch sampling with replay buffer. Although this is
efficient, it tends to be unstable compared to TRPO and PPO.
Haarnoja et al introduced an approach called Soft Actor Critic
(SAC) that combines the best of both worlds [20]. SAC uses
stochastic policies and replay buffer and performs more stable
than DDPG and has better sampling efficiency than TRPO and
PPO. The key idea of SAC is that it gives higher probability
to exploration. If we consider the approaches above, as the
training proceeds, the probability distribution over the set of
actions tends to converge to a single action. This makes the
policy deterministic and other actions get lower chances of
getting picked. Its loss function is defined in such a way that
it tries to maximize the rewards as well as entropy. The policy
is defined as

7" = argmaxy, Z]E(s,:,at) 5 p [T(8¢,0¢) + aH (7 (.]s¢))]
t

a7
The last term in the equation above is the entropy term which
is defined as

H(7([st)) = Eann(|s) [-log(m(als))]

Roughly, it combines the expected rewards and negative log
probability of all actions and picks the action with maximum
value.

(18)

VI. OTHER APPROACHES
A. Hierarchical Reinforcement Learning

The idea behind hierarchical reinforcement learning is that
actions don’t need to be fine-grained. Simple actions can be
abstracted into more complex actions. For example, when we
walk, we don’t think about moving individual muscle fibres.
We simply consider walking as a single action More fine-
grained details can be abstracted. Vezhnevets et al, 2016 [21],
2017 [22] and Nachum et al, 2018 [23] demonstrated the idea
of Hierarchical Reinforcement Learning with Deep Learning.
Using their model, an agent can plan and take macro actions.
For example, in a grid world like environment, instead of
taking actions like up, up, up, up, right; the agent could take

macro actions like ”go all the way up an then take a right”.
These macro actions are also called options. An option is the
combination of an option policy, a termination condition, and
an input set. The model would first select an option policy
based on the state. Then all further actions are decided by the
policy network of the selected option until the termination
condition is met. After that, an option policy is selected
again and this continues. Here the neural network within an
option policy can be a smaller one because it only deals with
particular type of states.

B. Exploration-based - Curiosity Driven

The Atari model did play beyond human level for few
games, but was much worse on a few games. For example,
in the game of Montezuma’s Revenge, it couldn’t even pass
the first level. [24] The reason for this poor performance is that
the way rewards were given in simple games like Breakout.
For every few random actions taken by the model, it was likely
that some actions were given positive reward. This reinforces
the good actions. And the reward system is frequent enough
to keep getting positive rewards ever so often to learn from
them. In other words, the reward system is Dense. In games
like Montezuma’s Revenge, the agent would need to move
around and avoid obstacles and obtain a key. It requires long-
term planning and the rewards doesn’t appear until the key is
found. This is called the Sparse reward problem.

The most interesting paper in this area is [25]. The re-
searchers developed a complex learning framework. The re-
wards can be extrinsic (explicitly given by the environment)
or intrinsic (gathered from exploration). The randomness in
state transition is also rectified by using scheme where only
the parts of the state that get influenced by the action are taken
into consideration. The algorithm is capable of learning only
from the extrinsic rewards or only from the intrinsic rewards
(self-supervised / exploration / curiosity based) and it is also
capable of remembering the seen states and exploits using the
learned experience.

Benjamin Eysenbach et al with their paper “Diversity Is All
You Need” [26] takes an extreme approach where the agent
completely learns only from the intrinsic rewards. Previously,
Justin Fu et al [27] used a memory-like network where the
agent learns to distinguish visited states vs unseen states. One
of the earliest paper that uses exploration [28] used bayesian
neural networks for the exploration.

C. Model based

We usually refer to our Neural Network as the model. But in
context of model-based reinforcement learning, the model is an
approximation of the environment. Nicely enough, this model
is actually approximated by a neural network. In the Deep
Q Learning, Policy Gradient or other model-free methods, all
we cared about is how good the model predicts the optimal
actions. In model-based method however, we also care about
how good the model predicts the behavior of the actual model
[29]. The main goal of model-based approaches is to let
the agent make necessary long-term planning into the future



before deciding on what action to take. It can look several
steps into the future and see the consequences of taking an
immediate action. A simple approach to model-based planning
is to have a different neural network that can predict the future
state. And we can feed this future state s;;; into the same
network and get a future state s;yo. This can get increasingly
worse as we look further into the future. However, predicting
few states into the future can also be helpful in planning the
right action.

D. Monte Carlo Tree Search

In games like Chess or Go, there exists an opponent who
generally plays just like the agent. In environments like these
where there is an opponent agent with whom we want to
compete and win, approaches like tree searching are common.
In a traditional monte carlo tree search, the algorithm would
consider all possible actions, then for each state transition,
it computes the all the state transitions and it goes like a
tree until the algorithm reaches the first winning state depth-
wise [30]. The action that lead towards this winning path is
then taken. This can also be complemented with a MiniMax
approach where the model computes all the actions of the
opponent and makes similarly figures out what the best action
for the opponent is. Then we use a method called alpha-beta
pruning and pick the best action. IBM had created a world-
class chess playing Al that did not use any deep learning
[31]. It was solely based on some smart Monte Carlo Tree
Search based algorithms. However, as the number of states
increase, it gets exponentially difficult to trace all the actions
and generate the tree. This is where deep learning comes into
play. The AlphaGo algorithm developed by DeepMind had
beaten the world-class Go player with a 4:1 win [32]. In this
paper, instead of considering all the state transitions, the deep
learning model chooses the best actions based on a state action
value prediction. Then these actions are considered for the
next layer of nodes in the tree. The state-action values are
again predicted for each action and this continues until the
algorithm finds a path where it wins. These kind of algorithms
that combine deep learning and traditional tree search methods
are state-of-the-art for the type of games like Chess and Go.

VII. CONCLUSION

From my brief exploration of Model-Free Deep Reinforce-
ment Learning, it appears that the domain of Reinforcement
Learning after involvement of Deep Learning has not only
become a vast field, but also a deeper field with many rabbit
holes. An interesting find is that most of the advancements
in Deep Reinforcement Learning happened just a few years
ago. This indicates that the field is still in its infancy and
has a lot of potential to improve, especially the Model-
Based branch of DRL. In its essence Deep Reinforcement
Learning could be one of the first baby steps towards Artificial
General Intelligence which is the holy-grail of all of Artificial
Intelligence domain.

To summarize, we have seen that Deep Learning plays a
huge part in Reinforcement Learning domain. They can predict

the state or state-action value functions with Deep Q Learning
framework. They can also predict the policy directly using
Policy Gradient algorithms like REINFORCE. We have seen
that we can combine the Q Learning and Policy Gradient into
Actor-Critic networks and develop various kinds of algorithms
like TRPO, PPO, DDPG, SAC, etc. Finally, we have seen that
there are other more advanced and fascinating ideas being ex-
plored like Hierarchical RL, Curiosity and Exploration based
RL and Model-Based RL that have a tremendous potential in
this domain.
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