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Hello. I am Aaron Li from Carnegie Mellon. And it is my pleasure to present you the joint work with Amr, Sujith, and Alex.!
Today I am going to talk about some fundamental techniques to make topic models run faster.!
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Obviously all of you sitting here are already experts of the subject, let me just quickly go through the basics, the current state-of-the-art, their 
shortcomings, then I will show your our alias method - it not only works for LDA, but also can be generalized, to work with more sophisticated models. For 
example, Pitman-Yor topic models, and Hierarchical Dirichlet Process.



Models

Okay, let’s get started…



Clustering & Topic Models

Latent Dirichlet Allocation
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This is the good old LDA model that everyone loves.



Topics in text 
(Blei, Ng, Jordan, 2003)

This is a standard application of LDA. It is used across all fields of data science to analyze billions of documents, images, videos, and user activities.



Collapsed Gibbs Sampler  
(Griffiths & Steyvers, 2005)
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This is standard sampling equation for Collapsed Gibbs Sampler. Let me introduce the notations: t is topic, d is document, i is the document index, and j is 
the word index. Everything else is standard - n(t,d) is the document-topic count and n(t,w) is the topic-word count



• For each document do 
• For each word in the document do 

• Resample topic for the word 
 
 
 
 
 

• Update (document, topic) table 
• Update (word,topic) table

Collapsed Gibbs Sampler
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The standard way to speed up the Collapsed Gibbs Sampler is to look at the sparsities of each term. For example the n(t,d) variables have only a few non-
zero values for all t, because documents are short and each token in the document contributes no more than one topic. Similarly n(t,w) is also sparse if the 
average word frequency is low, which is generally true for small collections. 



• For each document do 
• For each word in the document do 

• Resample topic for the word 
 
 
 
 
 

• Update (document, topic) table 
• Update (word,topic) table

Exploiting Sparsity  
(Yao, Mimno, Mccallum, 2009)
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SparseLDA was created using this principle - the sparse terms are expanded as a multiplier for each term. It is very effective on small collections.



• For each document do 
• For each word in the document do 

• Resample topic for the word 
 
 
 
 
 

• Update (document, topic) table 
• Update (word,topic) table

Exploiting Sparsity  
(Yao, Mimno, Mccallum, 2009)
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most documents

dense for 
large collections

O(k) time
we solve this 

problem

But not on large collections. In large collections word frequency is a lot higher, and the n(t,w) variable becomes dense. The sampling performance falls 
back to the naive algorithm in the worse case. 
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• Poisson-Dirichlet Process

Metropolis-Hastings [7] scheme and the use of the alias
method, introduced by Walker [20, 13], to amortize dense
updates for random variables. This method is highly ver-
satile. It defers corrections to the model and avoids renor-
malization. This allows us to apply it to both flat and hier-
archical models. Experimental evaluation demonstrates the
e�cacy of our approach, yielding orders of magnitude accel-
eration and a simplified algorithm.

While we introduce our algorithm in the context of topic
models, it is entirely general and applies to a much richer
class of models. At its heart lies the insight that in many
inference problems the model parameters only change rela-
tively slowly during sampling. For instance, the location of
cluster centers, the definition of topics, or the shape of au-
toregressive functions, only change relatively slowly. Hence,
if we could draw from a distribution over k outcomes k times,
Walker’s alias method would allow us to generate samples in
amortized constant time. At the same time, the Metropolis
Hastings algorithm allows us to use approximations of the
correct probability distribution, provided that we compute
ratios between successive states correctly. Our approach is
to draw from the stale distribution in constant time and to
accept the transition based on the ratio between successive
states. This step takes constant time. Moreover, the pro-
posal is independent of the current state. Once k samples
have been drawn, we simply update the alias table. In honor
of the constitutent algorithms we refer to our technique as
the Metropolis Hastings Walker (MHW) sampler.

2. TOPIC MODELS
We begin with a brief introduction to topic models and the

associated inference problems. This includes a short motiva-
tion of sampling schemes in the context collapsed samplers
[9, 18] and of stochastic variational models [21]. It is followed
by a description of extensions to hierarchical models.

2.1 Latent Dirichlet Allocation
In LDA [3] one assumes that documents are mixture dis-

tributions of language models associated with individual
topics. That is, the documents are generated following the
graphical model below:

for all i

for all d

for all k
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For each document d draw a topic distribution ✓d from a
Dirichlet distribution with concentration parameter ↵

✓d ⇠ Dir(↵). (1)

For each topic t draw a word distribution from a Dirichlet
distribution with concentration parameter �

 t ⇠ Dir(�). (2)

For each word i 2 {1 . . . nd} in document d draw a topic
from the multinomial ✓d via

zdi ⇠ Discrete(✓d). (3)

Draw a word from the multinomial  zdi via

wdi ⇠ Discrete( zdi). (4)

The beauty of the Dirichlet-multinomial design is that the
distributions are conjugate. This means that the multino-
mial distributions ✓d and  k can be integrated out, thus
allowing one to express p(w, z|↵,�, nd) in closed-form [9].
This yields a Gibbs sampler to draw p(zdi|rest) e�ciently.
The conditional probability is given by
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Here the count variables ntd, ntw and nt denote the num-
ber of occurrences of a particular (topic,document) and
(topic,word) pair, or of a particular topic respectively. More-
over, the superscript ·�di denotes said count when ignoring
the pair (zdi, wdi). For instance, n

�di
tw is obtained when ignor-

ing the (topic,word) combination at position (d, i). Finally,
�̄ :=

P
w �w denotes the joint normalization.

At first glance, sampling from (5) appears to cost O(k)
time since we have k nonzero terms in a sum that needs to be
normalized. [22] devised an ingenious strategy for exploiting
sparsity by decomposing terms into
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As can be seen, for small collections of documents only the
first term is dense, and more specifically,

P
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can be computed from
P

t ↵t/(nt + �̄) in O(1) time. That
is, whenever both ntd and ntw are sparse, sampling from
p(zdi|rest) can be accomplished e�ciently. The use of packed
index variables and a clever reordering of (topic,count) pairs
further improve e�cient sampling to O(kw + kd).
Stochastic variational inference [11] requires an analogous

sampling step. The main di↵erence being that rather than
using ntw+�w

nt+�̄
to capture p(w|t) one uses a natural parameter

⌘tw associated with the conjugate variational distribution.
Unfortunately this renders the model dense, unless rather
careful precautions are undertaken [11] to separate residual
dense and sparse components.
Instead, we devise a sampler to draw from p(zdi|rest) in

amortized O(kd) time. We accomplish this by using
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Here the first term is sparse in kd and we can draw from it
in O(kd) time. The second term is dense, regardless of the
number of documents (this holds true for stochastic varia-
tional samplers, too). However, the ’language model’ p(w|t)
does not change too drastically whenever we resample a sin-
gle word. The number of words is huge, hence the amount of
change per word is concomitantly small. This insight forms
the basis for applying Metropolis-Hastings-Walker sampling.

2.2 Poisson Dirichlet Process
To illustrate the fact that the MHW sampler also works

with models containing a dense generative part, we describe
its application to the Poisson Dirichlet Process [4, 16]. The
model is given by the following variant of the LDA model:

for all i

for all d
for all k

↵ ✓d zdi wdi  t  0 �

In a conventional topic model the language model is sim-
ply given by a multinomial draw from a Dirichlet distribu-
tion. This fails to exploit distribution information between
topics, such as the fact that all topics have the same common
underlying language. A means for addressing this problem
is to add a level of hierarchy to model the distribution over
 t via

Q
t p( t| 0)p( 0|�) rather than

Q
t p( t|�). Such a

model is depicted above.
The ingredients for a refined language model are a Pitman-

Yor Topic Model (PYTM) [17] that is more appropriate to
deal with natural languages. This is then combined with
the Poisson Dirichlet Process (PDP) [16, 4] to capture the
fact that the number of occurences of a word in a natu-
ral language corpus follows power-law. Within a corpus, the
frequency of a word is approximately inversely proportional
to its ranking in number of occurences. Each draw from a
Poisson Dirichlet Process PDP(b, a, 0) is a probability dis-
tribution. The base distribution  0 defines the common un-
derlying distribution shared across the generated distribu-
tions. Under the settings of Pitman-Yor Topic Model, each
topic defines a distribution over words, and the base dis-
tribution defines the common underlying common language
model shared by the topics. The concentration parameter
b controls how likely a word is to occur again while being
sampled from the generated distribution. The discount pa-
rameter a prevents a word to be sampled too often by im-
posing a penalty on its probability based on its frequency.
The combined model described explicityly in [5]:

✓d ⇠ Dir(↵)  0 ⇠ Dir(�)

zdi ⇠ Discrete(✓d)  t ⇠ PDP(b, a, 0)

wdi ⇠ Discrete ( zdi)

As can be seen, the document-specific part is identical to
LDA whereas the language model is rather more sophisti-
cated. Likewise, the collapsed inference scheme is analogous
to a Chinese Restaurant Process [6, 5]. The technical di�-
culty arises from the fact that we are dealing with distribu-
tions over countable domains. Hence, we need to keep track
of multiplicities, i.e. whether any given token is drawn from
�i or �0. This will require the introduction of additional
count variables in the collapsed inference algorithm.

Each topic is equivalent to a restaurant. Each token in the
document is equivalent to a customer. Each type of word
corresponds each type of dish served by the restaurant. The
same results in [6] can be used to derive the conditional
probability by introducing axillary variables:

• stw denotes the number of tables serving dish w in
restaurant t. Here t is the equivalent of a topic.

• rdi indicates whether wdi opens a new table in the
restaurant or not (to deal with multiplicities).

• mtw denotes the number of times dish w has been
served in restaurant t (analogously to nwk in LDA).

The conditional probability is given by:

p(zdi = t, rdi = 0|rest) / ↵t + ndt
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if no additional ’table’ is opened by word wdi. Otherwise

p(zdi = t, rdi = 1|rest) (8)
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Here SN
M,a is the generalized Stirling number. It is given by
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0,a = �N,0. A detailed analysis is given in

[4]. Moreover we have mt =
P

w mtw, and st =
P

t stw.
Similar to the conditional probability expression in LDA,

these two expressions can be written as a combination of
a sparse term and a dense term, simply by splitting the
factor (↵t+ndt) into its sparse component ndt and its dense
counterpart ↵t. Hence we can apply the same strategy as
before when sampling topics from LDA, albeit now using a
twice as large space of state variables.

2.3 Hierarchical Dirichlet Process
To illustrate the e�cacy and generality of our approach we

discuss a third case where the document model itself is more
sophisticated than a simple collapsed Dirichlet-multinomial.
We demonstrate that there, too, inference can be performed
e�ciently. Consider the two-level topic model based on the
Hierarchical Dirichlet Process [19] (HDP-LDA). In it, the
topic distribution for each document ✓d is drawn from a
Dirichlet process DP(b1, ✓0). In turn, ✓0 is drawn from a
Dirichlet process DP(b0, H(·)) governing the distribution
over topics. In other words, we add an extra level of hierar-
chy on the document side (compared to the extra hierarchy
on the language model used in the PDP).

for all i
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H ✓0 ✓d zdi wdi  k �

More formally, the joint distribution is as follows:

✓0 ⇠ DP(b0, H(·))  t ⇠ Dir(�)

✓d ⇠ DP(b1, ✓0)

zdi ⇠ Discrete(✓d)

wdi ⇠ Discrete ( zdi)

By construction, DP(b0, H(·)) is a Dirichlet Process, equiva-
lent to a Poisson Dirichlet Process PDP(b0, a,H(·)) with the
discount parameter a set to 0. The base distribution H(.) is
often assumed to be a uniform distribution in most cases.
At first, a base ✓0 is drawn from DP(b0, H(·)). This gov-

erns how many topics there are in general, and what their
overall prevalence is. The latter is then used in the next level
of the hierarchy to draw a document-specific distribution ✓d
that serves the same role as in LDA. The main di↵erence is
that unlike in LDA, we use ✓0 to infer which topics are more
popular than others.
It is also possible to extend the model to more than two

levels of hierarchy, such as the infinite mixture model [19].
Similar to Poisson Dirichlet Process, an equivalent Chinese
Restaurant Franchise analogy [6, 19] exists for Hierarchi-
cal Dirichlet Process with multiple levels. In this analogy,
each Dirichlet Process is mapped to a single Chinese Restau-
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same results in [6] can be used to derive the conditional
probability by introducing axillary variables:

• stw denotes the number of tables serving dish w in
restaurant t. Here t is the equivalent of a topic.

• rdi indicates whether wdi opens a new table in the
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these two expressions can be written as a combination of
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discuss a third case where the document model itself is more
sophisticated than a simple collapsed Dirichlet-multinomial.
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discuss a third case where the document model itself is more
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We demonstrate that there, too, inference can be performed
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Hierarchical Dirichlet Process [19] (HDP-LDA). In it, the
topic distribution for each document ✓d is drawn from a
Dirichlet process DP(b1, ✓0). In turn, ✓0 is drawn from a
Dirichlet process DP(b0, H(·)) governing the distribution
over topics. In other words, we add an extra level of hierar-
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More formally, the joint distribution is as follows:
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By construction, DP(b0, H(·)) is a Dirichlet Process, equiva-
lent to a Poisson Dirichlet Process PDP(b0, a,H(·)) with the
discount parameter a set to 0. The base distribution H(.) is
often assumed to be a uniform distribution in most cases.
At first, a base ✓0 is drawn from DP(b0, H(·)). This gov-

erns how many topics there are in general, and what their
overall prevalence is. The latter is then used in the next level
of the hierarchy to draw a document-specific distribution ✓d
that serves the same role as in LDA. The main di↵erence is
that unlike in LDA, we use ✓0 to infer which topics are more
popular than others.
It is also possible to extend the model to more than two

levels of hierarchy, such as the infinite mixture model [19].
Similar to Poisson Dirichlet Process, an equivalent Chinese
Restaurant Franchise analogy [6, 19] exists for Hierarchi-
cal Dirichlet Process with multiple levels. In this analogy,
each Dirichlet Process is mapped to a single Chinese Restau-

The same issues also appear in other topic models. Poisson-Dirichlet Process
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Metropolis-Hastings [7] scheme and the use of the alias
method, introduced by Walker [20, 13], to amortize dense
updates for random variables. This method is highly ver-
satile. It defers corrections to the model and avoids renor-
malization. This allows us to apply it to both flat and hier-
archical models. Experimental evaluation demonstrates the
e�cacy of our approach, yielding orders of magnitude accel-
eration and a simplified algorithm.

While we introduce our algorithm in the context of topic
models, it is entirely general and applies to a much richer
class of models. At its heart lies the insight that in many
inference problems the model parameters only change rela-
tively slowly during sampling. For instance, the location of
cluster centers, the definition of topics, or the shape of au-
toregressive functions, only change relatively slowly. Hence,
if we could draw from a distribution over k outcomes k times,
Walker’s alias method would allow us to generate samples in
amortized constant time. At the same time, the Metropolis
Hastings algorithm allows us to use approximations of the
correct probability distribution, provided that we compute
ratios between successive states correctly. Our approach is
to draw from the stale distribution in constant time and to
accept the transition based on the ratio between successive
states. This step takes constant time. Moreover, the pro-
posal is independent of the current state. Once k samples
have been drawn, we simply update the alias table. In honor
of the constitutent algorithms we refer to our technique as
the Metropolis Hastings Walker (MHW) sampler.

2. TOPIC MODELS
We begin with a brief introduction to topic models and the

associated inference problems. This includes a short motiva-
tion of sampling schemes in the context collapsed samplers
[9, 18] and of stochastic variational models [21]. It is followed
by a description of extensions to hierarchical models.

2.1 Latent Dirichlet Allocation
In LDA [3] one assumes that documents are mixture dis-

tributions of language models associated with individual
topics. That is, the documents are generated following the
graphical model below:

for all i

for all d

for all k

↵ ✓d zdi wdi  k �

For each document d draw a topic distribution ✓d from a
Dirichlet distribution with concentration parameter ↵

✓d ⇠ Dir(↵). (1)

For each topic t draw a word distribution from a Dirichlet
distribution with concentration parameter �

 t ⇠ Dir(�). (2)

For each word i 2 {1 . . . nd} in document d draw a topic
from the multinomial ✓d via

zdi ⇠ Discrete(✓d). (3)

Draw a word from the multinomial  zdi via

wdi ⇠ Discrete( zdi). (4)

The beauty of the Dirichlet-multinomial design is that the
distributions are conjugate. This means that the multino-
mial distributions ✓d and  k can be integrated out, thus
allowing one to express p(w, z|↵,�, nd) in closed-form [9].
This yields a Gibbs sampler to draw p(zdi|rest) e�ciently.
The conditional probability is given by

p(zdi|rest) /
(n�di

td + ↵t)(n
�di
tw + �w)

n�di
t + �̄

. (5)

Here the count variables ntd, ntw and nt denote the num-
ber of occurrences of a particular (topic,document) and
(topic,word) pair, or of a particular topic respectively. More-
over, the superscript ·�di denotes said count when ignoring
the pair (zdi, wdi). For instance, n

�di
tw is obtained when ignor-

ing the (topic,word) combination at position (d, i). Finally,
�̄ :=

P
w �w denotes the joint normalization.

At first glance, sampling from (5) appears to cost O(k)
time since we have k nonzero terms in a sum that needs to be
normalized. [22] devised an ingenious strategy for exploiting
sparsity by decomposing terms into

p(zdi|rest) / �w
↵t

n�di
t + �̄

+ n�di
td

�w

n�di
t + �̄

+ n�di
tw

n�di
td + ↵t

n�di
t + �̄

As can be seen, for small collections of documents only the
first term is dense, and more specifically,

P
t ↵t/(n

�di
t + �̄)

can be computed from
P

t ↵t/(nt + �̄) in O(1) time. That
is, whenever both ntd and ntw are sparse, sampling from
p(zdi|rest) can be accomplished e�ciently. The use of packed
index variables and a clever reordering of (topic,count) pairs
further improve e�cient sampling to O(kw + kd).
Stochastic variational inference [11] requires an analogous

sampling step. The main di↵erence being that rather than
using ntw+�w

nt+�̄
to capture p(w|t) one uses a natural parameter

⌘tw associated with the conjugate variational distribution.
Unfortunately this renders the model dense, unless rather
careful precautions are undertaken [11] to separate residual
dense and sparse components.
Instead, we devise a sampler to draw from p(zdi|rest) in

amortized O(kd) time. We accomplish this by using

p(zdi|rest) / n�di
td

n�di
tw + �w

n�di
t + �̄

+
↵t(n

�di
tw + �w)

n�di
t + �̄

(6)

Here the first term is sparse in kd and we can draw from it
in O(kd) time. The second term is dense, regardless of the
number of documents (this holds true for stochastic varia-
tional samplers, too). However, the ’language model’ p(w|t)
does not change too drastically whenever we resample a sin-
gle word. The number of words is huge, hence the amount of
change per word is concomitantly small. This insight forms
the basis for applying Metropolis-Hastings-Walker sampling.

2.2 Poisson Dirichlet Process
To illustrate the fact that the MHW sampler also works

with models containing a dense generative part, we describe
its application to the Poisson Dirichlet Process [4, 16]. The
model is given by the following variant of the LDA model:

for all i

for all d
for all k

↵ ✓d zdi wdi  t  0 �

In a conventional topic model the language model is sim-
ply given by a multinomial draw from a Dirichlet distribu-
tion. This fails to exploit distribution information between
topics, such as the fact that all topics have the same common
underlying language. A means for addressing this problem
is to add a level of hierarchy to model the distribution over
 t via

Q
t p( t| 0)p( 0|�) rather than

Q
t p( t|�). Such a

model is depicted above.
The ingredients for a refined language model are a Pitman-

Yor Topic Model (PYTM) [17] that is more appropriate to
deal with natural languages. This is then combined with
the Poisson Dirichlet Process (PDP) [16, 4] to capture the
fact that the number of occurences of a word in a natu-
ral language corpus follows power-law. Within a corpus, the
frequency of a word is approximately inversely proportional
to its ranking in number of occurences. Each draw from a
Poisson Dirichlet Process PDP(b, a, 0) is a probability dis-
tribution. The base distribution  0 defines the common un-
derlying distribution shared across the generated distribu-
tions. Under the settings of Pitman-Yor Topic Model, each
topic defines a distribution over words, and the base dis-
tribution defines the common underlying common language
model shared by the topics. The concentration parameter
b controls how likely a word is to occur again while being
sampled from the generated distribution. The discount pa-
rameter a prevents a word to be sampled too often by im-
posing a penalty on its probability based on its frequency.
The combined model described explicityly in [5]:

✓d ⇠ Dir(↵)  0 ⇠ Dir(�)

zdi ⇠ Discrete(✓d)  t ⇠ PDP(b, a, 0)

wdi ⇠ Discrete ( zdi)

As can be seen, the document-specific part is identical to
LDA whereas the language model is rather more sophisti-
cated. Likewise, the collapsed inference scheme is analogous
to a Chinese Restaurant Process [6, 5]. The technical di�-
culty arises from the fact that we are dealing with distribu-
tions over countable domains. Hence, we need to keep track
of multiplicities, i.e. whether any given token is drawn from
�i or �0. This will require the introduction of additional
count variables in the collapsed inference algorithm.

Each topic is equivalent to a restaurant. Each token in the
document is equivalent to a customer. Each type of word
corresponds each type of dish served by the restaurant. The
same results in [6] can be used to derive the conditional
probability by introducing axillary variables:

• stw denotes the number of tables serving dish w in
restaurant t. Here t is the equivalent of a topic.

• rdi indicates whether wdi opens a new table in the
restaurant or not (to deal with multiplicities).

• mtw denotes the number of times dish w has been
served in restaurant t (analogously to nwk in LDA).

The conditional probability is given by:

p(zdi = t, rdi = 0|rest) / ↵t + ndt

bt +mt

mtw + 1� stw
mtw + 1

Smtw+1
stw,at

Smtw
stw,at

(7)

if no additional ’table’ is opened by word wdi. Otherwise

p(zdi = t, rdi = 1|rest) (8)

/(↵t + ndt)
bt + atst
bt +mt

stw + 1
mtw + 1

� + stw
�̄ + st

Smtw+1
stw+1,at

Smtw
stw,at

Here SN
M,a is the generalized Stirling number. It is given by

SN+1
M,a = SN

M�1,a + (N �Ma)SN
M,a and SN

M,a = 0

for M > N , and SN
0,a = �N,0. A detailed analysis is given in

[4]. Moreover we have mt =
P

w mtw, and st =
P

t stw.
Similar to the conditional probability expression in LDA,

these two expressions can be written as a combination of
a sparse term and a dense term, simply by splitting the
factor (↵t+ndt) into its sparse component ndt and its dense
counterpart ↵t. Hence we can apply the same strategy as
before when sampling topics from LDA, albeit now using a
twice as large space of state variables.

2.3 Hierarchical Dirichlet Process
To illustrate the e�cacy and generality of our approach we

discuss a third case where the document model itself is more
sophisticated than a simple collapsed Dirichlet-multinomial.
We demonstrate that there, too, inference can be performed
e�ciently. Consider the two-level topic model based on the
Hierarchical Dirichlet Process [19] (HDP-LDA). In it, the
topic distribution for each document ✓d is drawn from a
Dirichlet process DP(b1, ✓0). In turn, ✓0 is drawn from a
Dirichlet process DP(b0, H(·)) governing the distribution
over topics. In other words, we add an extra level of hierar-
chy on the document side (compared to the extra hierarchy
on the language model used in the PDP).

for all i

for all d

for all k

H ✓0 ✓d zdi wdi  k �

More formally, the joint distribution is as follows:

✓0 ⇠ DP(b0, H(·))  t ⇠ Dir(�)

✓d ⇠ DP(b1, ✓0)

zdi ⇠ Discrete(✓d)

wdi ⇠ Discrete ( zdi)

By construction, DP(b0, H(·)) is a Dirichlet Process, equiva-
lent to a Poisson Dirichlet Process PDP(b0, a,H(·)) with the
discount parameter a set to 0. The base distribution H(.) is
often assumed to be a uniform distribution in most cases.
At first, a base ✓0 is drawn from DP(b0, H(·)). This gov-

erns how many topics there are in general, and what their
overall prevalence is. The latter is then used in the next level
of the hierarchy to draw a document-specific distribution ✓d
that serves the same role as in LDA. The main di↵erence is
that unlike in LDA, we use ✓0 to infer which topics are more
popular than others.
It is also possible to extend the model to more than two

levels of hierarchy, such as the infinite mixture model [19].
Similar to Poisson Dirichlet Process, an equivalent Chinese
Restaurant Franchise analogy [6, 19] exists for Hierarchi-
cal Dirichlet Process with multiple levels. In this analogy,
each Dirichlet Process is mapped to a single Chinese Restau-

and Hierarchical Dirichlet Process are two examples. Their sampling equations are very complex and they don’t even decompose into sparse terms even for 
small collections.
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• Approximate slowly changing distribution by 
fixed distribution. Use Metropolis Hastings 

• Amortized O(1) time proposals

Metropolis-Hastings [7] scheme and the use of the alias
method, introduced by Walker [20, 13], to amortize dense
updates for random variables. This method is highly ver-
satile. It defers corrections to the model and avoids renor-
malization. This allows us to apply it to both flat and hier-
archical models. Experimental evaluation demonstrates the
e�cacy of our approach, yielding orders of magnitude accel-
eration and a simplified algorithm.

While we introduce our algorithm in the context of topic
models, it is entirely general and applies to a much richer
class of models. At its heart lies the insight that in many
inference problems the model parameters only change rela-
tively slowly during sampling. For instance, the location of
cluster centers, the definition of topics, or the shape of au-
toregressive functions, only change relatively slowly. Hence,
if we could draw from a distribution over k outcomes k times,
Walker’s alias method would allow us to generate samples in
amortized constant time. At the same time, the Metropolis
Hastings algorithm allows us to use approximations of the
correct probability distribution, provided that we compute
ratios between successive states correctly. Our approach is
to draw from the stale distribution in constant time and to
accept the transition based on the ratio between successive
states. This step takes constant time. Moreover, the pro-
posal is independent of the current state. Once k samples
have been drawn, we simply update the alias table. In honor
of the constitutent algorithms we refer to our technique as
the Metropolis Hastings Walker (MHW) sampler.

2. TOPIC MODELS
We begin with a brief introduction to topic models and the

associated inference problems. This includes a short motiva-
tion of sampling schemes in the context collapsed samplers
[9, 18] and of stochastic variational models [21]. It is followed
by a description of extensions to hierarchical models.

2.1 Latent Dirichlet Allocation
In LDA [3] one assumes that documents are mixture dis-

tributions of language models associated with individual
topics. That is, the documents are generated following the
graphical model below:

for all i

for all d

for all k

↵ ✓d zdi wdi  k �

For each document d draw a topic distribution ✓d from a
Dirichlet distribution with concentration parameter ↵

✓d ⇠ Dir(↵). (1)

For each topic t draw a word distribution from a Dirichlet
distribution with concentration parameter �

 t ⇠ Dir(�). (2)

For each word i 2 {1 . . . nd} in document d draw a topic
from the multinomial ✓d via

zdi ⇠ Discrete(✓d). (3)

Draw a word from the multinomial  zdi via

wdi ⇠ Discrete( zdi). (4)

The beauty of the Dirichlet-multinomial design is that the
distributions are conjugate. This means that the multino-
mial distributions ✓d and  k can be integrated out, thus
allowing one to express p(w, z|↵,�, nd) in closed-form [9].
This yields a Gibbs sampler to draw p(zdi|rest) e�ciently.
The conditional probability is given by

p(zdi|rest) /
(n�di

td + ↵t)(n
�di
tw + �w)

n�di
t + �̄

. (5)

Here the count variables ntd, ntw and nt denote the num-
ber of occurrences of a particular (topic,document) and
(topic,word) pair, or of a particular topic respectively. More-
over, the superscript ·�di denotes said count when ignoring
the pair (zdi, wdi). For instance, n

�di
tw is obtained when ignor-

ing the (topic,word) combination at position (d, i). Finally,
�̄ :=

P
w �w denotes the joint normalization.

At first glance, sampling from (5) appears to cost O(k)
time since we have k nonzero terms in a sum that needs to be
normalized. [22] devised an ingenious strategy for exploiting
sparsity by decomposing terms into

p(zdi|rest) / �w
↵t

n�di
t + �̄

+ n�di
td

�w

n�di
t + �̄

+ n�di
tw

n�di
td + ↵t

n�di
t + �̄

As can be seen, for small collections of documents only the
first term is dense, and more specifically,

P
t ↵t/(n

�di
t + �̄)

can be computed from
P

t ↵t/(nt + �̄) in O(1) time. That
is, whenever both ntd and ntw are sparse, sampling from
p(zdi|rest) can be accomplished e�ciently. The use of packed
index variables and a clever reordering of (topic,count) pairs
further improve e�cient sampling to O(kw + kd).
Stochastic variational inference [11] requires an analogous

sampling step. The main di↵erence being that rather than
using ntw+�w

nt+�̄
to capture p(w|t) one uses a natural parameter

⌘tw associated with the conjugate variational distribution.
Unfortunately this renders the model dense, unless rather
careful precautions are undertaken [11] to separate residual
dense and sparse components.
Instead, we devise a sampler to draw from p(zdi|rest) in

amortized O(kd) time. We accomplish this by using

p(zdi|rest) / n�di
td

n�di
tw + �w

n�di
t + �̄

+
↵t(n

�di
tw + �w)

n�di
t + �̄

(6)

Here the first term is sparse in kd and we can draw from it
in O(kd) time. The second term is dense, regardless of the
number of documents (this holds true for stochastic varia-
tional samplers, too). However, the ’language model’ p(w|t)
does not change too drastically whenever we resample a sin-
gle word. The number of words is huge, hence the amount of
change per word is concomitantly small. This insight forms
the basis for applying Metropolis-Hastings-Walker sampling.

2.2 Poisson Dirichlet Process
To illustrate the fact that the MHW sampler also works

with models containing a dense generative part, we describe
its application to the Poisson Dirichlet Process [4, 16]. The
model is given by the following variant of the LDA model:

slow changesbig variation

In addition to sparse decomposition like in the state-of-the-art, we do something different. An often neglected property in topic models, is the word 
emission model is slow-changing, unlike the topic distribution for each document. I will use LDA as an example, to show you how we use this property to 
approximate the slow-changing part, reduce sampling complexity to only one sparse term, and fundamentally reduce the running time for all topic 
models.



Metropolis 
Hastings Sampler

The first ingredient is Metropolis Hasting Sampler.
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• Normalization costs O(k) operations!

�
n�ij(t, d) + ↵t

� n�ij(t, w) + �w

n�ij(t) +
P

w �w

=n�ij(t, d)
n�ij(t, w) + �w

n�ij(t) +
P

w �w
+ ↵t

n�ij(t, w) + �w

n�ij(t) +
P

w �w

Sparse 
O(kd) time samples

Often dense but 
slowly varying

First of all the dense part is exactly the slow changing part. As I discussed before the sparse part can be sample very quickly.



Lazy decomposition
• Exploiting topic sparsity in documents 
 
 
 
 
 
 

• Normalization costs O(kd + 1) operations!

�
n�ij(t, d) + ↵t

� n�ij(t, w) + �w

n�ij(t) +
P

w �w

=n�ij(t, d)
n�ij(t, w) + �w

n�ij(t) +
P

w �w
+ ↵t

n�ij(t, w) + �w

n�ij(t) +
P

w �w

Sparse 
O(kd) time samples

Approximate by 
stale q(t|w)

Instead of sampling from the dense part directly, and recompute the probabilities of each outcome every time, we can draw sample from an approximate 
static distribution. A static distribution has a constant normalizer, therefore at first we reduced the sampling cost from O(k) down to O(k_d), where k_d is 
the number of non-zero topic counts in current document.



Lazy decomposition
• Exploiting topic sparsity in documents 
 
 
 
 
 
 

• Normalization costs O(kd + 1) operations!

Sparse 

�
n�ij(t, d) + ↵t

� n�ij(t, w) + �w

n�ij(t) +
P

w �w

=n�ij(t, d)
n�ij(t, w) + �w

n�ij(t) +
P

w �w
+ ↵t

n�ij(t, w) + �w

n�ij(t) +
P

w �w

⇡q(t|d) + q(t|w)

Static 

To make things clear we can rewrite the equation in a simple way. A sparse term depending on the document and current word, and a dense term 
depending only on the current word.



Metropolis Hastings 
with stationary proposal distribution
• We want to sample from p but only have q 

!

• Metropolis Hastings 
• Draw x from q(x) and accept move from x’  
 

• We only need to evaluate ratios of p and q 
• This is a chain. It mixes rapidly in 

experiments.

min

✓
1,

p(x)

p(x0)

q(x0)

q(x)

◆

Having only the approximate distribution, q, at our disposal, with Metropolis Hastings, we are still able sample from the true distribution, p. Here is how it 
works: assume our old sample is x’, we draw a sample x from q(x). Then we compute the acceptance probability of x’->x with the equation here. This can 
be done very quickly in constant time, since we only need to evaluate two ratios.



Application to Topic Models
• Recall - we split topic probability 
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• Dense part has normalization precomputed 
• Sparse part can easily be normalized 
• Sample from q(t) and  

evaluate p(t|w,d) only for the draws

q(t) / q(t|d) + q(t|w)

kd Sparse Dense but static 

Therefore, if there is a way to sample quickly from the dense part, we would be able to reduce the sampling complexity to O(k_d), regardless of the size of 
the corpus.



In a nutshell
!

• Sparse part for document 
(topics, topic hierarchy, etc.) 
Evaluate this exactly 

• Dense part for generative 
model (language, images, …) 
Approximate this by stale model 

• Metropolis Hastings sampler to correct 
• Need fast way to draw from stale model

q(t) / q(t|d) + q(t|w)

In addition that, under the generalized form our method would work on many topic models, simply by rewriting the model as a summation of these two 
terms.



Sampling

To quickly sample from a static distribution we need the second ingredient - Alias sampling.



Walker’s Alias Method
• Draw from discrete distribution in O(1) time 
• Requires O(n) preprocessing 

• Group all x with n p(x) < 1 into L (rest in H) 
• Fill each of the small ones up by stealing 

from H. This yields (i,j, p(i)) triples. 
• Draw from uniform over n, then from p(i)

Walker’s alias method is developed by Alastair Walker in 1977. Given a discrete distribution, it compiles the distribution into a static table. Afterwards 
drawing sample from compiled static distribution only takes constant time instead of a time linear to the number of outcomes. Let me briefly go through 
the algorithm.



Probability distribution

Courtesy of keithschwartz.com

At first we have a distribution where each outcome has different proportions.

http://keithschwartz.com


Probability distribution

Courtesy of keithschwartz.com

Splitting

We go through all the outcomes and find the average value of the proportions.

http://keithschwartz.com


Probability distribution

Courtesy of keithschwartz.com

Filling up (4) with (1)

For each outcome with proportion less than the average, we take part of the proportion of another outcome to make it reach the average. As we take from 
another outcome, we keep track of its origin.

http://keithschwartz.com


Probability distribution

Courtesy of keithschwartz.com

Filling up (3) with (1)

We keep doing this until all outcomes reach the average proportion. During the process some outcomes originally with more than the average proportion 
may fall below average.

http://keithschwartz.com


Probability distribution

Courtesy of keithschwartz.com

Filling up (1) with (2)

But it will eventually be compensated by others, at the time all outcomes reach exactly the average proportion. Obviously at this point each outcome is 
composed by no more than two parts, its original proportion, and part of a proportion from another outcome. To draw samples from this static table we 
only need to generate two random numbers: one decides which column, and the other decides which part.

http://keithschwartz.com


Metropolis-Hastings-Walker
• Conditional topic probability 
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• Use Walker’s method to draw from q(t|w) 
• After k draws from q(t|w) recompute with 

current value 
• Amortized O(1 + kd) sampler

q(t) / q(t|d) + q(t|w)

kd Sparse Dense but static 

Back to our original sampling equation - the Walker’s alias method is perfect way to compute a static approximation for the dense term and generate 
samples from it. The computation can take place in a background thread for every w repeatedly. This ensures the sampling complexity of our alias sampler 
is no more O(k_d), and the approximation distribution close enough to the real distribution for a good acceptance rate in metropolis hasting sampling.



Experiments

We are running out of time so let me show some key results I got in my implementation. Unless mentioned otherwise all results here are generated from 
my single thread C++ implementation running on my gaming laptop with 1.73GHz CPU.



Varying the number of topics (4k)

Figure 4: Comparison of SparseLDA and AliasLDA
on GPOL when varying the number of topics for
k 2 {256, 1024, 2048, 4096}.

Percentage of full PubMedSmall collection

Se
co

nd
s 

pe
r i

te
ra

tio
n

Figure 5: Average runtime per iteration when com-
pared on {10%, 20%, 40%, 75%, 100%} of the PubMedS-
mall dataset for SparseLDA and AliasLDA.

The gap in performance is especially large for more so-
phisticated language modelsl such as PDP and HDP. The
running time for each Gibbs iteration is reduced by 60% to
80% for PDP, and 80% to 95% for HDP, an order of magni-
tude on improvement.

5.5 Varying the number of topics
When the number of topics k increases, the running time

for an iteration of AliasLDA increases at a much lower
rate than SparseLDA, as seen from Figure 4 on dataset
GPOL since kd is almost constant. Even though the gap
between SparseLDA and AliasLDA may seem insignificant
at k = 1024, it becomes very pronounced at k = 2048
(45% improvement) and at k = 4096 (over 100%) This con-
firms the observation above that shorter documents benefits
more from AliasLDA in the sense that the average docu-
ments length L/D relative to the number of topics k be-
comes “shorter” as k increases. This yields a more sparse ndt

and lower kd for a document d on average.

5.6 Varying the corpus size
Figure 5 demonstrates how the gap in running time speed

scales with growing number of documents in the same do-
main. We measure the average runtime for the first 50 Gibbs
iterations on 10%, 20%, 40%, 75%, and 100% of PubMedS-
mall dataset. The speedup ratio for each subset is at 31%,

34%, 37%, 41%, 43% respectively. In other words, it in-
creases with the amount of data, which conforms our in-
tuition that adding new documents increases the density of
ntw, thus slowing down the sparse sampler much more than
the alias sampler, since the latter only depends on kd rather
than kd + kw.

Perplexity vs. Runtime

GPOL

Enron

PubMedSmall

NYTimes

Perplexity vs. Iterations

Figure 6: Perplexity as a function of runtime
(left) and number of iterations (right) for LDA,
SparseLDA, and LDA, PDP and HDP, both with
and without using the Alias method. We see consid-
erable acceleration at unchanged perplexity.

6. CONCLUSION
In this paper, we described an approach that e↵ectively

reduces sampling complexity of topic models from O(k) to
O(kd) in general, and from O(kw+kd) (SparseLDA) to O(kd)
(AliasLDA) for LDA topic model. Empirically, we showed
that our approach scales better than existing state-of-the-
art method when the number of topics and the number of
documents become large. This enables many large scale ap-
plications, and many existing applications which require a

Politic Blogs 
2.6M tokens, 14K docs

This is the result between SparseLDA and AliasLDA, both my own implementation. We compare the running time against the number of iterations for a 
small collection with different number of topics. When the number of topics is 256, the running speed of AliasLDA and SparseLDA are about the same. 
They are the two grey lines in the bottom. When the number of topics scale up to 1024 and 2048, AliasLDA gets faster by about 10% and 30%. When the 
number of topics is 4096, AliasLDA is 100% faster than SparseLDA. The speed up growth is non-linear.



Varying data size

Similarly AliasLDA scales a lot better than SparseLDA when the amount of data gets larger. 



Speed: HDP & PDP
RedState (321K tokens) GPOL (2.6M tokens) Enron (6M tokens)

For sophisticated models like HDP and PDP, the time complexity is reduced from O(k) to O(k_d), and the speedup is huge.



Perplexity

Figure 4: Comparison of SparseLDA and AliasLDA
on GPOL when varying the number of topics for
k 2 {256, 1024, 2048, 4096}.
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Figure 5: Average runtime per iteration when com-
pared on {10%, 20%, 40%, 75%, 100%} of the PubMedS-
mall dataset for SparseLDA and AliasLDA.

The gap in performance is especially large for more so-
phisticated language modelsl such as PDP and HDP. The
running time for each Gibbs iteration is reduced by 60% to
80% for PDP, and 80% to 95% for HDP, an order of magni-
tude on improvement.

5.5 Varying the number of topics
When the number of topics k increases, the running time

for an iteration of AliasLDA increases at a much lower
rate than SparseLDA, as seen from Figure 4 on dataset
GPOL since kd is almost constant. Even though the gap
between SparseLDA and AliasLDA may seem insignificant
at k = 1024, it becomes very pronounced at k = 2048
(45% improvement) and at k = 4096 (over 100%) This con-
firms the observation above that shorter documents benefits
more from AliasLDA in the sense that the average docu-
ments length L/D relative to the number of topics k be-
comes “shorter” as k increases. This yields a more sparse ndt

and lower kd for a document d on average.

5.6 Varying the corpus size
Figure 5 demonstrates how the gap in running time speed

scales with growing number of documents in the same do-
main. We measure the average runtime for the first 50 Gibbs
iterations on 10%, 20%, 40%, 75%, and 100% of PubMedS-
mall dataset. The speedup ratio for each subset is at 31%,

34%, 37%, 41%, 43% respectively. In other words, it in-
creases with the amount of data, which conforms our in-
tuition that adding new documents increases the density of
ntw, thus slowing down the sparse sampler much more than
the alias sampler, since the latter only depends on kd rather
than kd + kw.
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(left) and number of iterations (right) for LDA,
SparseLDA, and LDA, PDP and HDP, both with
and without using the Alias method. We see consid-
erable acceleration at unchanged perplexity.

6. CONCLUSION
In this paper, we described an approach that e↵ectively

reduces sampling complexity of topic models from O(k) to
O(kd) in general, and from O(kw+kd) (SparseLDA) to O(kd)
(AliasLDA) for LDA topic model. Empirically, we showed
that our approach scales better than existing state-of-the-
art method when the number of topics and the number of
documents become large. This enables many large scale ap-
plications, and many existing applications which require a

And, all of these speedup, for LDA and other models, comes without any sacrifice in convergence time or quality. The alias method and the original 
methods converge to the same perplexity.



And now in parallel

Sparse LDA on 60k cores 
(0.1% of a nuclear reactor)  

Mu Li et al, 2014, OSDI



Saving Nuclear Power Plants

Aaron Li et al, submitted



Saving Nuclear Power Plants

Aaron Li et al, submitted



Summary
• Extends Sparse LDA concept of Yao et al.’09 

• Works for any sparse document model 
• Useful for many emissions models 

(Pitman Yor, Gaussians, etc.) 
• Metropolis-Hastings-Walker 

• MH proposals on stale distribution 
• Recompute proposal after k draws for O(1) 

• Fastest LDA sampler by a large margin


