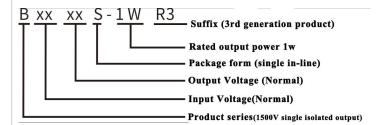


Typical performance

- Sustainable short circuit protection
- Isolated voltage 1500VDC/min, 3000VDC/1s
- No-load input current as low as 5mA
- Working environment temperature: -40°C~+85°C
- Efficiency up to 88%
- International standard pin mode
- Small SIP package
- Low ripple/noise (20MH bandwidth): 30mVp-p(typ)
- MTBF≥3.5 million hours (3500000Hrs)

1W, constant voltage input, isolated unregulated single output DC-DC power module


Continuous short-circuit protection, RoHS

B_S-1WR3 series is a small size, high-efficiency micro power, constant voltage, input isolation and unregulated, single output DC/DC power supply module provided by Hi-link to customers; this series of products are specially designed for the needs of on-board power supply systems. Designed for applications that generate a set of voltages isolated from the input power supply.

This product is suitable for:

- The voltage of the input power supply is relatively stable (voltage variation range $\pm 10\%$ Vin);
- Isolation is required between input and output (isolation voltage≤1500VDC);
- The requirements for output voltage stability are not high;
- Typical applications: pure digital circuits, general low-frequency analog circuits, relay drive circuits, data exchange circuits, etc.

Product Coding Rules

Product List

1 Todact List							
Certificate	Product Module	Input Voltage range (Vdc)	Output Voltage/Current		Ripple and Noise	Efficiency @ full load	Maximum capacitive load
Certificate	number [™]	Nominal value ② (range value)	Output voltage (Vdc)	Output current (mA) (Max.Min.)	Full load (mVp-p) Typ/Max.	%, (Min/Typ)	uF
	B0303S-1WR3	3.3	3.3	303/30	30/80	78/81	2400
	B0305S-1WR3	(2.97~3.63)	5	200/20	30/80	79/82	2400

DC/DC isolated module

Shenzhen Hi-Link Electronic Co.,Ltd.

B0309S-1WR3	3	9	111/12	30/80	79/82	1000
B0312S-1WR3	3	12	84/9	30/80	80/83	560
B0315S-1WR3	3	15	67/7	30/80	80/83	560
B0324S-1WR3	3	24	42/4	50/100	81/84	220
B0503S-1WR3	3	3.3	303/30	30/80	80/83	2400
B0505S-1WR3	3	5	200/20	30/80	85/88	2400
B0509S-1WR3	3 5	9	111/12	30/80	80/83	1000
B0512S-1WR3	(1555)	12	84/9	30/80	80/83	560
B0515S-1WR3	3	15	67/7	30/80	80/83	560
B0524S-1WR3	3	24	42/4	50/100	81/85	220
B1203S-1WR3	3	3.3	303/30	30/80	81/84	2400
B1205S-1WR3	3	5	200/20	30/80	86/88	2400
B1209S-1WR3	3 12	9	111/12	30/80	87/89	1000
B1212S-1WR3	(10.8, 12.2)	12	84/9	30/80	88/90	560
B1215S-1WR3	3	15	67/7	30/80	88/90	560
B1224S-1WR3	3	24	42/4	50/100	88/90	220
B1503S-1WR3	3	3.3	303/30	30/80	81/84	2400
B1505S-1WR3	3	5	200/20	30/80	86/88	2400
B1509S-1WR3	3 15	9	111/12	30/80	87/89	1000
B1512S-1WR3	(13.516.5)	12	84/9	30/80	88/90	560
B1515S-1WR3	3	15	67/7	30/80	88/90	560
B1524S-1WR3	3	24	42/4	50/100	88/90	220
B2403S-1WR3	3	3.3	303/30	30/80	81/84	2400
B2405S-1WR3	3	5	200/20	30/80	86/88	2400
B2409S-1WR3	3 24	9	111/12	30/80	87/89	1000
B2412S-1WR3	(21.6. 26.4)	12	84/9	30/80	88/91	560
B2415S-1WR3	3	15	67/7	30/80	88/91	560
B2424S-1WR3	3	24	42/4	50/100	88/91	220

Note: 1. Due to limited space, the above is just a list of typical products. If you need products other than the list, please contact the sales department of our company.

2. The maximum capacitive load indicates the maximum capacitive load that can be connected to +Vo or -Vo. If it exceeds this value, the product will not be able to start normally.

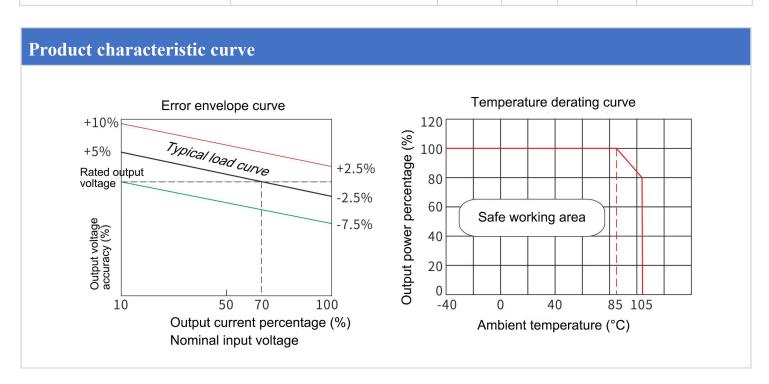
Version: 2021-4 A/0 Page: 2 / 7

Test conditions: Without specified needs, all parameter tests are measured at nominal input voltage, purely resistive rated load and 25°C room temperature.

In	nut		haract	taria	tice
ш	Jut	U.	mai act	rel 12	TIC?

Items	Working conditions	Min.	Тур.	Max.	Unit
	3.3VDC Input		378/8	/15	
Input current	5VDC Input		241/5	/10	
(fully loaded/unloaded)	12VDC Input		100/2	/8	mA
	15VDC Input		83/2	/6	
Reflected Ripple Current			15		mA
	3.3VDC Input	-0.7		5	UDG
Impulse voltage (Isec.max)	5VDC Input	-0.7		9	VDC
Input filter type			Ca	pacitive filteri	ng
Hot plug				Not available	

Output Characteristics


Items	Working and test conditions		Min.	Тур.	Max.	Unit
Output load	Load percentage		10		100	%
Output Voltage Accuracy	Refer to Error	Envelope Curve			±15.0	%
	Input	3.3V Output			±1.5	%
Linear adjustment rate	voltage variation	Others			±1.2	%
		3.3VDC Output		15	20	%
		5VDC Output		10	15	%
I ID 12	10%~100%	9VDC Output		8	10	%
Load Regulation	Load	12VDC Output		7	10	%
		15VDC Output		6	10	%
		24VDC Output		5	10	%
Ripple & Noise	Pure resistive load, 20MHz bandwidth, peak-to-peak			30	80	mVp-p
Temperature Drift Coefficient	Full load				±0.03	%/°C
Output short circuit protection					1	S

Note: ①The test method of ripple and noise is twisted pair test method.

Version: 2021-4 A/0 Page: 3 / 7

General Characteristics					
Items	Working conditions	Min.	Тур.	Max.	Unit
Insulation voltage	Input-output, test time is 1 minute, leakage current is less than 1mA	1500			VDC
Insulation resistance	Input-output, insulation voltage 500VDC	1000			ΜΩ
Isolation capacitor	Input-output, 100KHz/0.1V		20		pF
Operating temperature	Refer to Temperature Derating Curve	-40		+85	
Storage temperature		-40		+125	°C
Shell temperature rise during operation			25		
Storage humidity	No condensation	5		95	%RH
Pin soldering temperature	The solder joint is 1.5mm away from the shell, 10 seconds			+300	°C
On-off level	Full load, nominal voltage input		100		KHz
Shock		10	-55Hz, 10	G, 30Min.aloı	ngX, YandZ
Shell material		Blac	k flame re	tardant heat re (UL94V-0)	esistant plastic
Minimum time between failures	MIL-HDBK-217F@25°C	3.5X10 ⁶			Hrs

Typical Application Reference Circuit (Recommended Parameters)

1.General application: Details of recommended capacitive load values (Table 1)

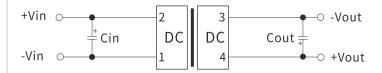


Figure 1

If it is required to further reduce the input and output ripple, a capacitor filter network can be connected to the input and output ends, and the application circuit is shown in Figure 1.

However, attention should be paid to the selection of appropriate filter capacitors. If the capacitor is too large, it is likely to cause startup problems. For each output, under the condition of ensuring safe and reliable operation, the recommended capacitive load value is shown in Table 1.

Vin(Vdc)	Cin(uF)	Vo(Vdc)	Cout(uF)
3.3/5	4.7	3.3/5	10
12	2.2	9	4.7
15	2.2	12	2.2
		15	1
-	-		

2. EMI typical application circuit

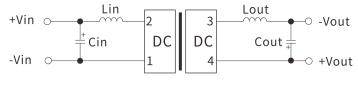
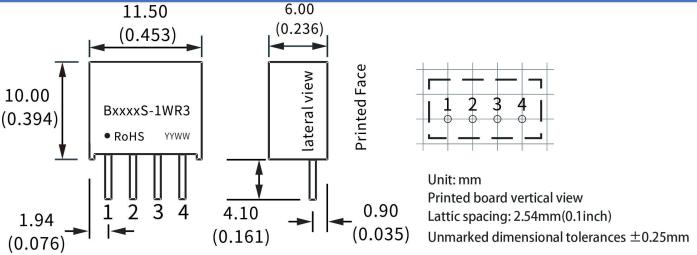


Figure 2

3. Output load requirements

In order to ensure that the module can work efficiently and reliably, the minimum output load cannot be less than 10% of the rated load when in use. If the power you need is really small, please connect a resistor in parallel between the positive and negative poles of the output terminal (the sum of the actual power used by the resistor is greater than or equal to 10% of the rated power and the rated power of the selected resistor must be greater than 5 times the actual power used, otherwise the temperature of the resistor will be higher).


Recommended EMI Reference Circuit Values (Table 2)

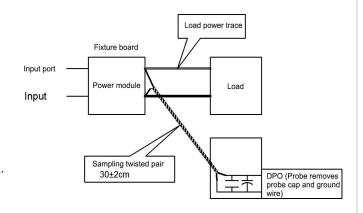
Vin(Vdc)	3.3/5/12/15
Cin	4.7uF/50V
Cout	Refer to Table 1
Lin	4.7uH
Lout	4.7uH

Version: 2021-4 A/0 Page: 5 / 7

Package size and pin function diagram

Note: If the definition of each pin of the power module is inconsistent with the selection manual, the label on the physical label shall prevail.

Pin	1	2	3	4
Function	GND	+Vin	-Vo	$+V_0$


Package description

Package code	LxWxH			
S	11.50x6.0x10.0mm	0.453×0.236×0.394inch		

Test Application Reference

Ripple and noise test (Twisted pair method, 20MHZ bandwidth) Testing method:

- (1) Ripple noise is connected by 12# twisted pair. The oscilloscope bandwidth is set to 20MHz, 100M bandwidth probe, and 0.1uF polypropylene capacitor and 47uF high frequency low resistance electrolytic capacitor are connected in parallel on the probe end. The oscilloscope sampling uses Sample sampling mode.
- (2) Schematic diagram of output ripple&noise test: Connect the power input terminal to the input power supply terminal. The power output is connected to the electronic load through the fixture board. The test uses a $30\text{cm} \pm 2$ cm sampling line to sample directly from the power output port. The power line selects the insulated wire with the corresponding wire diameter according to the magnitude of the output current.

Product application considerations

- 1. Input requirements: Ensure that the output voltage fluctuation range of the power supply does not exceed the input requirements of the DC / DC module itself, and the output power of the input power supply must be greater than the output power of the DC / DC module.
- 2. One recommended circuit: For applications where ripple and noise requirements are normal, a filter capacitor can be connected in parallel at the input and output ends. The external circuit is shown in the following figure1 with the recommended value details of the filter capacitor. Output load requirements: Try to avoid no-load use. When the actual power consumption of the load is less than 10% of the rated output power of the module or there is no-load phenomenon, it is recommended that a dummy load be connected to the output end. The dummy load (resistance) can be calculated by 5~10% of the rated power of the module, resistance value = Uout / (1W * 10%).
- 3. Over-load protection: Under normal operating conditions, the output circuit of this product has no protection function against overload conditions. The easiest way is to connect a resettable fuse in series at the input end, or add a circuit breaker to the circuit.
- 4. The external capacitor of the output terminal should not be too large, otherwise it will easily cause over-current or poor start-up when the module starts.
- 5. If the product works below the minimum required load, the performance of the product cannot be guaranteed to meet all performance indications in this manual.
- 6. The maximum capacitive load is tested under the input voltage range and full load condition.
- 7. Unless special instructions, all indexes in this manual are measured at the condition, Ta = 25 °C, humidity <75% RH, nominal input voltage and output rated load.
- 8. All index testing methods in this manual are based on the company's standards
- 9. Our company can provide product customization, and you can directly contact our technical staff for specific conditions
- 10. Product specifications are subject to change without notice.

Contact

Shenzhen Hi-Link Electronic Co., Ltd

Add: 3rd Floor, Building 1, 1970 Science and Technology Park, Minzhi, Longhua District, Shenzhen, Guangdong, China 518131

Website: www.hlktech.net
E-mail: sales@hlktech.com

Tel: 0755-23152658

Version: 2021-4 A/0 Page: 7 / 7