
MetaStore
gRPC and Protobuf meta registry

Speaker - Alex Van Boxel
twitter: @alexvb

● Lead Data Architect - Veepee.com

(what’s a big data guy doing at a gRPC conference?!)

● Tech Geek

● Google Developer Expert

Key takeaways… (what already?!)

● We need a schema registry for Protobuf/gRPC

● We need a standard registry API more!
○ Look for every logo in the diagrams

● MetaStore wants to be a reference implementation, but it

doesn’t want to be the only one

History
Before MetaStore

Take 1 - Big Data, the old way
ETL - Extract > Transform > Load

Source schema changes resulted in

● Extraction failure (SQL queries)
○ Column changes or removal resulted in SQL failures
○ Addition were not picked up

● Transform
○ Deprecated column still used in transforms

Take 2 - Streaming Data
Opportunity for designing a new system.

Options on the table

● gRPC for microservice API

● Protobuf over PubSub
○ For async communication

○ For entry transfer to data warehouse

Take 2 - Streaming Data
Lost the fight on

● No gRPC, .NET usage not idiomatic
● No contract first on Protobuf (oh dear…)

But we paid a price

Problem
Domain

You learn for the past

Not going contract first
Developers are very resistant for contract first, mostly it doesn’t
fit in the agile workflow mindset, but not doing so...

● Flaky interoperability
● Bad design
● No client libraries

Big Data - Configuration
Configuration of the data pipelines where to far away from the
contracts

● Leading to very complex configuration files
● Referencing fields in the contracts

Solution
Take 3

[1] Contract First
Learn for past mistakes

Contract first - API - gRPC
Ever tried writing swagger, by hand. I did... it's not fun...

Very well supported on major languages, even Microsoft is
onboard in .NET Core 3.0

[1] Contract first - Bus - Protobuf
It’s data, why use another format over your async bus (be it
Pub/Sub, Kafka, RabbitMQ, …)

● Consistent way of working

● Single tool chain

● Same message can go over the API

(we saw it happen in the past anyway)

[2] Safety first
Contract first is not enough

[2] Contract first - Safeguards
Tool that police schema correctness and evolution - MetaStore

● Linting

● Diffing

[2] Safety - Schema best practices (lint)
Examples of linting

● Contract leakage - It MUST always be an error when an other version of the same
package is referenced.

[2] Safety - Schema best practices (lint)
Examples of linting

● Contract leakage - It MUST always be an error when an other version of the same
package is referenced.

[2] Safety - Schema best practices (lint)
Examples of linting

● Contract leakage - It MUST always be an error when an other version of the same
package is referenced.

● gRPC request/response message - A Service method should have a Request
/ Response message.

[2] Safety - Schema best practices (lint)
Examples of linting

● Contract leakage - It MUST always be an error when an other version of the same
package is referenced.

● gRPC request/response message - A Service method should have a Request
/ Response message.

[2] Safety - Schema evolution (diff)
Protobuf is very resilient to schema change: Compatible, but
data loss can occur when consumer has lower precision. (but
should we allow this, maybe we need profiles..)

● Field type change int32, uint32, int64, uint64, and bool
● Field type change sint32 and sint64
● Field type change string and bytes - Compatible as long as bytes are UTF-8.

● Field type change bytes and message - Compatible with bytes if the bytes
contain an encoded version of the message.

[3] Shadow Contracts
Enrich the contracts, without touching the

originals

[3] Shadow Contracts
Contracts are owned by a certain team

master
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
But they need enrichment for other workload (replaces
configuration)

master
repo

shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
But they need enrichment for other workload (replaces
configuration)

master
repo

shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
But they need enrichment for other workload (replaces
configuration)

master
repo

shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
MetaStore tracks the delta

master
repo

delta shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
Each time the contract evolves...

master
repo

delta shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
… the delta is reapplied

master
repo

delta shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
Every time

master
repo

delta shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

[3] Shadow Contracts
Every time

master
repo

delta shadow
repo

gRPC and
consumer /
producer
workload

big data
workload / other
enriched views

on the contracts

Workflow
How most people will interact

with the MetaStore

[1] MetaStep
Working with contracts on CI/CD pipelines

[1] Repo - Metastep
Edits on contracts are done in a branch, the branch is pushed

Branch: feature/contract
Meta Step - Verify

MetaStore

[1] Repo - Metastep
MetaStep - will check against the master contracts for breaking
changes

Branch: feature/contract
Meta Step - Verify

MetaStore

[1] Repo - Metastep
MetaStep - if it succeeds, allowed to merge to master

Branch: feature/contract
Meta Step - Verify

MetaStore

[1] Repo - Metastep
Manual merge in your CI tool of choice

Meta Step - Publish
MetaStore

[1] Repo - Metastep
Build pipeline on master kicks in

Meta Step - Publish
MetaStore

[1] Repo - Metastep
If succeed the master is published

Meta Step - Publish
MetaStore

[1] Repo - Metastep
The system is synced

Synced with
MetaStore MetaStore

[1] Repo - Metastep
Extra optional buildstep could be publishing the contracts to the
repo’s

[2] Publishing Contracts
Microservices own the original contracts but

publish the contracts

[2] Repo - Publish contracts
Microservices have their own contracts, Metastore has the
world view, Git has a readable view

Mono Master Repo

Service A

Service B

Service C

MetaStore

[2] Repo - Publish contracts
Contract owner verifies and publishes her contracts

Mono Master Repo

Service A

MetaStore

[2] Repo - Publish contracts
MetaStore has no UI, but after publish it will recreate the
contracts in the master mono repo

Mono Master Repo

Service A

MetaStore

[2] Repo - Publish contracts
Each owner has his own scoped contracts, scope is important

Mono Master Repo

Service A
Service C

MetaStore

[2] Repo - Publish contracts
Again the contracts are written to mono repo

Mono Master Repo

Service A
Service C

MetaStore

[2] Repo - Publish contracts
Each component has a master of contracts - Publish the
contracts to the mono repo.

Mono Master Repo

Service A

Service B

Service C

MetaStore

[2] Repo - Publish contracts
Each component has a master of contracts - Publish the
contracts to the mono repo.

Mono Master Repo

Service A

Service B

Service C

MetaStore

[2] Repo - Publish contracts
Each component has a master of contracts - Publish the
contracts to the mono repo.

Mono Master Repo

Service A

Service B

Service C

MetaStore

[2] Repo - Publish contracts
Each component has a master of contracts - Publish the
contracts to the mono repo.

Mono Master Repo

Architecture
How it works

Protos best kept secret: Descriptors
Descriptors are your proto contracts, parsed and stored in...

protoc \
 -Itestsets/test1 \
 -I/usr/local/include \
 -I$GOOGLEAPIS_DIR \
 --descriptor_set_out=tmp/test1.pb \
 testsets/test1/test/v1alpha1/simple.proto

https://developers.google.com/protocol-buffers/docs/techniques#self-description

https://developers.google.com/protocol-buffers/docs/techniques#self-description

Protos best kept secret: Descriptors
Descriptors are your proto contracts, parsed and stored in
proto (say what?!)

protoc \
 -Itestsets/test1 \
 -I/usr/local/include \
 -I$GOOGLEAPIS_DIR \
 --descriptor_set_out=tmp/test1.pb \
 testsets/test1/test/v1alpha1/simple.proto

https://developers.google.com/protocol-buffers/docs/techniques#self-description

https://developers.google.com/protocol-buffers/docs/techniques#self-description

Protos best kept secret: Descriptors
As it’s part of the specification, all tools support it… Gradle

{ task ->
 task.generateDescriptorSet = true
 task.descriptorSetOptions.includeSourceInfo = true
 task.descriptorSetOptions.includeImports = true
}

https://github.com/google/protobuf-gradle-plugin

https://github.com/google/protobuf-gradle-plugin

Protos best kept secret: Descriptors
Bazel

When compiled on the command-line, a proto_library
creates a file named foo-descriptor-set.proto.bin, which
is the descriptor set for the messages the rule srcs. The file is a
serialized FileDescriptorSet, which is described in
https://developers.google.com/protocol-buffers/docs/technique
s#self-description.

https://docs.bazel.build/versions/master/be/protocol-buffer.html

https://developers.google.com/protocol-buffers/docs/techniques#self-description
https://developers.google.com/protocol-buffers/docs/techniques#self-description
https://docs.bazel.build/versions/master/be/protocol-buffer.html

Protos best kept secret: Descriptors
Available almost everywhere… Every class has static metadata
embedded

package io.anemos.protobeam.examples;

public final class Basic {
 private Basic() {}
...
 static {
 java.lang.String[] descriptorData = {
 "\n%anemos/protobeam/examples/basic.proto\022" +
 "\031anemos.protobeam.examples\"\321\001\n\025ProtoBeam" +
 "BasicMessage\022\021\n\ttest_name\030\001 \001(\t\022\022\n\ntest_" +
 "index\030\002 \001(\005\022C\n\007message\030\003 \001(\01322.anemos.pr" +
 "otobeam.examples.ProtoBeamBasicPrimitive" +
 "\022L\n\020repeated_message\030\004 \003(\01322.anemos.prot" +
...

Protos best kept secret: Descriptors
GRPC Server Reflection Protocol - server reflection as an optional extension for servers to

assist clients in runtime construction of requests without having stub information precompiled into the client

https://github.com/grpc/grpc/blob/master/doc/server-reflection.md

https://github.com/grpc/grpc/blob/master/doc/server-reflection.md

Descriptors
the backbone of the MetaStore architecture

MetaStore - Architecture
High level architecture

protoc

descriptor.proto

metastep

MetaStore - Architecture
High level architecture

protoc

descriptor linter.proto

servermetastep

MetaStore - Architecture
High level architecture

protoc

descriptor linter differ.proto

storage

servermetastep

MetaStore - Architecture
High level architecture

protoc

descriptor linter differ profile.proto

report

storage

servermetastep

MetaStore - Architecture
High level architecture

protoc

descriptor linter differ profile.proto

report

storage

servermetastep

MetaStore - Architecture
High level architecture

descriptor linter differ profile

report

storage

server

your client

Use
What a registry enables

[1] Auditing
Auditing, Monitoring and Deprecation

Runtime auditing: Producer > Consumer

MetaStore

CI/CD

Runtime

Build time

Artifact

Producer

Runtime auditing: Producer > Consumer

MetaStore
Runtime

Producer
/healthz

Standard libraries can prevent the
component to ever start serving traffic. A
good example is using the Kubernetes
liveness probe, Wrong contract, you will
get into a crash loop.

Runtime auditing: Producer > Consumer

MetaStore
Runtime

Producer
/healthz

Audit Trail

Runtime auditing: Producer > Consumer

MetaStore

CI/CD

Runtime

Build time

Artifact

Producer Consumer

Runtime auditing: Producer > Consumer

MetaStore
Runtime

Producer Consumer
/healthz

Runtime auditing: Producer > Consumer

MetaStore
Runtime

Producer Consumer

Once startet the component don’t need
the store anymore

Runtime auditing: Producer > Consumer

MetaStore
Runtime

Producer Consumer

Audit Trail

At startup and regular intervals (every
day?) the component should contact
MetaStore. MetaStore will log every usage
in an audit trail. It’s just a log of usage
patterns.

Runtime auditing: Producer > Consumer

MetaStore
Runtime

Producer Consumer

Audit Trail

Outside the scope of the metastore is a
system that notifies teams of deprecation.
Metastore will only log the contract usage
audit trail.

Runtime auditing: Future

Hello team clearance,

You are using example.checkoutexp.cart.v1 api, the api is deprecated and is
marked for removal from 2021-12-12.

We have detected the the following modules are using this api:

● datascience-recsys-api
● Data-backup-beam

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Action Required

Runtime auditing: gRPC client > server

MetaStore
Runtime

Client Server

Audit Trail

gRPC server and client use the same
principle as stream producers and
consumers.

[2a] Apache Beam
Dynamic Beam and Beam SQL

Apache Beam - Beam SQL

MetaStore
Runtime

Beam SQL
(protobeam)

Knowing on witch bus (be it Kafka,
Pub/Sub, RabbitMQ, …) what contract is
streamed enables dynamic querying
without backing in the contract

Apache Beam - Beam SQL

MetaStore
Runtime

Dynamic
Transform
(protobeam)

Using the shadow contracts can help data
pipelines do minimal transformations to
make it ready for the data-lake: examples
rowkey (Bigtable), partition and cluster
field (BigQuery)...

[2b] Apache Kafka
A messaging technology should not dictate its

payload format

Apache Kafka doesn’t require avro

MetaStore
Runtime

It’s not because in the Confluent Schema
registry avro is the only format that it
supports, that you need to be reliant of
avro.It has good ideas but it should not
dictate the payload format.

Kafka Connect
(protobeam)

Take away
Conclusion anyone?

MetaStore can help you...
● Safeguard schema changes, evolution defined by profile
● Helps you align on best practices in an organisation
● Allows different way of working

○ Mono master repo and run as a build step
○ Publish from owning components to the master repo

But a standard API can...
Unlock a lot of useful dynamic use-cases
(did you find every logo?)

● Auditing

● Dynamic Pipelines

But we need you to help define the API.

Join in the conversation
● https://github.com/anemos-io/metastore the store and

temporary home for the api (it will break daily)

● https://github.com/anemos-io/proto-beam will connect the

Apache Beam to the metastore (probably will get a Kafka edition as well)

● Contact me alex@vanboxel.be to start a core API team, we’ll

take it from there

● Early API proposal doc, full of typo’s

https://github.com/anemos-io/metastore
https://github.com/anemos-io/proto-beam
mailto:alex@vanboxel.be
https://docs.google.com/document/d/1yVXuK45YTjSEBLPOpLIhezCq4JDSD3uG5UbfMh6ujVk/edit?usp=sharing

